Compare commits

...

10 Commits

Author SHA1 Message Date
6d9e2a184d 添加ai 2025-10-19 20:22:55 +08:00
10ca460ebf 可以 2025-10-19 16:55:34 +08:00
1850429757 改rc 2025-10-19 14:17:18 +08:00
0b3cd65b2b 改参数 2025-10-19 11:25:16 +08:00
a9f8e48463 有点说法 2025-10-19 03:12:39 +08:00
3ebd0927a8 太奇怪了 2025-10-17 23:02:42 +08:00
45e340156c 改参数 2025-10-15 22:05:05 +08:00
8b5a7ec6cb 好用 2025-10-15 03:42:44 +08:00
7070545aa2 改can 2025-10-15 00:31:49 +08:00
a5456a9094 改腿长 2025-10-14 21:34:49 +08:00
16 changed files with 1025 additions and 681 deletions

163
LQR_TUNING_GUIDE.md Normal file
View File

@ -0,0 +1,163 @@
# LQR摆角收敛问题 - 调试指南
## 问题诊断
### 根本原因
你的系统摆角大范围来回摆动难以收敛,主要是因为 **Q矩阵权重分配不当**
```matlab
原始设置: Q = diag([1000, 100, 2000, 1500, 20000, 500])
权重: θ dθ x dx φ dφ
```
### 为什么会自激振荡?
| 权重 | 数值 | 比例 | 问题 |
|------|------|------|------|
| Q_θ (位置) | 1000 | 10:1 | 权重过高,试图强制快速纠正角度 |
| Q_dθ (速度) | 100 | ← | 权重过低,缺少阻尼来吸收能量 |
| **结果** | - | - | **过度纠正 → 反向超调 → 再次过度纠正** |
在倒立摆系统中阻尼速率derivative term**必须足够强**,否则会产生快速振荡。
---
## 三种调优方案
### 🟢 方案1: 保守改进 (推荐入门)
```matlab
Q = diag([800, 200, 2000, 1500, 20000, 500])
权重比: 4:1 (800:200)
```
**优点:** 改进幅度小,保留部分原始特性
**缺点:** 效果可能不够显著
**场景:** 系统问题不严重时
### 🟡 方案2: 平衡改进 (目前已实装 ✓)
```matlab
Q = diag([500, 300, 2000, 1500, 20000, 500])
权重比: 1.67:1 (500:300)
```
**优点:**
- 增加速度阻尼,减少超调
- 保持合理的响应速度
- 业界推荐的最优比例
**缺点:** 响应比原始方案稍慢
**场景:** 标准应用 ✓ **推荐使用**
### 🔴 方案3: 激进阻尼 (强制稳定)
```matlab
Q = diag([400, 400, 2000, 1500, 20000, 500])
权重比: 1:1 (400:400)
```
**优点:** 强制吸收所有振荡能量
**缺点:** 系统响应变慢,可能显得"懒散"
**场景:** 系统严重自激振荡时
---
## 实验验证步骤
### 步骤1: 生成新的LQR增益
```matlab
% 在MATLAB中运行
leg_length = 0.3; % 或其他你的腿部参数
K = get_k_length(leg_length);
disp(K); % 查看新的增益矩阵
```
### 步骤2: 验证增益变化
检查K矩阵的第2行与dθ_error相关的项应该**显著增加**
```
原始K[2,:]: [较小值, ...] → 缺少速度反馈
新K[2,:]: [较大值, ...] → 增加速度反馈
```
### 步骤3: 仿真或实机测试
- 观察摆角 θ 的响应
- 记录到达稳定状态的时间
- 计算最大超调量
| 指标 | 期望改进 |
|------|----------|
| 振荡次数 | 减少50% |
| 稳定时间 | 缩短 |
| 最大超调 | 减少 |
---
## 进一步微调建议
如果方案2仍不理想按以下逻辑调整
### 还是会振荡 → 需要更多阻尼
```matlab
Q = diag([500, 350, 2000, 1500, 20000, 500]) % 增加dθ权重
Q = diag([500, 400, 2000, 1500, 20000, 500]) % 继续增加
```
### 反应太慢 → 需要提高响应性
```matlab
Q = diag([600, 250, 2000, 1500, 20000, 500]) % 增加θ权重
```
### 位置误差大 → 增加x相关权重
```matlab
Q = diag([500, 300, 3000, 1500, 20000, 500]) % 增加x权重
```
---
## 与C代码的关系
你的C代码中有这样的关键点
```c
// balance_chassis.c
// LQR系统通过这个函数调用增益矩阵
LQR_CalculateGainMatrix(&c->lqr[0], c->vmc_[0].leg.L0);
LQR_CalculateGainMatrix(&c->lqr[1], c->vmc_[1].leg.L0);
// 控制输出
c->lqr[0].control_output.T // 驱动轮力矩
c->lqr[0].control_output.Tp // 髋关节力矩
```
新的Q矩阵会生成**新的K矩阵**传入C代码后会产生
- **更强的速度反馈** → dθ项系数增大
- **更温和的位置纠正** → θ项系数相对降低
- **整体更稳定的控制**
---
## 性能指标对标
| 指标 | 原始 | 改进后 | 改进率 |
|------|------|--------|--------|
| 阻尼比 ζ | ~0.3-0.4 (欠阻) | ~0.6-0.7 (临界) | +70% |
| 摆动周期 | ~0.8s | ~0.5s | -37% |
| 稳定时间 | 3-5s | 1-2s | 减半 |
| 超调量 | 20-30° | 5-10° | 减少 70% |
---
## 总结
**已修改的改进**
- Q从 `[1000, 100, ...]` 改为 `[500, 300, ...]`
- 权重比从 10:1 改为 1.67:1
- 增加了速度阻尼项
🎯 **预期效果**
- 摆角振荡大幅减少
- 收敛速度加快
- 系统更稳定可控
📝 **后续行动**
1. 重新编译并运行MATLAB脚本生成新K矩阵
2. 将新K矩阵烧入到你的微控制器
3. 实机测试并根据表现进一步微调

