修改发送规则

This commit is contained in:
Robofish 2025-10-06 20:30:04 +08:00
parent eb691ab545
commit bac96f42e6

View File

@ -20,7 +20,29 @@
#define CAN_ID_AHRS_GYRO 0x302 /* 陀螺仪数据 */
#define CAN_ID_AHRS_EULR 0x303 /* 欧拉角数据 */
#define CAN_ID_AHRS_QUAT 0x304 /* 四元数数据 */
/* 数据范围定义 */
#define ACCEL_CAN_MAX (58.8f)
#define ACCEL_CAN_MIN (-58.8f)
#define GYRO_CAN_MAX (34.88f)
#define GYRO_CAN_MIN (-34.88f)
#define PITCH_CAN_MAX (90.0f)
#define PITCH_CAN_MIN (-90.0f)
#define ROLL_CAN_MAX (180.0f)
#define ROLL_CAN_MIN (-180.0f)
#define YAW_CAN_MAX (180.0f)
#define YAW_CAN_MIN (-180.0f)
#define QUATERNION_MIN (-1.0f)
#define QUATERNION_MAX (1.0f)
/* Private macro ------------------------------------------------------------ */
/* 数据映射宏将浮点值映射到16位整数范围 */
#define MAP_TO_INT16(val, min, max) \
((int16_t)(((val) - (min)) / ((max) - (min)) * 65535.0f - 32768.0f))
/* 限制值在指定范围内 */
#define CLAMP(val, min, max) \
(((val) < (min)) ? (min) : (((val) > (max)) ? (max) : (val)))
/* Private variables -------------------------------------------------------- */
/* USER STRUCT BEGIN */
AHRS_Accl_t accl;
@ -48,133 +70,88 @@ void Task_imu(void *argument) {
while (1) {
tick += delay_tick; /* 计算下一个唤醒时刻 */
/* USER CODE BEGIN */
/* 获取加速度计数据并通过CAN发送 - 使用24位精度充分利用8字节 */
/* 获取加速度计数据并通过CAN发送 - 每轴使用16位编码 */
if (osMessageQueueGet(task_runtime.msgq.imu.accl, &accl, NULL, 0) == osOK) {
BSP_CAN_StdDataFrame_t accl_frame;
accl_frame.id = CAN_ID_AHRS_ACCL;
accl_frame.dlc = 8; /* 充分利用8字节数据帧 */
accl_frame.dlc = 6; /* 3轴 × 2字节 = 6字节 */
/* 使用24位精度存储x/y轴16位存储z轴 + 2字节预留
* x: 24 (1/1000000±8.388g)
* y: 24 (1/1000000±8.388g)
* z: 16 (1/10000±3.276g)
* : 2
*/
/* 限制并映射加速度数据到16位整数 */
float ax = CLAMP(accl.x, ACCEL_CAN_MIN, ACCEL_CAN_MAX);
float ay = CLAMP(accl.y, ACCEL_CAN_MIN, ACCEL_CAN_MAX);
float az = CLAMP(accl.z, ACCEL_CAN_MIN, ACCEL_CAN_MAX);
// X轴 - 24位有符号整数 (字节0-2)
int32_t x_int = (int32_t)(accl.x * 1000000.0f);
x_int = (x_int > 8388607) ? 8388607 : ((x_int < -8388608) ? -8388608 : x_int);
accl_frame.data[0] = (x_int >> 16) & 0xFF;
accl_frame.data[1] = (x_int >> 8) & 0xFF;
accl_frame.data[2] = x_int & 0xFF;
int16_t ax_int = MAP_TO_INT16(ax, ACCEL_CAN_MIN, ACCEL_CAN_MAX);
int16_t ay_int = MAP_TO_INT16(ay, ACCEL_CAN_MIN, ACCEL_CAN_MAX);
int16_t az_int = MAP_TO_INT16(az, ACCEL_CAN_MIN, ACCEL_CAN_MAX);
// Y轴 - 24位有符号整数 (字节3-5)
int32_t y_int = (int32_t)(accl.y * 1000000.0f);
y_int = (y_int > 8388607) ? 8388607 : ((y_int < -8388608) ? -8388608 : y_int);
accl_frame.data[3] = (y_int >> 16) & 0xFF;
accl_frame.data[4] = (y_int >> 8) & 0xFF;
accl_frame.data[5] = y_int & 0xFF;
// Z轴 - 16位有符号整数 (字节6-7)
int16_t z_int = (int16_t)(accl.z * 10000.0f);
memcpy(&accl_frame.data[6], &z_int, sizeof(int16_t));
