RMUL2025/lib/cmsis_5/CMSIS/DSP/Testing/Source/Tests/BIQUADF16.cpp

450 lines
11 KiB
C++
Executable File

#include "BIQUADF16.h"
#include <stdio.h>
#include "Error.h"
#define SNR_THRESHOLD 27
/*
Reference patterns are generated with
a double precision computation.
*/
#define REL_ERROR (5.0e-2)
#define ABS_ERROR (1.0e-1)
void BIQUADF16::test_biquad_cascade_df1_ref()
{
float16_t *statep = state.ptr();
float16_t *debugstatep = debugstate.ptr();
const float16_t *coefsp = coefs.ptr();
const float16_t *inputp = inputs.ptr();
float16_t *outp = output.ptr();
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
arm_biquad_mod_coef_f16 *coefsmodp = (arm_biquad_mod_coef_f16*)vecCoefs.ptr();
#endif
int blockSize;
/*
Python script is generating different tests with
different blockSize and numTaps.
We loop on those configs.
*/
blockSize = inputs.nbSamples() >> 1;
/*
The filter is initialized with the coefs, blockSize and numTaps.
*/
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
arm_biquad_cascade_df1_mve_init_f16(&this->Sdf1,3,coefsp,coefsmodp,statep);
#else
arm_biquad_cascade_df1_init_f16(&this->Sdf1,3,coefsp,statep);
#endif
/*
Python script is filtering a 2*blockSize number of samples.
We do the same filtering in two pass to check (indirectly that
the state management of the fir is working.)
*/
arm_biquad_cascade_df1_f16(&this->Sdf1,inputp,outp,blockSize);
memcpy(debugstatep,statep,3*4*sizeof(float16_t));
debugstatep += 3*4;
outp += blockSize;
inputp += blockSize;
arm_biquad_cascade_df1_f16(&this->Sdf1,inputp,outp,blockSize);
outp += blockSize;
memcpy(debugstatep,statep,3*4*sizeof(float16_t));
debugstatep += 3*4;
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void BIQUADF16::test_biquad_cascade_df2T_ref()
{
float16_t *statep = state.ptr();
float16_t *coefsp = coefs.ptr();
const float16_t *inputp = inputs.ptr();
float16_t *outp = output.ptr();
int blockSize;
/*
Python script is generating different tests with
different blockSize and numTaps.
We loop on those configs.
*/
blockSize = inputs.nbSamples() >> 1;
/*
The filter is initialized with the coefs, blockSize and numTaps.
*/
arm_biquad_cascade_df2T_init_f16(&this->Sdf2T,3,coefsp,statep);
/*
Python script is filtering a 2*blockSize number of samples.
We do the same filtering in two pass to check (indirectly that
the state management of the fir is working.)
*/
arm_biquad_cascade_df2T_f16(&this->Sdf2T,inputp,outp,blockSize);
outp += blockSize;
inputp += blockSize;
arm_biquad_cascade_df2T_f16(&this->Sdf2T,inputp,outp,blockSize);
outp += blockSize;
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void BIQUADF16::test_biquad_cascade_df1_rand()
{
float16_t *statep = state.ptr();
const float16_t *coefsp = coefs.ptr();
const int16_t *configsp = configs.ptr();
const float16_t *inputp = inputs.ptr();
float16_t *outp = output.ptr();
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
arm_biquad_mod_coef_f16 *coefsmodp = (arm_biquad_mod_coef_f16*)vecCoefs.ptr();
#endif
int blockSize;
int numStages;
unsigned long i;
for(i=0;i < configs.nbSamples(); i+=2)
{
/*
Python script is generating different tests with
different blockSize and numTaps.
We loop on those configs.
*/
numStages = configsp[0];
blockSize = configsp[1];
configsp += 2;
/*
The filter is initialized with the coefs, blockSize and numTaps.
*/
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
arm_biquad_cascade_df1_mve_init_f16(&this->Sdf1,numStages,coefsp,coefsmodp,statep);
#else
arm_biquad_cascade_df1_init_f16(&this->Sdf1,numStages,coefsp,statep);
#endif
/*
Python script is filtering a 2*blockSize number of samples.
We do the same filtering in two pass to check (indirectly that
the state management of the fir is working.)
*/
arm_biquad_cascade_df1_f16(&this->Sdf1,inputp,outp,blockSize);
inputp += blockSize;
outp += blockSize;
coefsp += numStages * 5;
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void BIQUADF16::test_biquad_cascade_df2T_rand()
{
float16_t *statep = state.ptr();
const int16_t *configsp = configs.ptr();
float16_t *coefsp = coefs.ptr();
const float16_t *inputp = inputs.ptr();
float16_t *outp = output.ptr();
int blockSize;
int numStages;
unsigned long i;
for(i=0;i < configs.nbSamples(); i+=2)
{
/*
Python script is generating different tests with
different blockSize and numTaps.
We loop on those configs.
*/
numStages = configsp[0];
blockSize = configsp[1];
configsp += 2;
/*
The filter is initialized with the coefs, blockSize and numTaps.
