450 lines
11 KiB
C++
Executable File
450 lines
11 KiB
C++
Executable File
#include "BIQUADF16.h"
|
|
#include <stdio.h>
|
|
#include "Error.h"
|
|
|
|
#define SNR_THRESHOLD 27
|
|
|
|
/*
|
|
|
|
Reference patterns are generated with
|
|
a double precision computation.
|
|
|
|
*/
|
|
#define REL_ERROR (5.0e-2)
|
|
#define ABS_ERROR (1.0e-1)
|
|
|
|
void BIQUADF16::test_biquad_cascade_df1_ref()
|
|
{
|
|
|
|
|
|
float16_t *statep = state.ptr();
|
|
float16_t *debugstatep = debugstate.ptr();
|
|
|
|
const float16_t *coefsp = coefs.ptr();
|
|
|
|
const float16_t *inputp = inputs.ptr();
|
|
float16_t *outp = output.ptr();
|
|
|
|
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
arm_biquad_mod_coef_f16 *coefsmodp = (arm_biquad_mod_coef_f16*)vecCoefs.ptr();
|
|
#endif
|
|
|
|
int blockSize;
|
|
|
|
|
|
|
|
/*
|
|
|
|
Python script is generating different tests with
|
|
different blockSize and numTaps.
|
|
|
|
We loop on those configs.
|
|
|
|
*/
|
|
|
|
blockSize = inputs.nbSamples() >> 1;
|
|
|
|
|
|
/*
|
|
|
|
The filter is initialized with the coefs, blockSize and numTaps.
|
|
|
|
*/
|
|
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
arm_biquad_cascade_df1_mve_init_f16(&this->Sdf1,3,coefsp,coefsmodp,statep);
|
|
#else
|
|
arm_biquad_cascade_df1_init_f16(&this->Sdf1,3,coefsp,statep);
|
|
#endif
|
|
|
|
/*
|
|
|
|
Python script is filtering a 2*blockSize number of samples.
|
|
We do the same filtering in two pass to check (indirectly that
|
|
the state management of the fir is working.)
|
|
|
|
*/
|
|
|
|
arm_biquad_cascade_df1_f16(&this->Sdf1,inputp,outp,blockSize);
|
|
|
|
memcpy(debugstatep,statep,3*4*sizeof(float16_t));
|
|
debugstatep += 3*4;
|
|
|
|
outp += blockSize;
|
|
|
|
inputp += blockSize;
|
|
arm_biquad_cascade_df1_f16(&this->Sdf1,inputp,outp,blockSize);
|
|
outp += blockSize;
|
|
|
|
memcpy(debugstatep,statep,3*4*sizeof(float16_t));
|
|
debugstatep += 3*4;
|
|
|
|
ASSERT_EMPTY_TAIL(output);
|
|
|
|
ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
|
|
|
|
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
|
|
|
|
|
|
}
|
|
|
|
void BIQUADF16::test_biquad_cascade_df2T_ref()
|
|
{
|
|
|
|
|
|
float16_t *statep = state.ptr();
|
|
|
|
|
|
float16_t *coefsp = coefs.ptr();
|
|
|
|
const float16_t *inputp = inputs.ptr();
|
|
float16_t *outp = output.ptr();
|
|
|
|
int blockSize;
|
|
|
|
|
|
|
|
/*
|
|
|
|
Python script is generating different tests with
|
|
different blockSize and numTaps.
|
|
|
|
We loop on those configs.
|
|
|
|
*/
|
|
|
|
blockSize = inputs.nbSamples() >> 1;
|
|
|
|
/*
|
|
|
|
The filter is initialized with the coefs, blockSize and numTaps.
|
|
|
|
*/
|
|
|
|
arm_biquad_cascade_df2T_init_f16(&this->Sdf2T,3,coefsp,statep);
|
|
|
|
|
|
|
|
/*
|
|
|
|
Python script is filtering a 2*blockSize number of samples.
|
|
We do the same filtering in two pass to check (indirectly that
|
|
the state management of the fir is working.)