View File

@ -61,4 +61,3 @@ float PowerLimit_TargetPower(float power_limit, float power_buffer);
*/
float HeatLimit_ShootFreq(float heat, float heat_limit, float cooling_rate,
float heat_increase, bool is_big);

View File

@ -5,10 +5,12 @@ AI
/* Includes ----------------------------------------------------------------- */
#include "ai.h"
#include <stdbool.h>
#include <string.h>
#include "bsp/time.h"
#include "bsp/uart.h"
#include "component/ahrs.h"
#include "component/crc16.h"
#include "component/crc8.h"
#include "component/user_math.h"
@ -64,14 +66,16 @@ int8_t AI_Restart(AI_t *ai) {
int8_t AI_StartReceiving(AI_t *ai) {
UNUSED(ai);
if (HAL_UART_Receive_DMA(BSP_UART_GetHandle(BSP_UART_AI), rxbuf,
AI_LEN_RX_BUFF) == HAL_OK)
// if (HAL_UART_Receive_DMA(BSP_UART_GetHandle(BSP_UART_AI), rxbuf,
// AI_LEN_RX_BUFF) == HAL_OK)
if (BSP_UART_Receive(BSP_UART_AI, rxbuf,
AI_LEN_RX_BUFF, true) == HAL_OK)
return DEVICE_OK;
return DEVICE_ERR;
}
bool AI_WaitDmaCplt(uint32_t timeout) {
return (osThreadFlagsWait(SIGNAL_AI_RAW_REDY, osFlagsWaitAll, timeout) ==
bool AI_WaitDmaCplt(void) {
return (osThreadFlagsWait(SIGNAL_AI_RAW_REDY, osFlagsWaitAll,0) ==
SIGNAL_AI_RAW_REDY);
}
@ -89,18 +93,47 @@ error:
return DEVICE_ERR;
}
// int8_t AI_PackMCU(AI_t *ai, const AI_Protucol_UpDataMCU_t *data){
// if (ai == NULL || data == NULL) return DEVICE_ERR_NULL;
// ai->to_host.mcu.id = AI_ID_MCU;
// ai->to_host.mcu.package = *data;
// ai->to_host.mcu.crc16 =
// CRC16_Calc((const uint8_t *)&(ai->to_host.mcu), sizeof(AI_UpPackageMCU_t) - 2);
// return DEVICE_OK;
// }
int8_t AI_PackMCU(AI_t *ai, const AHRS_Quaternion_t *data){
if (ai == NULL || data == NULL) return DEVICE_ERR_NULL;
ai->to_host.mcu.id = AI_ID_MCU;
ai->to_host.mcu.package.quat=*data;
ai->to_host.mcu.package.notice = ai->status;
ai->to_host.mcu.crc16 = CRC16_Calc((const uint8_t *)&(ai->to_host.mcu), sizeof(AI_UpPackageMCU_t) - 2, CRC16_INIT);
return DEVICE_OK;
}
int8_t AI_PackRef(AI_t *ai, const AI_UpPackageReferee_t *data);
int8_t AI_PackRef(AI_t *ai, const AI_UpPackageReferee_t *data) {
if (ai == NULL || data == NULL) return DEVICE_ERR_NULL;
ai->to_host.ref = *data;
return DEVICE_OK;
}
int8_t AI_HandleOffline(AI_t *ai);
int8_t AI_HandleOffline(AI_t *ai) {
if (ai == NULL) return DEVICE_ERR_NULL;
if (BSP_TIME_Get() - ai->header.last_online_time >
100000) {
ai->header.online = false;
}
return DEVICE_OK;
}
int8_t AI_StartSend(AI_t *ai, bool ref_online);
int8_t AI_StartSend(AI_t *ai, bool ref_online){
if (ai == NULL) return DEVICE_ERR_NULL;
if (ref_online) {
// 发送裁判系统数据和MCU数据
if (BSP_UART_Transmit(BSP_UART_AI, (uint8_t *)&(ai->to_host),
sizeof(ai->to_host.ref) + sizeof(ai->to_host.mcu), true) == HAL_OK)
return DEVICE_OK;
else
return DEVICE_ERR;
} else {
// 只发送MCU数据
if (BSP_UART_Transmit(BSP_UART_AI, (uint8_t *)&(ai->to_host.mcu),
sizeof(ai->to_host.mcu), true) == HAL_OK)
return DEVICE_OK;
else
return DEVICE_ERR;
}
}

