rm_balance/Drivers/CMSIS/DSP/Source/StatisticsFunctions/arm_std_f32.c

273 lines
8.1 KiB
C

<<<<<<< HEAD
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_std_f32.c
* Description: Standard deviation of the elements of a floating-point vector
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/statistics_functions.h"
/**
@ingroup groupStats
*/
/**
@defgroup STD Standard deviation
Calculates the standard deviation of the elements in the input vector.
The float implementation is relying on arm_var_f32 which is using a two-pass algorithm
to avoid problem of numerical instabilities and cancellation errors.
Fixed point versions are using the standard textbook algorithm since the fixed point
numerical behavior is different from the float one.
Algorithm for fixed point versions is summarized below:
<pre>
Result = sqrt((sumOfSquares - sum<sup>2</sup> / blockSize) / (blockSize - 1))
sumOfSquares = pSrc[0] * pSrc[0] + pSrc[1] * pSrc[1] + ... + pSrc[blockSize-1] * pSrc[blockSize-1]
sum = pSrc[0] + pSrc[1] + pSrc[2] + ... + pSrc[blockSize-1]
</pre>
There are separate functions for floating point, Q31, and Q15 data types.
*/
/**
@addtogroup STD
@{
*/
/**
@brief Standard deviation of the elements of a floating-point vector.
@param[in] pSrc points to the input vector
@param[in] blockSize number of samples in input vector
@param[out] pResult standard deviation value returned here
@return none
*/
void arm_std_f32(
const float32_t * pSrc,
uint32_t blockSize,
float32_t * pResult)
{
float32_t var;
arm_var_f32(pSrc,blockSize,&var);
arm_sqrt_f32(var, pResult);
}
/**
@} end of STD group
*/
=======
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_std_f32.c
* Description: Standard deviation of the elements of a floating-point vector
*
* $Date: 27. January 2017
* $Revision: V.1.5.1
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
* @ingroup groupStats
*/
/**
* @defgroup STD Standard deviation
*
* Calculates the standard deviation of the elements in the input vector.
* The underlying algorithm is used:
*
* <pre>
* Result = sqrt((sumOfSquares - sum<sup>2</sup> / blockSize) / (blockSize - 1))
*
* where, sumOfSquares = pSrc[0] * pSrc[0] + pSrc[1] * pSrc[1] + ... + pSrc[blockSize-1] * pSrc[blockSize-1]
*
* sum = pSrc[0] + pSrc[1] + pSrc[2] + ... + pSrc[blockSize-1]
* </pre>
*
* There are separate functions for floating point, Q31, and Q15 data types.
*/
/**
* @addtogroup STD
* @{
*/
/**
* @brief Standard deviation of the elements of a floating-point vector.
* @param[in] *pSrc points to the input vector
* @param[in] blockSize length of the input vector
* @param[out] *pResult standard deviation value returned here
* @return none.
*/
void arm_std_f32(
float32_t * pSrc,
uint32_t blockSize,
float32_t * pResult)
{
float32_t sum = 0.0f; /* Temporary result storage */
float32_t sumOfSquares = 0.0f; /* Sum of squares */
float32_t in; /* input value */
uint32_t blkCnt; /* loop counter */
#if defined (ARM_MATH_DSP)
float32_t meanOfSquares, mean, squareOfMean; /* Temporary variables */
#else
float32_t squareOfSum; /* Square of Sum */
float32_t var; /* Temporary varaince storage */
#endif
if (blockSize == 1U)
{
*pResult = 0;
return;
}
#if defined (ARM_MATH_DSP)
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2U;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while (blkCnt > 0U)
{
/* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */
/* Compute Sum of squares of the input samples
* and then store the result in a temporary variable, sum. */
in = *pSrc++;
sum += in;
sumOfSquares += in * in;
in = *pSrc++;
sum += in;
sumOfSquares += in * in;
in = *pSrc++;
sum += in;
sumOfSquares += in * in;
in = *pSrc++;
sum += in;
sumOfSquares += in * in;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4U;
while (blkCnt > 0U)
{
/* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */
/* Compute Sum of squares of the input samples
* and then store the result in a temporary variable, sum. */
in = *pSrc++;
sum += in;
sumOfSquares += in * in;
/* Decrement the loop counter */
blkCnt--;
}
/* Compute Mean of squares of the input samples
* and then store the result in a temporary variable, meanOfSquares. */
meanOfSquares = sumOfSquares / ((float32_t) blockSize - 1.0f);
/* Compute mean of all input values */
mean = sum / (float32_t) blockSize;
/* Compute square of mean */
squareOfMean = (mean * mean) * (((float32_t) blockSize) /
((float32_t) blockSize - 1.0f));
/* Compute standard deviation and then store the result to the destination */
arm_sqrt_f32((meanOfSquares - squareOfMean), pResult);
#else
/* Run the below code for Cortex-M0 */
/* Loop over blockSize number of values */
blkCnt = blockSize;
while (blkCnt > 0U)
{
/* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */
/* Compute Sum of squares of the input samples
* and then store the result in a temporary variable, sumOfSquares. */
in = *pSrc++;
sumOfSquares += in * in;
/* C = (A[0] + A[1] + ... + A[blockSize-1]) */
/* Compute Sum of the input samples
* and then store the result in a temporary variable, sum. */
sum += in;
/* Decrement the loop counter */
blkCnt--;
}
/* Compute the square of sum */
squareOfSum = ((sum * sum) / (float32_t) blockSize);
/* Compute the variance */
var = ((sumOfSquares - squareOfSum) / (float32_t) (blockSize - 1.0f));
/* Compute standard deviation and then store the result to the destination */
arm_sqrt_f32(var, pResult);
#endif /* #if defined (ARM_MATH_DSP) */
}
/**
* @} end of STD group
*/
>>>>>>> upper