433 lines
14 KiB
C
433 lines
14 KiB
C
#include "device/motor_lz.h"
|
||
#include "bsp/can.h"
|
||
#include "bsp/time.h"
|
||
#include "component/kinematics.h"
|
||
#include "component/limiter.h"
|
||
#include "component/user_math.h"
|
||
#include "device/virtual_chassis.h"
|
||
#include "module/balance_chassis.h"
|
||
#include <math.h>
|
||
#include <stddef.h>
|
||
#include <string.h>
|
||
|
||
|
||
static Virtual_Chassis_t virtual_chassis;
|
||
|
||
/**
|
||
* @brief 使能所有电机
|
||
* @param c 底盘结构体指针
|
||
* @return
|
||
*/
|
||
static int8_t Chassis_MotorEnable(Chassis_t *c) {
|
||
if (c == NULL)
|
||
return CHASSIS_ERR_NULL;
|
||
|
||
Virtual_Chassis_Enable(&virtual_chassis);
|
||
|
||
return CHASSIS_OK;
|
||
}
|
||
|
||
static int8_t Chassis_MotorRelax(Chassis_t *c) {
|
||
if (c == NULL)
|
||
return CHASSIS_ERR_NULL;
|
||
float relax_torque[4] = {0.0f, 0.0f, 0.0f, 0.0f};
|
||
Virtual_Chassis_SendJointTorque(&virtual_chassis, relax_torque);
|
||
Virtual_Chassis_SendWheelCommand(&virtual_chassis, 0.0f, 0.0f);
|
||
return CHASSIS_OK;
|
||
}
|
||
|
||
static int8_t Chassis_SetMode(Chassis_t *c, Chassis_Mode_t mode) {
|
||
if (c == NULL)
|
||
return CHASSIS_ERR_NULL; /* 主结构体不能为空 */
|
||
if (mode == c->mode)
|
||
return CHASSIS_OK; /* 模式未改变直接返回 */
|
||
|
||
Chassis_MotorEnable(c);
|
||
|
||
PID_Reset(&c->pid.leg_length[0]);
|
||
PID_Reset(&c->pid.leg_length[1]);
|
||
PID_Reset(&c->pid.yaw);
|
||
PID_Reset(&c->pid.roll);
|
||
PID_Reset(&c->pid.tp[0]);
|
||
PID_Reset(&c->pid.tp[1]);
|
||
|
||
c->yaw_control.target_yaw = c->feedback.imu.euler.yaw;
|
||
|
||
// 清空位移
|
||
c->chassis_state.position_x = 0.0f;
|
||
c->chassis_state.velocity_x = 0.0f;
|
||
c->chassis_state.last_velocity_x = 0.0f;
|
||
c->chassis_state.target_x = 0.0f;
|
||
|
||
LQR_Reset(&c->lqr[0]);
|
||
LQR_Reset(&c->lqr[1]);
|
||
c->mode = mode;
|
||
c->state = 0; // 重置状态,确保每次切换模式时都重新初始化
|
||
|
||
return CHASSIS_OK;
|
||
}
|
||
|
||
/* 更新机体状态估计 */
|
||
static void Chassis_UpdateChassisState(Chassis_t *c) {
|
||
if (c == NULL)
|
||
return;
|
||
|
||
// 从轮子编码器估计机体速度 (参考C++代码)
|
||
float left_wheel_speed_dps = c->feedback.wheel[0].rotor_speed; // dps (度每秒)
|
||
float right_wheel_speed_dps =
|
||
c->feedback.wheel[1].rotor_speed; // dps (度每秒)
|
||
|
||
// 将dps转换为rad/s
|
||
float left_wheel_speed = left_wheel_speed_dps * M_PI / 180.0f; // rad/s
|
||
float right_wheel_speed = right_wheel_speed_dps * M_PI / 180.0f; // rad/s
|
||
|
||
float wheel_radius = 0.072f;
|
||
|
||
float left_wheel_linear_vel = left_wheel_speed * wheel_radius;
|
||
float right_wheel_linear_vel = right_wheel_speed * wheel_radius;
|
||
|
||
// 机体x方向速度 (轮子中心速度)
|
||
c->chassis_state.last_velocity_x = c->chassis_state.velocity_x;
|
||
c->chassis_state.velocity_x =
|
||
