Compare commits

...

7 Commits

Author SHA1 Message Date
5207a45727 改发送 2025-10-06 20:37:54 +08:00
bac96f42e6 修改发送规则 2025-10-06 20:30:04 +08:00
eb691ab545 改发送 2025-10-06 20:10:27 +08:00
676d877d24 改发送顺序 2025-10-05 21:05:17 +08:00
600568fcff 神秘小延时 2025-10-05 17:41:45 +08:00
7f1c8f38b4 修改out 2025-10-05 17:23:03 +08:00
50775af3b0 添加超时 2025-10-05 17:10:43 +08:00
5 changed files with 238 additions and 115 deletions

View File

@ -25,6 +25,10 @@ extern "C" {
#define M_PI 3.14159265358979323846f
#endif
#ifndef M_PI_2
#define M_PI_2 1.57079632679489661923f
#endif
#ifndef M_2PI
#define M_2PI 6.28318530717958647692f
#endif

View File

@ -24,10 +24,16 @@
#define CAN_FEEDBACK_WHEEL_RIGHT_ID 131 // 右轮反馈ID
/* Private macro ------------------------------------------------------------ */
#define CMD_TIMEOUT_MS 50 // 50ms超时时间允许控制频率在10-20Hz之间
/* Private variables -------------------------------------------------------- */
static bool joint_command_received = false;
static bool wheel_command_received[2] = {false, false};
// 超时管理 - 防止控制频率不同导致的控制/relax交替
static uint32_t joint_last_cmd_time = 0;
static uint32_t wheel_last_cmd_time[2] = {0, 0};
/* Private function --------------------------------------------------------- */
/**
@ -40,7 +46,29 @@ static int8_t Chassis_ProcessCANCommands(Chassis_t *chassis) {
joint_command_received = false;
wheel_command_received[0] = false;
wheel_command_received[1] = false;
// 检查ID 128 - 左轮控制命令 (与电机发送格式一致)
if (BSP_CAN_GetMessage(BSP_CAN_1, CAN_CMD_WHEEL_LEFT_ID, &rx_msg, BSP_CAN_TIMEOUT_IMMEDIATE) == BSP_OK) {
wheel_command_received[0] = true;
wheel_last_cmd_time[0] = BSP_TIME_Get_ms(); // 更新左轮命令时间戳
float left_out = (float)((int16_t)(rx_msg.data[4] | (rx_msg.data[5] << 8))) / 2048.0f;
chassis->output.wheel[0] = left_out;
MOTOR_LK_SetOutput(&chassis->param.wheel_param[0], left_out);
}
// 检查ID 129 - 右轮控制命令 (与电机发送格式一致)
if (BSP_CAN_GetMessage(BSP_CAN_1, CAN_CMD_WHEEL_RIGHT_ID, &rx_msg, BSP_CAN_TIMEOUT_IMMEDIATE) == BSP_OK) {
wheel_command_received[1] = true;
wheel_last_cmd_time[1] = BSP_TIME_Get_ms(); // 更新右轮命令时间戳
float right_out = (float)((int16_t)(rx_msg.data[4] | (rx_msg.data[5] << 8))) / 2048.0f;
chassis->output.wheel[1] = right_out;
MOTOR_LK_SetOutput(&chassis->param.wheel_param[1], right_out);
}
BSP_TIME_Delay_ms(1); // 短暂延时,避免总线冲突
// 检查ID 121 - 使能4个关节电机