|
|
|
|
*/
|
|
|
|
arm_biquad_cascade_df2T_f16(&this->Sdf2T,inputp,outp,blockSize);
|
|
outp += blockSize;
|
|
|
|
|
|
inputp += blockSize;
|
|
arm_biquad_cascade_df2T_f16(&this->Sdf2T,inputp,outp,blockSize);
|
|
outp += blockSize;
|
|
|
|
|
|
ASSERT_EMPTY_TAIL(output);
|
|
|
|
ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
|
|
|
|
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
|
|
|
|
|
|
}
|
|
|
|
void BIQUADF16::test_biquad_cascade_df1_rand()
|
|
{
|
|
|
|
|
|
float16_t *statep = state.ptr();
|
|
|
|
const float16_t *coefsp = coefs.ptr();
|
|
const int16_t *configsp = configs.ptr();
|
|
|
|
const float16_t *inputp = inputs.ptr();
|
|
float16_t *outp = output.ptr();
|
|
|
|
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
arm_biquad_mod_coef_f16 *coefsmodp = (arm_biquad_mod_coef_f16*)vecCoefs.ptr();
|
|
#endif
|
|
|
|
int blockSize;
|
|
int numStages;
|
|
unsigned long i;
|
|
|
|
|
|
|
|
for(i=0;i < configs.nbSamples(); i+=2)
|
|
{
|
|
/*
|
|
|
|
Python script is generating different tests with
|
|
different blockSize and numTaps.
|
|
|
|
We loop on those configs.
|
|
|
|
*/
|
|
|
|
|
|
numStages = configsp[0];
|
|
blockSize = configsp[1];
|
|
|
|
configsp += 2;
|
|
|
|
/*
|
|
|
|
The filter is initialized with the coefs, blockSize and numTaps.
|
|
|
|
*/
|
|
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
arm_biquad_cascade_df1_mve_init_f16(&this->Sdf1,numStages,coefsp,coefsmodp,statep);
|
|
#else
|
|
arm_biquad_cascade_df1_init_f16(&this->Sdf1,numStages,coefsp,statep);
|
|
#endif
|
|
|
|
|
|
/*
|
|
|
|
Python script is filtering a 2*blockSize number of samples.
|
|
We do the same filtering in two pass to check (indirectly that
|
|
the state management of the fir is working.)
|
|
|
|
*/
|
|
|
|
arm_biquad_cascade_df1_f16(&this->Sdf1,inputp,outp,blockSize);
|
|
|
|
inputp += blockSize;
|
|
outp += blockSize;
|
|
coefsp += numStages * 5;
|
|
|
|
|
|
|
|
}
|
|
|
|
ASSERT_EMPTY_TAIL(output);
|
|
ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
|
|
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
|
|
|
|
|
|
}
|
|
|
|
void BIQUADF16::test_biquad_cascade_df2T_rand()
|
|
{
|
|
|
|
|
|
float16_t *statep = state.ptr();
|
|
const int16_t *configsp = configs.ptr();
|
|
|
|
|
|
float16_t *coefsp = coefs.ptr();
|
|
|
|
const float16_t *inputp = inputs.ptr();
|
|
float16_t *outp = output.ptr();
|
|
|
|
int blockSize;
|
|
int numStages;
|
|
|
|
unsigned long i;
|
|
|
|
|
|
|
|
for(i=0;i < configs.nbSamples(); i+=2)
|
|
{
|
|
|
|
/*
|
|
|
|
Python script is generating different tests with
|
|
different blockSize and numTaps.
|
|
|
|
We loop on those configs.
|
|
|
|
*/
|
|
|
|
numStages = configsp[0];
|
|
blockSize = configsp[1];
|
|
|
|
configsp += 2;
|
|
|
|
|
|
|
|
/*
|
|
|
|
The filter is initialized with the coefs, blockSize and numTaps.
|
|
|
|
*/
|
|
|
|
arm_biquad_cascade_df2T_init_f16(&this->Sdf2T,numStages,coefsp,statep);
|
|
|
|
coefsp += numStages * 5;
|
|
|
|
/*
|
|
|
|
Python script is filtering a 2*blockSize number of samples.
|
|
We do the same filtering in two pass to check (indirectly that
|
|
the state management of the fir is working.)
|
|
|
|
*/
|
|
|
|
arm_biquad_cascade_df2T_f16(&this->Sdf2T,inputp,outp,blockSize);
|
|
outp += blockSize;
|
|
inputp += blockSize;
|
|
|
|
}
|
|
|
|
ASSERT_EMPTY_TAIL(output);
|
|
|
|
ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
|
|
|
|
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
|
|
|
|
|
|
}
|
|
|
|
void BIQUADF16::test_biquad_cascade_stereo_df2T_rand()
|
|
{
|
|
|
|
|
|
float16_t *statep = state.ptr();
|
|
const int16_t *configsp = configs.ptr();
|
|
|
|
const float16_t *coefsp = coefs.ptr();
|
|
|
|
|
|
const float16_t *inputp = inputs.ptr();
|
|
float16_t *outp = output.ptr();
|
|
|
|
int blockSize;
|
|
int numStages;
|
|
|
|
unsigned long i;
|
|
|
|
|
|
|
|
for(i=0;i < configs.nbSamples(); i+=2)
|
|
{
|
|
|
|
/*
|
|
|
|
Python script is generating different tests with
|
|
different blockSize and numTaps.