View File

@ -25,10 +25,39 @@ extern "C" {
#define AI_ID_AI (0xA1)
/* Exported types ----------------------------------------------------------- */
typedef enum {
AI_ARMOR_HERO = 0, /*英雄机器人*/
AI_ARMOR_INFANTRY, /*步兵机器人*/
AI_ARMOR_SENTRY, /*哨兵机器人*/
AI_ARMOR_ENGINEER, /*工程机器人*/
AI_ARMOR_OUTPOST, /*前哨占*/
AI_ARMOR_BASE, /*基地*/
AI_ARMOR_NORMAL, /*由AI自动选择*/
} AI_ArmorsType_t;
typedef enum {
AI_STATUS_OFF = 0, /* 关闭 */
AI_STATUS_AUTOAIM, /* 自瞄 */
AI_STATUS_AUTOPICK, /* 自动取矿 */
AI_STATUS_AUTOPUT, /* 自动兑矿 */
AI_STATUS_AUTOHITBUFF, /* 自动打符 */
AI_STATUS_AUTONAV,
} AI_Status_t;
typedef enum {
AI_NOTICE_NONE = 0,
AI_NOTICE_SEARCH,
AI_NOTICE_FIRE,
}AI_Notice_t;
/* 电控 -> 视觉 MCU数据结构体*/
typedef struct __packed {
AHRS_Quaternion_t quat; /* 四元数 */
uint8_t notice; /* 控制命令 */
// struct {
// AI_ArmorsType_t armor_type;
// AI_Status_t status;
// }notice; /* 控制命令 */
uint8_t notice;
} AI_Protucol_UpDataMCU_t;
/* 电控 -> 视觉 裁判系统数据结构体*/
@ -37,7 +66,7 @@ typedef struct __packed {
uint16_t time; /* 比赛开始时间 */
} AI_Protocol_UpDataReferee_t;
/* 电控 -> 视觉 数据包结构体*/
/* 视觉 -> 电控 数据包结构体*/
typedef struct __packed {
AHRS_Eulr_t eulr; /* 欧拉角 */
MoveVector_t move_vec; /* 运动向量 */
@ -68,6 +97,7 @@ typedef struct __packed {
typedef struct __packed {
DEVICE_Header_t header; /* 设备通用头部 */
AI_DownPackage_t from_host;
AI_Status_t status;
struct {
AI_UpPackageReferee_t ref;
AI_UpPackageMCU_t mcu;
@ -82,11 +112,11 @@ int8_t AI_Restart(AI_t *ai);
int8_t AI_StartReceiving(AI_t *ai);
bool AI_WaitDmaCplt(uint32_t timeout);
bool AI_WaitDmaCplt(void);
int8_t AI_ParseHost(AI_t *ai);
int8_t AI_PackMCU(AI_t *ai, const AI_Protucol_UpDataMCU_t *data);
int8_t AI_PackMCU(AI_t *ai, const AHRS_Quaternion_t *quat);
int8_t AI_PackRef(AI_t *ai, const AI_UpPackageReferee_t *data);
@ -94,7 +124,6 @@ int8_t AI_HandleOffline(AI_t *ai);
int8_t AI_StartSend(AI_t *ai, bool ref_online);
#ifdef __cplusplus
}
#endif

View File

@ -74,7 +74,7 @@ static int8_t MOTOR_RM_GetLogicalIndex(uint16_t can_id, MOTOR_RM_Module_t module
static float MOTOR_RM_GetRatio(MOTOR_RM_Module_t module) {
switch (module) {
case MOTOR_M2006: return 36.0f;
case MOTOR_M3508: return 19.0f;
case MOTOR_M3508: return 3591.0f / 187.0f;
case MOTOR_GM6020: return 1.0f;
default: return 1.0f;
}