if (BSP_CAN_GetMessage(BSP_CAN_1, CAN_CMD_ENABLE_ID, &rx_msg, BSP_CAN_TIMEOUT_IMMEDIATE) == BSP_OK) {
joint_command_received = true;
@ -52,12 +80,16 @@ static int8_t Chassis_ProcessCANCommands(Chassis_t *chassis) {
// 检查ID 122 - 运控模式控制4个关节电机
if (BSP_CAN_GetMessage(BSP_CAN_1, CAN_CMD_JOINT_ID, &rx_msg, BSP_CAN_TIMEOUT_IMMEDIATE) == BSP_OK) {
joint_command_received = true;
joint_last_cmd_time = BSP_TIME_Get_ms(); // 更新关节命令时间戳
// 8字节数据分别是4个电机的力矩 (每个电机2字节有符号整数精度0.01 Nm)
for (int i = 0; i < 4; i++) {
int16_t torque_raw;
memcpy(&torque_raw, &rx_msg.data[i * 2], sizeof(int16_t));
float torque = (float)torque_raw / 100.0f; // 转换为浮点数力矩值
chassis->output.joint[i] = torque;
// 使用运控模式控制电机只设置力矩其他参数为0
MOTOR_LZ_MotionParam_t motion_param = {
.target_angle = 0.0f,
@ -69,22 +101,7 @@ static int8_t Chassis_ProcessCANCommands(Chassis_t *chassis) {
MOTOR_LZ_MotionControl(&chassis->param.joint_param[i], &motion_param);
}
}
// 检查ID 128 - 左轮控制命令 (与电机发送格式一致)
if (BSP_CAN_GetMessage(BSP_CAN_1, CAN_CMD_WHEEL_LEFT_ID, &rx_msg, BSP_CAN_TIMEOUT_IMMEDIATE) == BSP_OK) {
wheel_command_received[0] = true;
float left_out = (float)((int16_t)(rx_msg.data[4] | (rx_msg.data[5] << 8))) / 2048.0f;
MOTOR_LK_SetOutput(&chassis->param.wheel_param[0], left_out);
}
// 检查ID 129 - 右轮控制命令 (与电机发送格式一致)
if (BSP_CAN_GetMessage(BSP_CAN_1, CAN_CMD_WHEEL_RIGHT_ID, &rx_msg, BSP_CAN_TIMEOUT_IMMEDIATE) == BSP_OK) {
wheel_command_received[1] = true;
float right_out = (float)((int16_t)(rx_msg.data[4] | (rx_msg.data[5] << 8))) / 2048.0f;
MOTOR_LK_SetOutput(&chassis->param.wheel_param[1], right_out);
}
BSP_TIME_Delay_us(400); // 确保CAN总线有足够时间处理消息
return DEVICE_OK;
}
@ -310,17 +327,25 @@ int8_t Chassis_Ctrl(Chassis_t *chassis) {
// 处理CAN控制命令
Chassis_ProcessCANCommands(chassis);
// 如果没有收到关节控制命令关节电机进入relax模式
if (!joint_command_received) {
uint32_t current_time = BSP_TIME_Get_ms();
// 关节电机超时检查 - 只有在超时时才执行relax
if (!joint_command_received &&
(current_time - joint_last_cmd_time) > CMD_TIMEOUT_MS) {
for (int i = 0; i < 4; i++) {
MOTOR_LZ_Relax(&chassis->param.joint_param[i]);
chassis->output.joint[i] = 0.0f; // 松弛时输出力矩设为0
}
}
// 如果没有收到轮子控制命令轮子电机进入relax模式
// 轮子电机超时检查 - 只有在超时时才执行relax
for (int i = 0; i < 2; i++) {
if (!wheel_command_received[i]) {
if (!wheel_command_received[i] &&
(current_time - wheel_last_cmd_time[i]) > CMD_TIMEOUT_MS) {
MOTOR_LK_Relax(&chassis->param.wheel_param[i]);
chassis->output.wheel[i] = 0.0f; // 松弛时输出设为0
}
}