(left_wheel_linear_vel + right_wheel_linear_vel) / 2.0f;
|
||
|
||
// 积分得到位置
|
||
c->chassis_state.position_x += c->chassis_state.velocity_x * c->dt;
|
||
}
|
||
|
||
int8_t Chassis_Init(Chassis_t *c, Chassis_Params_t *param, float target_freq) {
|
||
if (c == NULL || param == NULL || target_freq <= 0.0f) {
|
||
return -1; // 参数错误
|
||
}
|
||
c->param = param;
|
||
|
||
c->mode = CHASSIS_MODE_RELAX;
|
||
|
||
/*初始化can*/
|
||
BSP_CAN_Init();
|
||
|
||
/*初始化和注册所有电机*/
|
||
MOTOR_LZ_Init();
|
||
|
||
Virtual_Chassis_Init(&virtual_chassis, &c->param->virtual_chassis_param);
|
||
MOTOR_DM_Register(&c->param->yaw_motor);
|
||
|
||
/*初始化VMC控制器*/
|
||
VMC_Init(&c->vmc_[0], ¶m->vmc_param[0], target_freq);
|
||
VMC_Init(&c->vmc_[1], ¶m->vmc_param[1], target_freq);
|
||
|
||
/*初始化pid*/
|
||
PID_Init(&c->pid.leg_length[0], KPID_MODE_CALC_D, target_freq,
|
||
¶m->leg_length);
|
||
PID_Init(&c->pid.leg_length[1], KPID_MODE_CALC_D, target_freq,
|
||
¶m->leg_length);
|
||
PID_Init(&c->pid.yaw, KPID_MODE_CALC_D, target_freq, ¶m->yaw);
|
||
PID_Init(&c->pid.roll, KPID_MODE_CALC_D, target_freq, ¶m->roll);
|
||
PID_Init(&c->pid.tp[0], KPID_MODE_CALC_D, target_freq, ¶m->tp);
|
||
PID_Init(&c->pid.tp[1], KPID_MODE_CALC_D, target_freq, ¶m->tp);
|
||
|
||
/*初始化LQR控制器*/
|
||
LQR_Init(&c->lqr[0], ¶m->lqr_gains);
|
||
LQR_Init(&c->lqr[1], ¶m->lqr_gains);
|
||
|
||
/*初始化机体状态*/
|
||
c->chassis_state.position_x = 0.0f;
|
||
c->chassis_state.velocity_x = 0.0f;
|
||
c->chassis_state.last_velocity_x = 0.0f;
|
||
c->chassis_state.target_x = 0.0f;
|
||
|
||
/*初始化yaw控制状态*/
|
||
c->yaw_control.target_yaw = 0.0f;
|
||
c->yaw_control.current_yaw = 0.0f;
|
||
c->yaw_control.yaw_force = 0.0f;
|
||
|
||
return CHASSIS_OK;
|
||
}
|
||
|
||
int8_t Chassis_UpdateFeedback(Chassis_t *c) {
|
||
if (c == NULL) {
|
||
return -1; // 参数错误
|
||
}
|
||
Virtual_Chassis_Update(&virtual_chassis);
|
||
|
||
for (int i = 0; i < 4; i++) {
|
||
c->feedback.joint[i] = virtual_chassis.data.joint[i];
|
||
if (c->feedback.joint[i].rotor_abs_angle > M_PI) {
|
||
c->feedback.joint[i].rotor_abs_angle -= M_2PI;
|
||
}
|
||
c->feedback.joint[i].rotor_abs_angle =
|
||
-c->feedback.joint[i].rotor_abs_angle; // 机械零点调整
|
||
}
|
||
for (int i = 0; i < 2; i++) {
|
||
c->feedback.wheel[i] = virtual_chassis.data.wheel[i];
|
||
}
|
||
c->feedback.imu.accl = virtual_chassis.data.imu.accl;
|
||
c->feedback.imu.gyro = virtual_chassis.data.imu.gyro;
|
||
c->feedback.imu.euler = virtual_chassis.data.imu.euler;
|
||
|
||
// 更新机体状态估计
|
||
Chassis_UpdateChassisState(c);
|
||
|
||
return 0;
|
||
}
|
||
|
||
int8_t Chassis_UpdateIMU(Chassis_t *c, const Chassis_IMU_t imu) {
|
||
if (c == NULL) {
|
||
return -1; // 参数错误
|
||
}
|
||
c->feedback.imu = imu;
|
||
return 0;
|
||
}
|
||
|
||