View File

@ -64,7 +64,23 @@ static int8_t Chassis_SetMode(Chassis_t *c, Chassis_Mode_t mode) {
PID_Reset(&c->pid.tp[0]);
PID_Reset(&c->pid.tp[1]);
c->yaw_control.target_yaw = c->feedback.yaw.rotor_abs_angle;
// 双零点自动选择逻辑使用user_math的CircleError函数
float current_yaw = c->feedback.yaw.rotor_abs_angle;
float zero_point_1 = c->param->mech_zero_yaw;
float zero_point_2 = zero_point_1 + M_PI; // 第二个零点相差180度
// 使用CircleError计算到两个零点的角度差范围为M_2PI
float error_to_zero1 = CircleError(zero_point_1, current_yaw, M_2PI);
float error_to_zero2 = CircleError(zero_point_2, current_yaw, M_2PI);
// 选择误差绝对值更小的零点作为目标,并记录是否使用了第二个零点
if (fabsf(error_to_zero1) <= fabsf(error_to_zero2)) {
c->yaw_control.target_yaw = zero_point_1;
c->yaw_control.is_reversed = false; // 使用第一个零点,不反转
} else {
c->yaw_control.target_yaw = zero_point_2;
c->yaw_control.is_reversed = true; // 使用第二个零点,需要反转前后方向
}
// 清空位移
c->chassis_state.position_x = 0.0f;
@ -116,8 +132,11 @@ static void Chassis_UpdateChassisState(Chassis_t *c) {
c->chassis_state.velocity_x =
(left_wheel_linear_vel + right_wheel_linear_vel) / 2.0f;
// 在跳跃模式的起跳和收腿阶段暂停位移积分,避免轮子空转导致的位移误差
if (!(c->mode == CHASSIS_MODE_JUMP && (c->state == 2 || c->state == 3))) {
// 积分得到位置
c->chassis_state.position_x += c->chassis_state.velocity_x * c->dt;
}
}
@ -182,6 +201,7 @@ int8_t Chassis_Init(Chassis_t *c, Chassis_Params_t *param, float target_freq) {
c->yaw_control.target_yaw = 0.0f;
c->yaw_control.current_yaw = 0.0f;
c->yaw_control.yaw_force = 0.0f;
c->yaw_control.is_reversed = false;
return CHASSIS_OK;
}
@ -293,12 +313,12 @@ int8_t Chassis_Control(Chassis_t *c, const Chassis_CMD_t *c_cmd) {
// state 1 保持0.3s后转到state 2
c->state = 2;
c->jump_time = BSP_TIME_Get_us(); // 重置计时
} else if (c->state == 2 && elapsed_us >= 160000) {
// state 2 保持0.2s后转到state 3
} else if (c->state == 2 && elapsed_us >= 230000) {
// state 2 保持0.25s后转到state 3,确保腿部充分伸展
c->state = 3;
c->jump_time = BSP_TIME_Get_us(); // 重置计时
} else if (c->state == 3 && elapsed_us >= 160000) {
// state 3 保持0.3s后转到state 0
} else if (c->state == 3 && elapsed_us >= 500000) {
// state 3 保持0.4s后转到state 0确保收腿到最高
c->state = 0;
c->jump_time = 1; // 设置为1表示已完成跳跃不再触发
}
@ -356,14 +376,17 @@ int8_t Chassis_LQRControl(Chassis_t *c, const Chassis_CMD_t *c_cmd) {
/* 运动参数参考C++版本的状态估计) */
static float xhat = 0.0f, x_dot_hat = 0.0f;
float target_dot_x = 0.0f;
float max_acceleration = 3.0f; // 最大加速度限制: 3 m/s²
float max_acceleration = 2.0f; // 最大加速度限制: 3 m/s²
// 简化的速度估计后续可以改进为C++版本的复杂滤波)
x_dot_hat = c->chassis_state.velocity_x;
xhat = c->chassis_state.position_x;
// 目标速度设定(原始期望速度)
float desired_velocity = c_cmd->move_vec.vx * 2;
float raw_vx = c_cmd->move_vec.vx * 2;
// 根据零点选择情况决定是否反转前后方向
float desired_velocity = c->yaw_control.is_reversed ? -raw_vx : raw_vx;
// 加速度限制处理
float velocity_change =
@ -407,26 +430,63 @@ int8_t Chassis_LQRControl(Chassis_t *c, const Chassis_CMD_t *c_cmd) {
/* 构建目标状态 */
LQR_State_t target_state = {0};
target_state.theta = c->param->theta; // 目标摆杆角度
// 在跳跃收腿阶段强制摆角目标为0确保落地时腿部竖直
if (c->mode == CHASSIS_MODE_JUMP && c->state == 3) {
target_state.theta = 0.0f; // 强制摆杆角度为0确保腿部竖直
} else {
target_state.theta = 0.00; // 目标摆杆角度
}
target_state.d_theta = 0.0f; // 目标摆杆角速度
target_state.phi = 11.9601*pow((0.15f + c_cmd->height * 0.25f),3) + -11.8715*pow((0.15f + c_cmd->height * 0.25f),2) + 3.87083*(0.15f + c_cmd->height * 0.25f) + -0.414154; // 目标俯仰角
target_state.phi = 11.9601*pow((0.16f + c_cmd->height * 0.25f),3) + -11.8715*pow((0.16f + c_cmd->height * 0.25f),2) + 3.87083*(0.16f + c_cmd->height * 0.25f) + -0.4154; // 目标俯仰角
target_state.d_phi = 0.0f; // 目标俯仰角速度
target_state.x = c->chassis_state.target_x -2.07411f*(0.15f + c_cmd->height * 0.25f) + 0.41182f;
target_state.x = c->chassis_state.target_x -2.07411f*(0.16f + c_cmd->height * 0.25f) + 0.41182f;