95
User/task/1.c Normal file
View File

@ -0,0 +1,95 @@
/*
imu Task
*/
/* Includes ----------------------------------------------------------------- */
#include "task/user_task.h"
/* USER INCLUDE BEGIN */
#include "bsp/pwm.h"
#include "component/ahrs.h"
#include "component/pid.h"
#include "device/bmi088.h"
/* USER INCLUDE END */
/* Private typedef ---------------------------------------------------------- */
/* Private define ----------------------------------------------------------- */
/* Private macro ------------------------------------------------------------ */
/* Private variables -------------------------------------------------------- */
/* USER STRUCT BEGIN */
BMI088_t bmi088;
AHRS_t gimbal_ahrs;
AHRS_Magn_t magn;
AHRS_Eulr_t eulr_to_send;
KPID_t imu_temp_ctrl_pid;
BMI088_Cali_t cali_bmi088= {
.gyro_offset = {0.0f,0.0f,0.0f},
};
/* USER STRUCT END */
/* Private function --------------------------------------------------------- */
/* Exported functions ------------------------------------------------------- */
void Task_imu(void *argument) {
(void)argument; /* 未使用argument消除警告 */
/* 计算任务运行到指定频率需要等待的tick数 */
const uint32_t delay_tick = osKernelGetTickFreq() / IMU_FREQ;
osDelay(IMU_INIT_DELAY); /* 延时一段时间再开启任务 */
uint32_t tick = osKernelGetTickCount(); /* 控制任务运行频率的计时 */
/* USER CODE INIT BEGIN */
BMI088_Init(&bmi088,&cali_bmi088);
AHRS_Init(&gimbal_ahrs, &magn, BMI088_GetUpdateFreq(&bmi088));
/* USER CODE INIT END */
while (1) {
tick += delay_tick; /* 计算下一个唤醒时刻 */
/* USER CODE BEGIN */
BMI088_WaitNew();
BMI088_AcclStartDmaRecv();
BMI088_AcclWaitDmaCplt();
BMI088_GyroStartDmaRecv();
BMI088_GyroWaitDmaCplt();
/* 锁住RTOS内核防止数据解析过程中断造成错误 */
osKernelLock();
/* 接收完所有数据后,把数据从原始字节加工成方便计算的数据 */
BMI088_ParseAccl(&bmi088);
/* 扩大加速度数据10倍并交换x和y */
float temp_x = bmi088.accl.x * 10.0f;
float temp_y = bmi088.accl.y * 10.0f;
bmi088.accl.x = temp_y;
bmi088.accl.y = -temp_x;
bmi088.accl.z *= 10.0f;
BMI088_ParseGyro(&bmi088);
/* 交换陀螺仪x和y */
float temp_gyro_x = bmi088.gyro.x;
bmi088.gyro.x = bmi088.gyro.y;
bmi088.gyro.y = -temp_gyro_x;
// IST8310_Parse(&ist8310);
/* 根据设备接收到的数据进行姿态解析 */
AHRS_Update(&gimbal_ahrs, &bmi088.accl, &bmi088.gyro, &magn);
/* 根据解析出来的四元数计算欧拉角 */
AHRS_GetEulr(&eulr_to_send, &gimbal_ahrs);
/* 交换pit和rol */
float temp_rol = eulr_to_send.rol;
eulr_to_send.rol = eulr_to_send.pit;
eulr_to_send.pit = temp_rol;
osKernelUnlock();
/* USER CODE END */
osDelayUntil(tick); /* 运行结束,等待下一次唤醒 */
}
}