*/
arm_biquad_cascade_df2T_init_f16(&this->Sdf2T,numStages,coefsp,statep);
coefsp += numStages * 5;
/*
Python script is filtering a 2*blockSize number of samples.
We do the same filtering in two pass to check (indirectly that
the state management of the fir is working.)
*/
arm_biquad_cascade_df2T_f16(&this->Sdf2T,inputp,outp,blockSize);
outp += blockSize;
inputp += blockSize;
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void BIQUADF16::test_biquad_cascade_stereo_df2T_rand()
{
float16_t *statep = state.ptr();
const int16_t *configsp = configs.ptr();
const float16_t *coefsp = coefs.ptr();
const float16_t *inputp = inputs.ptr();
float16_t *outp = output.ptr();
int blockSize;
int numStages;
unsigned long i;
for(i=0;i < configs.nbSamples(); i+=2)
{
/*
Python script is generating different tests with
different blockSize and numTaps.
We loop on those configs.
*/
numStages = configsp[0];
blockSize = configsp[1];
configsp += 2;
/*
The filter is initialized with the coefs, blockSize and numTaps.
*/
arm_biquad_cascade_stereo_df2T_init_f16(&this->SStereodf2T,numStages,coefsp,statep);
coefsp += numStages * 5;
/*
Python script is filtering a 2*blockSize number of samples.
We do the same filtering in two pass to check (indirectly that
the state management of the fir is working.)
*/
arm_biquad_cascade_stereo_df2T_f16(&this->SStereodf2T,inputp,outp,blockSize);
outp += 2*blockSize;
inputp += 2*blockSize;
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void BIQUADF16::setUp(Testing::testID_t id,std::vector<Testing::param_t>& params,Client::PatternMgr *mgr)
{
(void)params;
switch(id)
{
case BIQUADF16::TEST_BIQUAD_CASCADE_DF1_REF_1:
debugstate.create(2*64,BIQUADF16::STATE_F16_ID,mgr);
inputs.reload(BIQUADF16::BIQUADINPUTS_F16_ID,mgr);
coefs.reload(BIQUADF16::BIQUADCOEFS_F16_ID,mgr);
ref.reload(BIQUADF16::BIQUADREFS_F16_ID,mgr);
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
/* Max num stages is 47 in Python script */
vecCoefs.create(96*47,BIQUADF16::OUT_F16_ID,mgr);
#endif
break;
case BIQUADF16::TEST_BIQUAD_CASCADE_DF2T_REF_2:
vecCoefs.create(64,BIQUADF16::OUT_F16_ID,mgr);
inputs.reload(BIQUADF16::BIQUADINPUTS_F16_ID,mgr);
coefs.reload(BIQUADF16::BIQUADCOEFS_F16_ID,mgr);
ref.reload(BIQUADF16::BIQUADREFS_F16_ID,mgr);
break;
case BIQUADF16::TEST_BIQUAD_CASCADE_DF1_RAND_3:
inputs.reload(BIQUADF16::ALLBIQUADINPUTS_F16_ID,mgr);
coefs.reload(BIQUADF16::ALLBIQUADCOEFS_F16_ID,mgr);
ref.reload(BIQUADF16::ALLBIQUADREFS_F16_ID,mgr);
configs.reload(BIQUADF16::ALLBIQUADCONFIGS_S16_ID,mgr);
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
/* Max num stages is 47 in Python script */
vecCoefs.create(96*47,BIQUADF16::OUT_F16_ID,mgr);
#endif
break;
case BIQUADF16::TEST_BIQUAD_CASCADE_DF2T_RAND_4:
vecCoefs.create(512,BIQUADF16::OUT_F16_ID,mgr);
inputs.reload(BIQUADF16::ALLBIQUADINPUTS_F16_ID,mgr);
coefs.reload(BIQUADF16::ALLBIQUADCOEFS_F16_ID,mgr);
ref.reload(BIQUADF16::ALLBIQUADREFS_F16_ID,mgr);
configs.reload(BIQUADF16::ALLBIQUADCONFIGS_S16_ID,mgr);
break;
case BIQUADF16::TEST_BIQUAD_CASCADE_STEREO_DF2T_RAND_5:
inputs.reload(BIQUADF16::ALLBIQUADSTEREOINPUTS_F16_ID,mgr);
coefs.reload(BIQUADF16::ALLBIQUADCOEFS_F16_ID,mgr);
ref.reload(BIQUADF16::ALLBIQUADSTEREOREFS_F16_ID,mgr);
configs.reload(BIQUADF16::ALLBIQUADCONFIGS_S16_ID,mgr);
break;
}
output.create(ref.nbSamples(),BIQUADF16::OUT_F16_ID,mgr);
state.create(128,BIQUADF16::STATE_F16_ID,mgr);
}
void BIQUADF16::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
{
(void)id;
output.dump(mgr);
switch(id)
{
case BIQUADF16::TEST_BIQUAD_CASCADE_DF1_REF_1:
debugstate.dump(mgr);
break;
}
}