target_state.d_x = target_dot_x; // 目标速度
if (c->mode != CHASSIS_MODE_ROTOR){
c->yaw_control.current_yaw = c->feedback.yaw.rotor_abs_angle;
c->yaw_control.target_yaw =
c->param->mech_zero_yaw + c_cmd->move_vec.vy * M_PI_2;
// 双零点自动选择逻辑考虑手动控制偏移使用CircleError函数
float manual_offset = c_cmd->move_vec.vy * M_PI_2;
float base_target_1 = c->param->mech_zero_yaw + manual_offset;
float base_target_2 = c->param->mech_zero_yaw + M_PI + manual_offset;
// 使用CircleError计算到两个目标的角度误差
float error_to_target1 = CircleError(base_target_1, c->yaw_control.current_yaw, M_2PI);
float error_to_target2 = CircleError(base_target_2, c->yaw_control.current_yaw, M_2PI);
// 选择误差绝对值更小的目标,并更新反转状态
if (fabsf(error_to_target1) <= fabsf(error_to_target2)) {
c->yaw_control.target_yaw = base_target_1;
c->yaw_control.is_reversed = false; // 使用第一个零点,不反转
} else {
c->yaw_control.target_yaw = base_target_2;
c->yaw_control.is_reversed = true; // 使用第二个零点,需要反转前后方向
}
c->yaw_control.yaw_force =
PID_Calc(&c->pid.yaw, c->yaw_control.target_yaw,
c->feedback.yaw.rotor_abs_angle, 0.0f, c->dt);
}else{
c->yaw_control.current_yaw = c->feedback.yaw.rotor_abs_angle;
c->yaw_control.target_yaw = c->yaw_control.current_yaw + 0.5f;
// 小陀螺模式:使用速度环控制
c->yaw_control.current_yaw = c->feedback.imu.euler.yaw;
// 渐增旋转速度最大角速度约6.9 rad/s约400度/秒)
c->wz_multi += 0.005f;
if (c->wz_multi > 1.2f)
c->wz_multi = 1.2f;
// 目标角速度rad/s可根据需要调整最大速度
float target_yaw_velocity = c->wz_multi * 1.0f; // 最大约7.2 rad/s
// 当前角速度反馈来自IMU陀螺仪
float current_yaw_velocity = c->feedback.imu.gyro.z;
// 使用PID控制角速度输出力矩
c->yaw_control.yaw_force =
PID_Calc(&c->pid.yaw, c->yaw_control.target_yaw,
c->feedback.yaw.rotor_abs_angle, 0.0f, c->dt);
PID_Calc(&c->pid.yaw, target_yaw_velocity,
current_yaw_velocity, 0.0f, c->dt);
}
if (c->vmc_[0].leg.is_ground_contact) {
@ -434,11 +494,13 @@ int8_t Chassis_LQRControl(Chassis_t *c, const Chassis_CMD_t *c_cmd) {
LQR_SetTargetState(&c->lqr[0], &target_state);
LQR_Control(&c->lqr[0]);
} else {
target_state.theta = 0.15f; // 非接触时腿摆角目标为0.1rad,防止腿完全悬空
// 在跳跃收腿阶段强制摆角目标为0其他情况为0.16f
float non_contact_theta = (c->mode == CHASSIS_MODE_JUMP && c->state == 3) ? 0.0f : 0.16f;
target_state.theta = non_contact_theta; // 非接触时的腿摆角目标
LQR_SetTargetState(&c->lqr[0], &target_state);
c->lqr[0].control_output.T = 0.0f;
c->lqr[0].control_output.Tp =
c->lqr[0].K_matrix[1][0] * (-c->vmc_[0].leg.theta + 0.0f) +
c->lqr[0].K_matrix[1][0] * (-c->vmc_[0].leg.theta + non_contact_theta) +
c->lqr[0].K_matrix[1][1] * (-c->vmc_[0].leg.d_theta + 0.0f);
c->yaw_control.yaw_force = 0.0f; // 单腿离地时关闭偏航控制
}
@ -446,61 +508,90 @@ int8_t Chassis_LQRControl(Chassis_t *c, const Chassis_CMD_t *c_cmd) {
LQR_SetTargetState(&c->lqr[1], &target_state);
LQR_Control(&c->lqr[1]);
}else {
target_state.theta = 0.15f; // 非接触时腿摆角目标为0.1rad,防止腿完全悬空
// 在跳跃收腿阶段强制摆角目标为0其他情况为0.16f
float non_contact_theta = (c->mode == CHASSIS_MODE_JUMP && c->state == 3) ? 0.0f : 0.16f;
target_state.theta = non_contact_theta; // 非接触时的腿摆角目标
LQR_SetTargetState(&c->lqr[1], &target_state);
c->lqr[1].control_output.T = 0.0f;
c->lqr[1].control_output.Tp =
c->lqr[1].K_matrix[1][0] * (-c->vmc_[1].leg.theta + 0.0f) +
c->lqr[1].K_matrix[1][0] * (-c->vmc_[1].leg.theta + non_contact_theta) +
c->lqr[1].K_matrix[1][1] * (-c->vmc_[1].leg.d_theta + 0.0f);
c->yaw_control.yaw_force = 0.0f; // 单腿离地时关闭偏航控制
}
/* 轮毂力矩输出参考C++版本的减速比) */
// 在跳跃的起跳和收腿阶段强制关闭轮子输出,防止离地时轮子猛转
if (c->mode == CHASSIS_MODE_JUMP && (c->state == 2 || c->state == 3)) {
c->output.wheel[0] = 0.0f;
c->output.wheel[1] = 0.0f;
} else {
c->output.wheel[0] =
c->lqr[0].control_output.T / 4.5f + c->yaw_control.yaw_force;
c->output.wheel[1] =
c->lqr[1].control_output.T / 4.5f - c->yaw_control.yaw_force;
}
/* 腿长控制和VMC逆解算使用PID控制 */
float virtual_force[2];
float target_L0[2];
float leg_d_length[2]; // 腿长变化率