View File

@ -144,13 +144,34 @@ void Task_atti_esti(void *argument) {
osKernelUnlock();
/* 创建修改后的数据副本用于发送到消息队列 */
AHRS_Accl_t accl_modified;
AHRS_Gyro_t gyro_modified;
AHRS_Eulr_t eulr_modified;
/* 加速度数据x和y互换y取负值全部乘10 */
accl_modified.x = bmi088.accl.y * 10.0f;
accl_modified.y = -bmi088.accl.x * 10.0f;
accl_modified.z = bmi088.accl.z * 10.0f;
/* 陀螺仪数据x和y互换y取负值 */
gyro_modified.x = bmi088.gyro.y;
gyro_modified.y = -bmi088.gyro.x;
gyro_modified.z = bmi088.gyro.z;
/* 欧拉角数据roll和pitch互换 */
eulr_modified.yaw = eulr_to_send.yaw;
eulr_modified.pit = eulr_to_send.rol; /* pitch = 原roll */
eulr_modified.rol = eulr_to_send.pit; /* roll = 原pitch */
osMessageQueueReset(task_runtime.msgq.imu.accl);
osMessageQueueReset(task_runtime.msgq.imu.gyro);
osMessageQueueReset(task_runtime.msgq.imu.eulr);
osMessageQueueReset(task_runtime.msgq.imu.quat);
osMessageQueuePut(task_runtime.msgq.imu.accl, &bmi088.accl, 0, 0);
osMessageQueuePut(task_runtime.msgq.imu.gyro, &bmi088.gyro, 0, 0);
osMessageQueuePut(task_runtime.msgq.imu.eulr, &eulr_to_send, 0, 0);
osMessageQueuePut(task_runtime.msgq.imu.accl, &accl_modified, 0, 0);
osMessageQueuePut(task_runtime.msgq.imu.gyro, &gyro_modified, 0, 0);
osMessageQueuePut(task_runtime.msgq.imu.eulr, &eulr_modified, 0, 0);
osMessageQueuePut(task_runtime.msgq.imu.quat, &gimbal_ahrs.quat, 0, 0);
BSP_PWM_SetComp(BSP_PWM_IMU_HEAT_PWM, PID_Calc(&imu_temp_ctrl_pid, 50.0f, bmi088.temp, 0.0f, 0.0f));