int8_t Chassis_Control(Chassis_t *c, const Chassis_CMD_t *c_cmd) {
|
||
if (c == NULL || c_cmd == NULL) {
|
||
return CHASSIS_ERR_NULL; // 参数错误
|
||
}
|
||
c->dt = (BSP_TIME_Get_us() - c->lask_wakeup) /
|
||
1000000.0f; /* 计算两次调用的时间间隔,单位秒 */
|
||
c->lask_wakeup = BSP_TIME_Get_us();
|
||
|
||
/*设置底盘模式*/
|
||
if (Chassis_SetMode(c, c_cmd->mode) != CHASSIS_OK) {
|
||
return CHASSIS_ERR_MODE; // 设置模式失败
|
||
}
|
||
|
||
VMC_ForwardSolve(&c->vmc_[0], c->feedback.joint[0].rotor_abs_angle,
|
||
c->feedback.joint[1].rotor_abs_angle,
|
||
-c->feedback.imu.euler.rol, -c->feedback.imu.gyro.y);
|
||
VMC_ForwardSolve(&c->vmc_[1], c->feedback.joint[3].rotor_abs_angle,
|
||
c->feedback.joint[2].rotor_abs_angle,
|
||
-c->feedback.imu.euler.rol, -c->feedback.imu.gyro.y);
|
||
|
||
/*根据底盘模式执行不同的控制逻辑*/
|
||
switch (c->mode) {
|
||
case CHASSIS_MODE_RELAX:
|
||
// 放松模式,电机不输出
|
||
Chassis_MotorRelax(c);
|
||
|
||
Chassis_LQRControl(c, c_cmd);
|
||
|
||
break;
|
||
|
||
case CHASSIS_MODE_RECOVER: {
|
||
float fn, tp;
|
||
fn = -20.0f;
|
||
tp = 0.0f;
|
||
|
||
Chassis_LQRControl(c, c_cmd);
|
||
|
||
VMC_InverseSolve(&c->vmc_[0], fn, tp);
|
||
VMC_GetJointTorques(&c->vmc_[0], &c->output.joint[0],
|
||
&c->output.joint[1]);
|
||
VMC_InverseSolve(&c->vmc_[1], fn, tp);
|
||
VMC_GetJointTorques(&c->vmc_[1], &c->output.joint[3],
|
||
&c->output.joint[2]);
|
||
// Chassis_MotorEnable(c);
|
||
c->output.wheel[0] = c_cmd->move_vec.vx *0.2f;
|
||
|
||
c->output.wheel[1] = c_cmd->move_vec.vx *0.2f;
|
||
Chassis_Output(c); // 统一输出
|
||
|
||
} break;
|
||
|
||
|
||
case CHASSIS_MODE_WHELL_LEG_BALANCE:
|
||
// 执行LQR控制(包含PID腿长控制)
|
||
Chassis_LQRControl(c, c_cmd);
|
||
|
||
Chassis_Output(c); // 统一输出
|
||
break;
|
||
|
||
default:
|
||
return CHASSIS_ERR_MODE;
|
||
}
|
||
|
||
return CHASSIS_OK;
|
||
}
|
||
|
||
void Chassis_Output(Chassis_t *c) {
|
||
if (c == NULL)
|
||
return;
|
||
// for (int i = 0; i < 4; i++) {
|
||
// // MOTOR_LZ_MotionParam_t param = {0};
|
||
// // param.torque = c->output.joint[i];
|
||
// // MOTOR_LZ_MotionControl(&c->param->joint_motors[i], ¶m);
|
||
// }
|
||
// BSP_TIME_Delay_us(400); // 等待CAN总线空闲,确保前面的命令发送完成
|
||
// for (int i = 0; i < 2; i++) {
|
||
// MOTOR_LK_SetOutput(&c->param->wheel_motors[i], c->output.wheel[i]);
|
||
// // MOTOR_LK_SetOutput(&c->param->wheel_motors[i], 0.0f);
|
||
// }
|
||
float out[4] = {
|
||
c->output.joint[0], c->output.joint[1], c->output.joint[2], c->output.joint[3]};
|
||
// out[0] = 0.0f;
|
||
// out[1] = 0.0f;
|
||
// out[2] = 0.0f;
|
||
// out[3] = 0.0f;
|
||
Virtual_Chassis_SendJointTorque(&virtual_chassis, out);
|
||
Virtual_Chassis_SendWheelCommand(&virtual_chassis, c->output.wheel[0], c->output.wheel[1]);
|
||
// Virtual_Chassis_SendWheelCommand(&virtual_chassis, 0.0f, 0.0f);
|
||