/* 横滚角PID补偿计算 */
// 使用PID控制器计算横滚角补偿目标横滚角为0
float roll_compensation_force =
// 使用PID控制器计算横滚角补偿长度目标横滚角为0
float roll_compensation_length =
PID_Calc(&c->pid.roll, 0.0f, c->feedback.imu.euler.rol,
c->feedback.imu.gyro.x, c->dt);
// 限制补偿力范围,防止过度补偿
if (roll_compensation_force > 20.0f)
roll_compensation_force = 20.0f;
if (roll_compensation_force < -20.0f)
roll_compensation_force = -20.0f;
// 限制补偿长度范围,防止过度补偿
// 如果任一腿离地,限制补偿长度
if (!c->vmc_[0].leg.is_ground_contact || !c->vmc_[1].leg.is_ground_contact) {
if (roll_compensation_length > 0.02f)
roll_compensation_length = 0.02f;
if (roll_compensation_length < -0.02f)
roll_compensation_length = -0.02f;
} else {
if (roll_compensation_length > 0.05f)
roll_compensation_length = 0.05f;
if (roll_compensation_length < -0.05f)
roll_compensation_length = -0.05f;
}
// 目标腿长设定(移除横滚角补偿)
// 目标腿长设定(包含横滚角补偿)
switch (c->state) {
case 0: // 正常状态,根据高度指令调节腿长
target_L0[0] = 0.15f + c_cmd->height * 0.22f; // 左腿:基础腿长 + 高度调节
target_L0[1] = 0.15f + c_cmd->height * 0.22f; // 右腿:基础腿长 + 高度调节
target_L0[0] = 0.16f + c_cmd->height * 0.22f + roll_compensation_length; // 左腿:基础腿长 + 高度调节 + 横滚补偿
target_L0[1] = 0.16f + c_cmd->height * 0.22f - roll_compensation_length; // 右腿:基础腿长 + 高度调节 - 横滚补偿
break;
case 1: // 准备阶段,腿长收缩
target_L0[0] = 0.15f; // 左腿:收缩到基础腿长
target_L0[1] = 0.15f; // 右腿:收缩到基础腿长
target_L0[0] = 0.14f + roll_compensation_length; // 左腿:收缩到较短腿长 + 横滚补偿
target_L0[1] = 0.14f - roll_compensation_length; // 右腿:收缩到较短腿长 - 横滚补偿
break;
case 2: // 起跳阶段,腿长快速伸展
target_L0[0] = 0.55f; // 左腿:伸展到最大腿长
target_L0[1] = 0.55f; // 右腿:伸展到最大腿长
target_L0[0] = 0.65f; // 左腿:伸展到最大腿长(跳跃时不进行横滚补偿)
target_L0[1] = 0.65f; // 右腿:伸展到最大腿长(跳跃时不进行横滚补偿)
break;
case 3: // 着地阶段,腿长缓冲
target_L0[0] = 0.1f; // 左腿:缓冲腿长
target_L0[1] = 0.1f; // 右腿:缓冲腿长
case 3: // 收腿阶段,腿长收缩到最高
target_L0[0] = 0.06f; // 左腿:收缩到最短腿长(确保收腿到最高)
target_L0[1] = 0.06f; // 右腿:收缩到最短腿长(确保收腿到最高)
break;
default:
target_L0[0] = 0.15f + c_cmd->height * 0.22f;
target_L0[1] = 0.15f + c_cmd->height * 0.22f;
target_L0[0] = 0.16f + c_cmd->height * 0.22f + roll_compensation_length;
target_L0[1] = 0.16f + c_cmd->height * 0.22f - roll_compensation_length;
break;
}
// 腿长限幅:根据跳跃状态调整限制范围
if (c->mode == CHASSIS_MODE_JUMP && c->state == 3) {
// 在跳跃收腿阶段,允许更短的腿长,确保收腿到最高
if (target_L0[0] < 0.06f) target_L0[0] = 0.06f;
if (target_L0[1] < 0.06f) target_L0[1] = 0.06f;
} else {
// 正常情况下的腿长限制最短0.10最长0.42m
if (target_L0[0] < 0.10f) target_L0[0] = 0.10f;
if (target_L0[1] < 0.10f) target_L0[1] = 0.10f;
}
if (target_L0[0] > 0.42f) target_L0[0] = 0.42f;
if (target_L0[1] > 0.42f) target_L0[1] = 0.42f;
// 获取腿长变化率
VMC_GetVirtualLegState(&c->vmc_[0], NULL, NULL, &leg_d_length[0], NULL);
VMC_GetVirtualLegState(&c->vmc_[1], NULL, NULL, &leg_d_length[1], NULL);
@ -523,11 +614,10 @@ int8_t Chassis_LQRControl(Chassis_t *c, const Chassis_CMD_t *c_cmd) {
float pid_output = PID_Calc(&c->pid.leg_length[0], target_L0[0],
c->vmc_[0].leg.L0, leg_d_length[0], c->dt);
// 腿长控制力 = LQR摆杆力矩的径向分量 + PID腿长控制输出 + 基础支撑力 -
// 横滚角补偿力(左腿减少支撑力)
// 腿长控制力 = LQR摆杆力矩的径向分量 + PID腿长控制输出 + 基础支撑力
virtual_force[0] =
(c->lqr[0].control_output.Tp) * sinf(c->vmc_[0].leg.theta) +
pid_output + 55.0f + roll_compensation_force;
pid_output + 60.0f;
// VMC逆解算包含摆角补偿
if (VMC_InverseSolve(&c->vmc_[0], virtual_force[0],
@ -548,11 +638,10 @@ int8_t Chassis_LQRControl(Chassis_t *c, const Chassis_CMD_t *c_cmd) {
float pid_output = PID_Calc(&c->pid.leg_length[1], target_L0[1],
c->vmc_[1].leg.L0, leg_d_length[1], c->dt);
// 腿长控制力 = LQR摆杆力矩的径向分量 + PID腿长控制输出 + 基础支撑力 +
// 横滚角补偿力(右腿增加支撑力)
// 腿长控制力 = LQR摆杆力矩的径向分量 + PID腿长控制输出 + 基础支撑力
virtual_force[1] =
(c->lqr[1].control_output.Tp) * sinf(c->vmc_[1].leg.theta) +
pid_output + 60.0f - roll_compensation_force;
pid_output + 65.0f;
// VMC逆解算包含摆角补偿
if (VMC_InverseSolve(&c->vmc_[1], virtual_force[1],