View File

@ -6,6 +6,7 @@
/* Includes ----------------------------------------------------------------- */
#include "task/user_task.h"
/* USER INCLUDE BEGIN */
#include "component/user_math.h"
#include "bsp/can.h"
#include "bsp/time.h"
#include "component/ahrs.h"
@ -20,7 +21,29 @@
#define CAN_ID_AHRS_GYRO 0x302 /* 陀螺仪数据 */
#define CAN_ID_AHRS_EULR 0x303 /* 欧拉角数据 */
#define CAN_ID_AHRS_QUAT 0x304 /* 四元数数据 */
/* 数据范围定义 */
#define ACCEL_CAN_MAX (58.8f)
#define ACCEL_CAN_MIN (-58.8f)
#define GYRO_CAN_MAX (34.88f)
#define GYRO_CAN_MIN (-34.88f)
#define PITCH_CAN_MAX (M_PI_2) /* π/2 弧度 ≈ 90° */
#define PITCH_CAN_MIN (-M_PI_2) /* -π/2 弧度 ≈ -90° */
#define ROLL_CAN_MAX (M_2PI)
#define ROLL_CAN_MIN (-M_2PI)
#define YAW_CAN_MAX (M_2PI)
#define YAW_CAN_MIN (-M_PI_2) /* -π 弧度 ≈ -180° */
#define QUATERNION_MIN (-1.0f)
#define QUATERNION_MAX (1.0f)
/* Private macro ------------------------------------------------------------ */
/* 数据映射宏将浮点值映射到16位整数范围 */
#define MAP_TO_INT16(val, min, max) \
((int16_t)(((val) - (min)) / ((max) - (min)) * 65535.0f - 32768.0f))
/* 限制值在指定范围内 */
#define CLAMP(val, min, max) \
(((val) < (min)) ? (min) : (((val) > (max)) ? (max) : (val)))
/* Private variables -------------------------------------------------------- */
/* USER STRUCT BEGIN */
AHRS_Accl_t accl;
@ -48,133 +71,88 @@ void Task_imu(void *argument) {
while (1) {
tick += delay_tick; /* 计算下一个唤醒时刻 */
/* USER CODE BEGIN */
/* 获取加速度计数据并通过CAN发送 - 使用24位精度充分利用8字节 */
/* 获取加速度计数据并通过CAN发送 - 每轴使用16位编码 */
if (osMessageQueueGet(task_runtime.msgq.imu.accl, &accl, NULL, 0) == osOK) {
BSP_CAN_StdDataFrame_t accl_frame;
accl_frame.id = CAN_ID_AHRS_ACCL;
accl_frame.dlc = 8; /* 充分利用8字节数据帧 */
accl_frame.dlc = 6; /* 3轴 × 2字节 = 6字节 */
/* 使用24位精度存储x/y轴16位存储z轴 + 2字节预留
* x: 24 (1/1000000±8.388g)
* y: 24 (1/1000000±8.388g)
* z: 16 (1/10000±3.276g)
* : 2
*/
/* 限制并映射加速度数据到16位整数 */
float ax = CLAMP(accl.x, ACCEL_CAN_MIN, ACCEL_CAN_MAX);
float ay = CLAMP(accl.y, ACCEL_CAN_MIN, ACCEL_CAN_MAX);
float az = CLAMP(accl.z, ACCEL_CAN_MIN, ACCEL_CAN_MAX);
// X轴 - 24位有符号整数 (字节0-2)
int32_t x_int = (int32_t)(accl.x * 1000000.0f);
x_int = (x_int > 8388607) ? 8388607 : ((x_int < -8388608) ? -8388608 : x_int);
accl_frame.data[0] = (x_int >> 16) & 0xFF;
accl_frame.data[1] = (x_int >> 8) & 0xFF;
accl_frame.data[2] = x_int & 0xFF;
int16_t ax_int = MAP_TO_INT16(ax, ACCEL_CAN_MIN, ACCEL_CAN_MAX);
int16_t ay_int = MAP_TO_INT16(ay, ACCEL_CAN_MIN, ACCEL_CAN_MAX);
int16_t az_int = MAP_TO_INT16(az, ACCEL_CAN_MIN, ACCEL_CAN_MAX);
// Y轴 - 24位有符号整数 (字节3-5)
int32_t y_int = (int32_t)(accl.y * 1000000.0f);
y_int = (y_int > 8388607) ? 8388607 : ((y_int < -8388608) ? -8388608 : y_int);
accl_frame.data[3] = (y_int >> 16) & 0xFF;
accl_frame.data[4] = (y_int >> 8) & 0xFF;