// for (int i = 0; i < 2; i++) {
|
||
}
|
||
|
||
int8_t Chassis_LQRControl(Chassis_t *c, const Chassis_CMD_t *c_cmd) {
|
||
if (c == NULL || c_cmd == NULL) {
|
||
return CHASSIS_ERR_NULL;
|
||
}
|
||
|
||
|
||
/* 运动参数(参考C++版本的状态估计) */
|
||
static float xhat = 0.0f, x_dot_hat = 0.0f;
|
||
float target_dot_x = 0.0f;
|
||
|
||
// 简化的速度估计(后续可以改进为C++版本的复杂滤波)
|
||
x_dot_hat = c->chassis_state.velocity_x;
|
||
xhat = c->chassis_state.position_x;
|
||
|
||
// 目标设定
|
||
target_dot_x = c_cmd->move_vec.vx * 2;
|
||
// target_dot_x = SpeedLimit_TargetSpeed(300.0f, c->chassis_state.velocity_x,
|
||
// target_dot_x, c->dt); // 速度限制器,假设最大加速度为1 m/s²
|
||
c->chassis_state.target_x += target_dot_x * c->dt;
|
||
|
||
/* 分别计算左右腿的LQR控制 */
|
||
/* 构建当前状态 */
|
||
LQR_State_t current_state = {0};
|
||
current_state.theta = c->vmc_[0].leg.theta;
|
||
current_state.d_theta = c->vmc_[0].leg.d_theta;
|
||
current_state.x = xhat;
|
||
current_state.d_x = x_dot_hat;
|
||
current_state.phi = -c->feedback.imu.euler.rol;
|
||
current_state.d_phi = c->feedback.imu.gyro.y;
|
||
|
||
LQR_UpdateState(&c->lqr[0], ¤t_state);
|
||
|
||
current_state.theta = c->vmc_[1].leg.theta;
|
||
current_state.d_theta = c->vmc_[1].leg.d_theta;
|
||
LQR_UpdateState(&c->lqr[1], ¤t_state);
|
||
|
||
/* 根据当前腿长更新增益矩阵 */
|
||
LQR_CalculateGainMatrix(&c->lqr[0], c->vmc_[0].leg.L0);
|
||
LQR_CalculateGainMatrix(&c->lqr[1], c->vmc_[1].leg.L0);
|
||
|
||
/* 构建目标状态 */
|
||
LQR_State_t target_state = {0};
|
||
target_state.theta = 0.0f; // 目标摆杆角度
|
||
target_state.d_theta = 0.0f; // 目标摆杆角速度
|
||
target_state.phi = 0.0f; // 目标俯仰角
|
||
target_state.d_phi = 0.0f; // 目标俯仰角速度
|
||
target_state.x = c->chassis_state.target_x; // 目标位置
|
||
target_state.d_x = target_dot_x; // 目标速度
|
||
|
||
/* 更新LQR状态 */
|
||
LQR_SetTargetState(&c->lqr[0], &target_state);
|
||
LQR_SetTargetState(&c->lqr[1], &target_state);
|
||
|
||
LQR_Control(&c->lqr[0]);
|
||
LQR_Control(&c->lqr[1]);
|
||
|
||
|
||
|
||
c->yaw_control.current_yaw = c->feedback.yaw.rotor_abs_angle;
|
||
c->yaw_control.target_yaw = c->param->mech_zero_yaw;
|
||
c->yaw_control.yaw_force = PID_Calc(&c->pid.yaw, c->yaw_control.target_yaw,
|
||
c->feedback.yaw.rotor_abs_angle, 0.0f, c->dt);
|
||
|
||
/* 轮毂力矩输出(参考C++版本的减速比) */
|
||
c->output.wheel[0] = c->lqr[0].control_output.T / 4.5f + c->yaw_control.yaw_force;
|
||
c->output.wheel[1] = c->lqr[1].control_output.T / 4.5f - c->yaw_control.yaw_force;
|
||
// c->output.wheel[0] = c->lqr[0].control_output.T / 4.5f;
|
||
// c->output.wheel[1] = c->lqr[1].control_output.T / 4.5f;
|
||
/* 腿长控制和VMC逆解算(使用PID控制) */
|
||
float virtual_force[2];
|
||
float target_L0[2];
|
||
float leg_d_length[2]; // 腿长变化率
|
||
|
||
/* 横滚角PID补偿计算 */
|
||
// 使用PID控制器计算横滚角补偿力,目标横滚角为0
|
||
float roll_compensation_force = PID_Calc(&c->pid.roll, 0.0f,