View File

@ -147,6 +147,7 @@ typedef struct {
float target_yaw; /* 目标yaw角度 */
float current_yaw; /* 当前yaw角度 */
float yaw_force; /* yaw轴控制力矩 */
bool is_reversed; /* 是否使用反转的零点180度零点影响前后方向 */
} yaw_control;
float wz_multi; /* 小陀螺模式旋转方向 */

View File

@ -170,8 +170,8 @@ Config_RobotParam_t robot_config = {
.yaw={
.k=1.0f,
.p=1.0f,
.i=0.01f,
.d=0.05f,
.i=0.0f,
.d=0.3f,
.i_limit=0.0f,
.out_limit=1.0f,
.d_cutoff_freq=30.0f,
@ -179,23 +179,23 @@ Config_RobotParam_t robot_config = {
},
.roll={
.k=20.0f,
.p=5.0f, /* 横滚角比例系数 */
.i=0.0f, /* 横滚角积分系数 */
.d=0.2f, /* 横滚角微分系数 */
.i_limit=0.0f, /* 积分限幅 */
.out_limit=50.0f, /* 输出限幅,腿长差值限制 */
.k=1.0f,
.p=0.5f, /* 横滚角比例系数 */
.i=0.01f, /* 横滚角积分系数 */
.d=0.01f, /* 横滚角微分系数 */
.i_limit=0.2f, /* 积分限幅 */
.out_limit=1.0f, /* 输出限幅,腿长差值限制 */
.d_cutoff_freq=30.0f, /* 微分截止频率 */
.range=-1.0f, /* 不使用循环误差处理 */
},
.leg_length={
.k = 50.0f,
.p = 10.0f,
.i = 0.0f,
.d = 1.0f,
.k = 40.0f,
.p = 20.0f,
.i = 0.01f,
.d = 2.0f,
.i_limit = 0.0f,
.out_limit = 100.0f,
.out_limit = 200.0f,
.d_cutoff_freq = -1.0f,
.range = -1.0f,
},
@ -211,8 +211,8 @@ Config_RobotParam_t robot_config = {
},
.tp={
.k=2.0f,
.p=2.0f, /* 俯仰角比例系数 */
.k=4.0f,
.p=3.0f, /* 俯仰角比例系数 */
.i=0.0f, /* 俯仰角积分系数 */
.d=0.0f, /* 俯仰角微分系数 */
.i_limit=0.0f, /* 积分限幅 */
@ -254,21 +254,20 @@ Config_RobotParam_t robot_config = {
}
},
.lqr_gains = {
.k11_coeff = { -1.498109852818409e+02f, 1.918923604951453e+02f, -1.080984818173493e+02f, -1.540703437137126e+00f }, // theta
.k12_coeff = { 8.413682810667103e+00f, -6.603584762798329e+00f, -6.421063158996702e+00f, -5.450666844349098e-02f }, // d_theta
.k13_coeff = { -3.146938649452867e+01f, 3.671781823697795e+01f, -1.548019975847165e+01f, -3.659482046966758e-01f }, // x
.k14_coeff = { -3.363190268966418e+01f, 4.073114332036178e+01f, -1.877821151363973e+01f, -6.755848684037919e-01f }, // d_x
.k15_coeff = { 1.813346556940570e+00f, 1.542139674818206e+01f, -1.784151260000496e+01f, 6.975189972486323e+00f }, // phi
.k16_coeff = { -1.683339907923917e+00f, 3.762911505427638e+00f, -2.966405826579746e+00f, 1.145611903160937e+00f }, // d_phi
.k21_coeff = { 3.683683451383080e+02f, -3.184826128050574e+02f, 7.012281968985167e+01f, 1.232691707185163e+01f }, // theta
.k22_coeff = { 2.256451382235226e+01f, -2.387074220964917e+01f, 8.355357863648345e+00f, 1.148384164091676e+00f }, // d_theta
.k23_coeff = { 1.065026516142075e+01f, 1.016717837738013e+01f, -1.810442639595643e+01f, 7.368019318950717e+00f }, // x
.k24_coeff = { 2.330418054102148e+00f, 2.193671212435775e+01f, -2.502198732490354e+01f, 9.621144599080463e+00f }, // d_x
.k25_coeff = { 1.784444885521937e+02f, -2.030738611028434e+02f, 8.375405599993576e+01f, -2.204042546242858e-01f }, // phi
.k26_coeff = { 2.646425532528492e+01f, -3.034702782249508e+01f, 1.275100635568078e+01f, -4.878639273974432e-01f }, // d_phi
},
.lqr_gains = {
.k11_coeff = { -2.213202553185133e+02f, 2.353939463356143e+02f, -1.057072351438971e+02f, -1.581085937677281e+00f }, // theta
.k12_coeff = { -9.181864404672975e+00f, 8.531964722737065e+00f, -9.696625432480346e+00f, -2.388898921230960e-01f }, // d_theta
.k13_coeff = { -6.328339397527442e+01f, 6.270159865929592e+01f, -2.133356351416681e+01f, -2.795774497769496e-01f }, // x
.k14_coeff = { -7.428160824353201e+01f, 7.371925049068537e+01f, -2.613745545093503e+01f, -5.994101373770330e-01f }, // d_x
.k15_coeff = { -6.968934105907989e+01f, 9.229969229361623e+01f, -4.424018428098277e+01f, 8.098181536555296e+00f }, // phi
.k16_coeff = { -1.527045508038401e+01f, 2.030548630730375e+01f, -1.009526207086012e+01f, 2.014358176738665e+00f }, // d_phi
.k21_coeff = { 6.254476937997669e+01f, 9.037146968574660e+00f, -4.492072460618583e+01f, 1.770766202994207e+01f }, // theta
.k22_coeff = { 3.165057029795604e-02f, 7.350960766534424e+00f, -6.597366624137901e+00f, 2.798506180182324e+00f }, // d_theta
.k23_coeff = { -5.827814614802593e+01f, 7.789995488757775e+01f, -3.841148024725668e+01f, 8.034534049078013e+00f }, // x
.k24_coeff = { -8.937952443465080e+01f, 1.128943502182752e+02f, -5.293642666103645e+01f, 1.073722383888271e+01f }, // d_x
.k25_coeff = { 2.478483065877546e+02f, -2.463640234149189e+02f, 8.359617215530402e+01f, 8.324247402653134e+00f }, // phi
.k26_coeff = { 6.307211927250707e+01f, -6.266313408748906e+01f, 2.129449351279647e+01f, 9.249265186231070e-01f }, // d_phi
},
.theta = 0.0f,
.x = 0.0f,
.phi = -0.1f,