accl_frame.data[5] = y_int & 0xFF;
// Z轴 - 16位有符号整数 (字节6-7)
int16_t z_int = (int16_t)(accl.z * 10000.0f);
memcpy(&accl_frame.data[6], &z_int, sizeof(int16_t));
memcpy(&accl_frame.data[0], &ax_int, sizeof(int16_t));
memcpy(&accl_frame.data[2], &ay_int, sizeof(int16_t));
memcpy(&accl_frame.data[4], &az_int, sizeof(int16_t));
BSP_CAN_TransmitStdDataFrame(BSP_CAN_1, &accl_frame);
}
/* 获取陀螺仪数据并通过CAN发送 - 使用24位精度充分利用8字节 */
/* 获取陀螺仪数据并通过CAN发送 - 每轴使用16位编码 */
if (osMessageQueueGet(task_runtime.msgq.imu.gyro, &gyro, NULL, 0) == osOK) {
BSP_CAN_StdDataFrame_t gyro_frame;
gyro_frame.id = CAN_ID_AHRS_GYRO;
gyro_frame.dlc = 8; /* 充分利用8字节数据帧 */
gyro_frame.dlc = 6; /* 3轴 × 2字节 = 6字节 */
/* 使用24位精度存储x/y轴16位存储z轴 + 2字节预留
* x: 24 (1/1000±8388°/s)
* y: 24 (1/1000±8388°/s)
* z: 16 (1/100±327°/s)
* : 2
*/
/* 限制并映射陀螺仪数据到16位整数 */
float gx = CLAMP(gyro.x, GYRO_CAN_MIN, GYRO_CAN_MAX);
float gy = CLAMP(gyro.y, GYRO_CAN_MIN, GYRO_CAN_MAX);
float gz = CLAMP(gyro.z, GYRO_CAN_MIN, GYRO_CAN_MAX);
// X轴 - 24位有符号整数 (字节0-2) - 精度0.001°/s
int32_t x_int = (int32_t)(gyro.x * 1000.0f);
x_int = (x_int > 8388607) ? 8388607 : ((x_int < -8388608) ? -8388608 : x_int);
gyro_frame.data[0] = (x_int >> 16) & 0xFF;
gyro_frame.data[1] = (x_int >> 8) & 0xFF;
gyro_frame.data[2] = x_int & 0xFF;
int16_t gx_int = MAP_TO_INT16(gx, GYRO_CAN_MIN, GYRO_CAN_MAX);
int16_t gy_int = MAP_TO_INT16(gy, GYRO_CAN_MIN, GYRO_CAN_MAX);
int16_t gz_int = MAP_TO_INT16(gz, GYRO_CAN_MIN, GYRO_CAN_MAX);
// Y轴 - 24位有符号整数 (字节3-5) - 精度0.001°/s
int32_t y_int = (int32_t)(gyro.y * 1000.0f);
y_int = (y_int > 8388607) ? 8388607 : ((y_int < -8388608) ? -8388608 : y_int);
gyro_frame.data[3] = (y_int >> 16) & 0xFF;
gyro_frame.data[4] = (y_int >> 8) & 0xFF;
gyro_frame.data[5] = y_int & 0xFF;
// Z轴 - 16位有符号整数 (字节6-7) - 精度0.01°/s
int16_t z_int = (int16_t)(gyro.z * 100.0f);
memcpy(&gyro_frame.data[6], &z_int, sizeof(int16_t));
memcpy(&gyro_frame.data[0], &gx_int, sizeof(int16_t));
memcpy(&gyro_frame.data[2], &gy_int, sizeof(int16_t));
memcpy(&gyro_frame.data[4], &gz_int, sizeof(int16_t));
BSP_CAN_TransmitStdDataFrame(BSP_CAN_1, &gyro_frame);
}
/* 获取欧拉角数据并通过CAN发送 - 使用24位精度充分利用8字节 */
/* 获取欧拉角数据并通过CAN发送 - 每角使用16位编码 */
if (osMessageQueueGet(task_runtime.msgq.imu.eulr, &eulr, NULL, 0) == osOK) {
BSP_CAN_StdDataFrame_t eulr_frame;
eulr_frame.id = CAN_ID_AHRS_EULR;
eulr_frame.dlc = 8; /* 充分利用8字节数据帧 */
eulr_frame.dlc = 6; /* 3个角度 × 2字节 = 6字节 */
/* 使用更高精度存储欧拉角
* yaw: 24 (1/10000±838.8°)
* pitch: 24 (1/10000±838.8°)
* roll: 16 (1/1000±32.767°)
* : 2
*/
/* 限制并映射欧拉角数据到16位整数 */
float yaw = CLAMP(eulr.yaw, YAW_CAN_MIN, YAW_CAN_MAX);
float pitch = CLAMP(eulr.pit, PITCH_CAN_MIN, PITCH_CAN_MAX);
float roll = CLAMP(eulr.rol, ROLL_CAN_MIN, ROLL_CAN_MAX);
// Yaw - 24位有符号整数 (字节0-2) - 精度0.0001°