memcpy(&accl_frame.data[0], &ax_int, sizeof(int16_t));
memcpy(&accl_frame.data[2], &ay_int, sizeof(int16_t));
memcpy(&accl_frame.data[4], &az_int, sizeof(int16_t));
BSP_CAN_TransmitStdDataFrame(BSP_CAN_1, &accl_frame);
}
/* 获取陀螺仪数据并通过CAN发送 - 使用24位精度充分利用8字节 */
/* 获取陀螺仪数据并通过CAN发送 - 每轴使用16位编码 */
if (osMessageQueueGet(task_runtime.msgq.imu.gyro, &gyro, NULL, 0) == osOK) {
BSP_CAN_StdDataFrame_t gyro_frame;
gyro_frame.id = CAN_ID_AHRS_GYRO;
gyro_frame.dlc = 8; /* 充分利用8字节数据帧 */
gyro_frame.dlc = 6; /* 3轴 × 2字节 = 6字节 */
/* 使用24位精度存储x/y轴16位存储z轴 + 2字节预留
* x: 24 (1/1000±8388°/s)
* y: 24 (1/1000±8388°/s)
* z: 16 (1/100±327°/s)
* : 2
*/
/* 限制并映射陀螺仪数据到16位整数 */
float gx = CLAMP(gyro.x, GYRO_CAN_MIN, GYRO_CAN_MAX);
float gy = CLAMP(gyro.y, GYRO_CAN_MIN, GYRO_CAN_MAX);
float gz = CLAMP(gyro.z, GYRO_CAN_MIN, GYRO_CAN_MAX);
// X轴 - 24位有符号整数 (字节0-2) - 精度0.001°/s
int32_t x_int = (int32_t)(gyro.x * 1000.0f);
x_int = (x_int > 8388607) ? 8388607 : ((x_int < -8388608) ? -8388608 : x_int);
gyro_frame.data[0] = (x_int >> 16) & 0xFF;
gyro_frame.data[1] = (x_int >> 8) & 0xFF;
gyro_frame.data[2] = x_int & 0xFF;
int16_t gx_int = MAP_TO_INT16(gx, GYRO_CAN_MIN, GYRO_CAN_MAX);
int16_t gy_int = MAP_TO_INT16(gy, GYRO_CAN_MIN, GYRO_CAN_MAX);
int16_t gz_int = MAP_TO_INT16(gz, GYRO_CAN_MIN, GYRO_CAN_MAX);
// Y轴 - 24位有符号整数 (字节3-5) - 精度0.001°/s
int32_t y_int = (int32_t)(gyro.y * 1000.0f);
y_int = (y_int > 8388607) ? 8388607 : ((y_int < -8388608) ? -8388608 : y_int);
gyro_frame.data[3] = (y_int >> 16) & 0xFF;
gyro_frame.data[4] = (y_int >> 8) & 0xFF;
gyro_frame.data[5] = y_int & 0xFF;
// Z轴 - 16位有符号整数 (字节6-7) - 精度0.01°/s
int16_t z_int = (int16_t)(gyro.z * 100.0f);
memcpy(&gyro_frame.data[6], &z_int, sizeof(int16_t));
memcpy(&gyro_frame.data[0], &gx_int, sizeof(int16_t));
memcpy(&gyro_frame.data[2], &gy_int, sizeof(int16_t));
memcpy(&gyro_frame.data[4], &gz_int, sizeof(int16_t));
BSP_CAN_TransmitStdDataFrame(BSP_CAN_1, &gyro_frame);
}
/* 获取欧拉角数据并通过CAN发送 - 使用24位精度充分利用8字节 */
/* 获取欧拉角数据并通过CAN发送 - 每角使用16位编码 */
if (osMessageQueueGet(task_runtime.msgq.imu.eulr, &eulr, NULL, 0) == osOK) {
BSP_CAN_StdDataFrame_t eulr_frame;
eulr_frame.id = CAN_ID_AHRS_EULR;
eulr_frame.dlc = 8; /* 充分利用8字节数据帧 */
eulr_frame.dlc = 6; /* 3个角度 × 2字节 = 6字节 */
/* 使用更高精度存储欧拉角
* yaw: 24 (1/10000±838.8°)
* pitch: 24 (1/10000±838.8°)
* roll: 16 (1/1000±32.767°)
* : 2
*/
/* 限制并映射欧拉角数据到16位整数 */
float yaw = CLAMP(eulr.yaw, YAW_CAN_MIN, YAW_CAN_MAX);
float pitch = CLAMP(eulr.pit, PITCH_CAN_MIN, PITCH_CAN_MAX);
float roll = CLAMP(eulr.rol, ROLL_CAN_MIN, ROLL_CAN_MAX);
// Yaw - 24位有符号整数 (字节0-2) - 精度0.0001°
int32_t yaw_int = (int32_t)(eulr.yaw * 10000.0f);