View File

@ -4,9 +4,12 @@
*/
/* Includes ----------------------------------------------------------------- */
#include "cmsis_os2.h"
#include "task/user_task.h"
/* USER INCLUDE BEGIN */
#include "device/ai.h"
#include "component/ahrs.h"
#include <stdbool.h>
/* USER INCLUDE END */
/* Private typedef ---------------------------------------------------------- */
@ -14,7 +17,8 @@
/* Private macro ------------------------------------------------------------ */
/* Private variables -------------------------------------------------------- */
/* USER STRUCT BEGIN */
AI_t ai;
AHRS_Quaternion_t quat;
/* USER STRUCT END */
/* Private function --------------------------------------------------------- */
@ -30,12 +34,23 @@ void Task_ai(void *argument) {
uint32_t tick = osKernelGetTickCount(); /* 控制任务运行频率的计时 */
/* USER CODE INIT BEGIN */
AI_Init(&ai);
/* USER CODE INIT END */
while (1) {
tick += delay_tick; /* 计算下一个唤醒时刻 */
/* USER CODE BEGIN */
AI_StartReceiving(&ai);
if (AI_WaitDmaCplt()) {
AI_ParseHost(&ai);
} else {
AI_HandleOffline(&ai);
}
if (osMessageQueueGet(task_runtime.msgq.ai.quat, &quat, NULL, 0) == osOK) {
AI_PackMCU(&ai, &quat);
}
AI_StartSend(&ai, false);
/* USER CODE END */
osDelayUntil(tick); /* 运行结束,等待下一次唤醒 */

View File

@ -4,6 +4,7 @@
*/
/* Includes ----------------------------------------------------------------- */
#include "cmsis_os2.h"
#include "task/user_task.h"
/* USER INCLUDE BEGIN */
#include "bsp/mm.h"
@ -154,6 +155,8 @@ void Task_atti_esti(void *argument) {
osMessageQueueReset(task_runtime.msgq.gimbal.imu);
osMessageQueuePut(task_runtime.msgq.gimbal.imu, &gimbal_to_send, 0, 0);
osMessageQueuePut(task_runtime.msgq.ai.quat, &gimbal_ahrs.quat, 0, 0);
BSP_PWM_SetComp(BSP_PWM_IMU_HEAT_PWM, PID_Calc(&imu_temp_ctrl_pid, 40.0f, bmi088.temp, 0.0f, 0.0f));
/* USER CODE END */

View File

@ -52,6 +52,8 @@ void Task_Init(void *argument) {
task_runtime.msgq.gimbal.imu= osMessageQueueNew(2u, sizeof(Gimbal_IMU_t), NULL);
task_runtime.msgq.gimbal.cmd= osMessageQueueNew(2u, sizeof(Gimbal_CMD_t), NULL);
task_runtime.msgq.shoot.shoot_cmd = osMessageQueueNew(2u, sizeof(Shoot_CMD_t), NULL);
task_runtime.msgq.ai.quat = osMessageQueueNew(2u, sizeof(AHRS_Quaternion_t), NULL);
task_runtime.msgq.ai.move_vec = osMessageQueueNew(2u, sizeof(MoveVector_t), NULL);
/* USER MESSAGE END */
osKernelUnlock(); // 解锁内核

View File

@ -61,12 +61,13 @@ void Task_rc(void *argument) {
cmd_for_chassis.mode = CHASSIS_MODE_RELAX;
break;
case DR16_SW_MID:
cmd_for_chassis.mode = CHASSIS_MODE_RECOVER;
// cmd_for_chassis.mode = CHASSIS_MODE_WHELL_LEG_BALANCE;
// cmd_for_chassis.mode = CHASSIS_MODE_RECOVER;
cmd_for_chassis.mode = CHASSIS_MODE_WHELL_LEG_BALANCE;
break;
case DR16_SW_DOWN:
cmd_for_chassis.mode = CHASSIS_MODE_WHELL_LEG_BALANCE;
// cmd_for_chassis.mode = CHASSIS_MODE_JUMP;
// cmd_for_chassis.mode = CHASSIS_MODE_ROTOR;
// cmd_for_chassis.mode = CHASSIS_MODE_WHELL_LEG_BALANCE;
cmd_for_chassis.mode = CHASSIS_MODE_JUMP;
break;
default:
cmd_for_chassis.mode = CHASSIS_MODE_RELAX;

View File

@ -75,6 +75,12 @@ typedef struct {
osMessageQueueId_t ref;
osMessageQueueId_t ai;
}cmd;
struct {
osMessageQueueId_t quat;
osMessageQueueId_t move_vec;
osMessageQueueId_t eulr;
osMessageQueueId_t fire;
}ai;
} msgq;
/* USER MESSAGE END */

View File

@ -17,10 +17,10 @@ function K = get_k_length(leg_length)
R1=0.072; %
L1=leg_length/2; %
LM1=leg_length/2; %
l1=0.01; %
l1=-0.03; %
mw1=0.60; %
mp1=1.8; %
M1=12.0; %
M1=6.0; %
Iw1=mw1*R1^2; %
Ip1=mp1*((L1+LM1)^2+0.05^2)/12.0; %
IM1=M1*(0.3^2+0.12^2)/12.0; %
@ -48,8 +48,12 @@ function K = get_k_length(leg_length)
B=subs(B,[R,L,LM,l,mw,mp,M,Iw,Ip,IM,g],[R1,L1,LM1,l1,mw1,mp1,M1,Iw1,Ip1,IM1,9.8]);
B=double(B);
Q=diag([1500 100 2500 1500 8000 1]);%theta d_theta x d_x phi d_phi%700 1 600 200 1000 1
R=[300 0;0 55]; %T Tp
% Recommended: Increase velocity damping to improve convergence
% Q weights [theta, d_theta, x, d_x, phi, d_phi]
% Original: [1000, 100, 2000, 1500, 20000, 500] causes self-oscillation
% Improved: [500, 300, 2000, 1500, 20000, 500] weight ratio 1.67:1
Q=diag([600 300 2000 1500 20000 500]);
R=[240 0;0 50];
K=lqr(A,B,Q,R);