int32_t yaw_int = (int32_t)(eulr.yaw * 10000.0f);
yaw_int = (yaw_int > 8388607) ? 8388607 : ((yaw_int < -8388608) ? -8388608 : yaw_int);
eulr_frame.data[0] = (yaw_int >> 16) & 0xFF;
eulr_frame.data[1] = (yaw_int >> 8) & 0xFF;
eulr_frame.data[2] = yaw_int & 0xFF;
int16_t yaw_int = MAP_TO_INT16(yaw, YAW_CAN_MIN, YAW_CAN_MAX);
int16_t pitch_int = MAP_TO_INT16(pitch, PITCH_CAN_MIN, PITCH_CAN_MAX);
int16_t roll_int = MAP_TO_INT16(roll, ROLL_CAN_MIN, ROLL_CAN_MAX);
// Pitch - 24位有符号整数 (字节3-5) - 精度0.0001°
int32_t pit_int = (int32_t)(eulr.pit * 10000.0f);
pit_int = (pit_int > 8388607) ? 8388607 : ((pit_int < -8388608) ? -8388608 : pit_int);
eulr_frame.data[3] = (pit_int >> 16) & 0xFF;
eulr_frame.data[4] = (pit_int >> 8) & 0xFF;
eulr_frame.data[5] = pit_int & 0xFF;
// Roll - 16位有符号整数 (字节6-7) - 精度0.001°
int16_t rol_int = (int16_t)(eulr.rol * 1000.0f);
memcpy(&eulr_frame.data[6], &rol_int, sizeof(int16_t));
memcpy(&eulr_frame.data[0], &yaw_int, sizeof(int16_t));
memcpy(&eulr_frame.data[2], &pitch_int, sizeof(int16_t));
memcpy(&eulr_frame.data[4], &roll_int, sizeof(int16_t));
BSP_CAN_TransmitStdDataFrame(BSP_CAN_1, &eulr_frame);
}
/* 获取四元数数据并通过CAN发送 - 优化精度分配 */
/* 获取四元数数据并通过CAN发送 - 每个分量使用16位编码 */
if (osMessageQueueGet(task_runtime.msgq.imu.quat, &quat, NULL, 0) == osOK) {
BSP_CAN_StdDataFrame_t quat_frame;
quat_frame.id = CAN_ID_AHRS_QUAT;
quat_frame.dlc = 8; /* 充分利用8字节数据帧 */
quat_frame.dlc = 8; /* 4个四元数分量 × 2字节 = 8字节 */
/* 优化四元数精度分配,四元数范围-1~1
* q0: 16 (1/32767)
* q1: 16 (1/32767)
* q2: 16 (1/32767)
* q3: 16 (1/32767)
* 使int16_t的全部范围1/32767
*/
/* 限制并映射四元数到16位整数 */
float q0 = CLAMP(quat.q0, QUATERNION_MIN, QUATERNION_MAX);
float q1 = CLAMP(quat.q1, QUATERNION_MIN, QUATERNION_MAX);
float q2 = CLAMP(quat.q2, QUATERNION_MIN, QUATERNION_MAX);
float q3 = CLAMP(quat.q3, QUATERNION_MIN, QUATERNION_MAX);
// 将四元数归一化并转换为int16_t使用int16_t全部范围
int16_t q0_int = (int16_t)(quat.q0 * 32767.0f);
int16_t q1_int = (int16_t)(quat.q1 * 32767.0f);
int16_t q2_int = (int16_t)(quat.q2 * 32767.0f);
int16_t q3_int = (int16_t)(quat.q3 * 32767.0f);
// 限制范围防止溢出
q0_int = (q0_int > 32767) ? 32767 : ((q0_int < -32767) ? -32767 : q0_int);
q1_int = (q1_int > 32767) ? 32767 : ((q1_int < -32767) ? -32767 : q1_int);
q2_int = (q2_int > 32767) ? 32767 : ((q2_int < -32767) ? -32767 : q2_int);
q3_int = (q3_int > 32767) ? 32767 : ((q3_int < -32767) ? -32767 : q3_int);
int16_t q0_int = MAP_TO_INT16(q0, QUATERNION_MIN, QUATERNION_MAX);
int16_t q1_int = MAP_TO_INT16(q1, QUATERNION_MIN, QUATERNION_MAX);
int16_t q2_int = MAP_TO_INT16(q2, QUATERNION_MIN, QUATERNION_MAX);
int16_t q3_int = MAP_TO_INT16(q3, QUATERNION_MIN, QUATERNION_MAX);
memcpy(&quat_frame.data[0], &q0_int, sizeof(int16_t));
memcpy(&quat_frame.data[2], &q1_int, sizeof(int16_t));