|
||
c->feedback.imu.euler.rol,
|
||
c->feedback.imu.gyro.x,
|
||
c->dt);
|
||
|
||
// 限制补偿力范围,防止过度补偿
|
||
if (roll_compensation_force > 20.0f) roll_compensation_force = 20.0f;
|
||
if (roll_compensation_force < -20.0f) roll_compensation_force = -20.0f;
|
||
|
||
// 目标腿长设定(移除横滚角补偿)
|
||
target_L0[0] = 0.12f + c_cmd->height * 0.2f; // 左腿:基础腿长 + 高度调节
|
||
target_L0[1] = 0.12f + c_cmd->height * 0.2f; // 右腿:基础腿长 + 高度调节
|
||
|
||
// 获取腿长变化率
|
||
VMC_GetVirtualLegState(&c->vmc_[0], NULL, NULL, &leg_d_length[0], NULL);
|
||
VMC_GetVirtualLegState(&c->vmc_[1], NULL, NULL, &leg_d_length[1], NULL);
|
||
|
||
/* 左右腿摆角相互补偿(参考C++版本的Delta_Tp机制) */
|
||
float Delta_Tp[2];
|
||
// 使用tp_pid进行左右腿摆角同步控制
|
||
// 左腿补偿力矩:使左腿theta向右腿theta靠拢
|
||
Delta_Tp[0] = c->vmc_[0].leg.L0 * 10.0f *
|
||
PID_Calc(&c->pid.tp[0], c->vmc_[1].leg.theta, c->vmc_[0].leg.theta,
|
||
c->vmc_[0].leg.d_theta, c->dt);
|
||
// 右腿补偿力矩:使右腿theta向左腿theta靠拢(符号相反)
|
||
Delta_Tp[1] = -Delta_Tp[0];
|
||
|
||
// 左腿控制
|
||
{
|
||
// 使用PID进行腿长控制
|
||
float pid_output = PID_Calc(&c->pid.leg_length[0], target_L0[0],
|
||
c->vmc_[0].leg.L0, leg_d_length[0], c->dt);
|
||
|
||
// 腿长控制力 = LQR摆杆力矩的径向分量 + PID腿长控制输出 + 基础支撑力 - 横滚角补偿力(左腿减少支撑力)
|
||
virtual_force[0] = (c->lqr[0].control_output.Tp) * sinf(c->vmc_[0].leg.theta) + pid_output + 40.0f ;
|
||
|
||
// VMC逆解算(包含摆角补偿)
|
||
if (VMC_InverseSolve(&c->vmc_[0], virtual_force[0],
|
||
c->lqr[0].control_output.Tp + Delta_Tp[0]) == 0) {
|
||
VMC_GetJointTorques(&c->vmc_[0], &c->output.joint[0],
|
||
&c->output.joint[1]);
|
||
} else {
|
||
// VMC失败,设为0力矩
|
||
c->output.joint[0]= 0.0f;
|
||
c->output.joint[1]= 0.0f;
|
||
}
|
||
}
|
||
|
||
// 右腿控制
|
||
{
|
||
// 使用PID进行腿长控制
|
||
float pid_output = PID_Calc(&c->pid.leg_length[1], target_L0[1],
|
||
c->vmc_[1].leg.L0, leg_d_length[1], c->dt);
|
||
|
||
// 腿长控制力 = LQR摆杆力矩的径向分量 + PID腿长控制输出 + 基础支撑力 + 横滚角补偿力(右腿增加支撑力)
|
||
virtual_force[1] = (c->lqr[1].control_output.Tp) * sinf(c->vmc_[1].leg.theta) + pid_output + 40.0f ;
|
||
|
||
// VMC逆解算(包含摆角补偿)
|
||
if (VMC_InverseSolve(&c->vmc_[1], virtual_force[1],
|
||
c->lqr[1].control_output.Tp + Delta_Tp[1]) == 0) {
|
||
VMC_GetJointTorques(&c->vmc_[1], &c->output.joint[3],
|
||
&c->output.joint[2]);
|
||
} else {
|
||
// VMC失败,设为0力矩
|
||
c->output.joint[2] = 0.0f;
|
||
c->output.joint[3] = 0.0f;
|
||
}
|
||
}
|
||
|
||
/* 安全限制 */
|
||
for (int i = 0; i < 2; i++) {
|
||
if (fabsf(c->output.wheel[i]) > 0.8f) {
|
||
c->output.wheel[i] = (c->output.wheel[i] > 0) ? 0.8f : -0.8f;
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < 4; i++) {
|
||
if (fabsf(c->output.joint[i]) > 20.0f) {
|
||
c->output.joint[i] =
|
||
(c->output.joint[i] > 0) ? 20.0f : -20.0f;
|
||
}
|
||
}
|
||
|
||
return CHASSIS_OK;
|
||
}
|