yaw_int = (yaw_int > 8388607) ? 8388607 : ((yaw_int < -8388608) ? -8388608 : yaw_int);
eulr_frame.data[0] = (yaw_int >> 16) & 0xFF;
eulr_frame.data[1] = (yaw_int >> 8) & 0xFF;
eulr_frame.data[2] = yaw_int & 0xFF;
int16_t yaw_int = MAP_TO_INT16(yaw, YAW_CAN_MIN, YAW_CAN_MAX);
int16_t pitch_int = MAP_TO_INT16(pitch, PITCH_CAN_MIN, PITCH_CAN_MAX);
int16_t roll_int = MAP_TO_INT16(roll, ROLL_CAN_MIN, ROLL_CAN_MAX);
// Pitch - 24位有符号整数 (字节3-5) - 精度0.0001°
int32_t pit_int = (int32_t)(eulr.pit * 10000.0f);
pit_int = (pit_int > 8388607) ? 8388607 : ((pit_int < -8388608) ? -8388608 : pit_int);
eulr_frame.data[3] = (pit_int >> 16) & 0xFF;
eulr_frame.data[4] = (pit_int >> 8) & 0xFF;
eulr_frame.data[5] = pit_int & 0xFF;
// Roll - 16位有符号整数 (字节6-7) - 精度0.001°
int16_t rol_int = (int16_t)(eulr.rol * 1000.0f);
memcpy(&eulr_frame.data[6], &rol_int, sizeof(int16_t));
memcpy(&eulr_frame.data[0], &yaw_int, sizeof(int16_t));
memcpy(&eulr_frame.data[2], &pitch_int, sizeof(int16_t));
memcpy(&eulr_frame.data[4], &roll_int, sizeof(int16_t));
BSP_CAN_TransmitStdDataFrame(BSP_CAN_1, &eulr_frame);
}
/* 获取四元数数据并通过CAN发送 - 优化精度分配 */
/* 获取四元数数据并通过CAN发送 - 每个分量使用16位编码 */
if (osMessageQueueGet(task_runtime.msgq.imu.quat, &quat, NULL, 0) == osOK) {
BSP_CAN_StdDataFrame_t quat_frame;
quat_frame.id = CAN_ID_AHRS_QUAT;
quat_frame.dlc = 8; /* 充分利用8字节数据帧 */
quat_frame.dlc = 8; /* 4个四元数分量 × 2字节 = 8字节 */
/* 优化四元数精度分配,四元数范围-1~1
* q0: 16 (1/32767)
* q1: 16 (1/32767)
* q2: 16 (1/32767)
* q3: 16 (1/32767)
* 使int16_t的全部范围1/32767
*/
/* 限制并映射四元数到16位整数 */
float q0 = CLAMP(quat.q0, QUATERNION_MIN, QUATERNION_MAX);
float q1 = CLAMP(quat.q1, QUATERNION_MIN, QUATERNION_MAX);
float q2 = CLAMP(quat.q2, QUATERNION_MIN, QUATERNION_MAX);
float q3 = CLAMP(quat.q3, QUATERNION_MIN, QUATERNION_MAX);
// 将四元数归一化并转换为int16_t使用int16_t全部范围
int16_t q0_int = (int16_t)(quat.q0 * 32767.0f);
int16_t q1_int = (int16_t)(quat.q1 * 32767.0f);
int16_t q2_int = (int16_t)(quat.q2 * 32767.0f);
int16_t q3_int = (int16_t)(quat.q3 * 32767.0f);
// 限制范围防止溢出
q0_int = (q0_int > 32767) ? 32767 : ((q0_int < -32767) ? -32767 : q0_int);
q1_int = (q1_int > 32767) ? 32767 : ((q1_int < -32767) ? -32767 : q1_int);
q2_int = (q2_int > 32767) ? 32767 : ((q2_int < -32767) ? -32767 : q2_int);
q3_int = (q3_int > 32767) ? 32767 : ((q3_int < -32767) ? -32767 : q3_int);
int16_t q0_int = MAP_TO_INT16(q0, QUATERNION_MIN, QUATERNION_MAX);
int16_t q1_int = MAP_TO_INT16(q1, QUATERNION_MIN, QUATERNION_MAX);
int16_t q2_int = MAP_TO_INT16(q2, QUATERNION_MIN, QUATERNION_MAX);
int16_t q3_int = MAP_TO_INT16(q3, QUATERNION_MIN, QUATERNION_MAX);
memcpy(&quat_frame.data[0], &q0_int, sizeof(int16_t));
memcpy(&quat_frame.data[2], &q1_int, sizeof(int16_t));