|
|
|
|
We loop on those configs.
|
|
|
|
*/
|
|
|
|
numStages = configsp[0];
|
|
blockSize = configsp[1];
|
|
|
|
configsp += 2;
|
|
|
|
|
|
|
|
/*
|
|
|
|
The filter is initialized with the coefs, blockSize and numTaps.
|
|
|
|
*/
|
|
arm_biquad_cascade_stereo_df2T_init_f16(&this->SStereodf2T,numStages,coefsp,statep);
|
|
|
|
coefsp += numStages * 5;
|
|
|
|
/*
|
|
|
|
Python script is filtering a 2*blockSize number of samples.
|
|
We do the same filtering in two pass to check (indirectly that
|
|
the state management of the fir is working.)
|
|
|
|
*/
|
|
|
|
arm_biquad_cascade_stereo_df2T_f16(&this->SStereodf2T,inputp,outp,blockSize);
|
|
outp += 2*blockSize;
|
|
inputp += 2*blockSize;
|
|
|
|
}
|
|
|
|
ASSERT_EMPTY_TAIL(output);
|
|
|
|
ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
|
|
|
|
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
|
|
|
|
|
|
}
|
|
|
|
void BIQUADF16::setUp(Testing::testID_t id,std::vector<Testing::param_t>& params,Client::PatternMgr *mgr)
|
|
{
|
|
|
|
(void)params;
|
|
switch(id)
|
|
{
|
|
case BIQUADF16::TEST_BIQUAD_CASCADE_DF1_REF_1:
|
|
debugstate.create(2*64,BIQUADF16::STATE_F16_ID,mgr);
|
|
|
|
inputs.reload(BIQUADF16::BIQUADINPUTS_F16_ID,mgr);
|
|
coefs.reload(BIQUADF16::BIQUADCOEFS_F16_ID,mgr);
|
|
ref.reload(BIQUADF16::BIQUADREFS_F16_ID,mgr);
|
|
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
/* Max num stages is 47 in Python script */
|
|
vecCoefs.create(96*47,BIQUADF16::OUT_F16_ID,mgr);
|
|
#endif
|
|
break;
|
|
|
|
case BIQUADF16::TEST_BIQUAD_CASCADE_DF2T_REF_2:
|
|
vecCoefs.create(64,BIQUADF16::OUT_F16_ID,mgr);
|
|
|
|
inputs.reload(BIQUADF16::BIQUADINPUTS_F16_ID,mgr);
|
|
coefs.reload(BIQUADF16::BIQUADCOEFS_F16_ID,mgr);
|
|
ref.reload(BIQUADF16::BIQUADREFS_F16_ID,mgr);
|
|
break;
|
|
|
|
case BIQUADF16::TEST_BIQUAD_CASCADE_DF1_RAND_3:
|
|
|
|
inputs.reload(BIQUADF16::ALLBIQUADINPUTS_F16_ID,mgr);
|
|
coefs.reload(BIQUADF16::ALLBIQUADCOEFS_F16_ID,mgr);
|
|
ref.reload(BIQUADF16::ALLBIQUADREFS_F16_ID,mgr);
|
|
configs.reload(BIQUADF16::ALLBIQUADCONFIGS_S16_ID,mgr);
|
|
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
/* Max num stages is 47 in Python script */
|
|
vecCoefs.create(96*47,BIQUADF16::OUT_F16_ID,mgr);
|
|
#endif
|
|
break;
|
|
|
|
case BIQUADF16::TEST_BIQUAD_CASCADE_DF2T_RAND_4:
|
|
vecCoefs.create(512,BIQUADF16::OUT_F16_ID,mgr);
|
|
|
|
inputs.reload(BIQUADF16::ALLBIQUADINPUTS_F16_ID,mgr);
|
|
coefs.reload(BIQUADF16::ALLBIQUADCOEFS_F16_ID,mgr);
|
|
ref.reload(BIQUADF16::ALLBIQUADREFS_F16_ID,mgr);
|
|
configs.reload(BIQUADF16::ALLBIQUADCONFIGS_S16_ID,mgr);
|
|
break;
|
|
|
|
case BIQUADF16::TEST_BIQUAD_CASCADE_STEREO_DF2T_RAND_5:
|
|
|
|
inputs.reload(BIQUADF16::ALLBIQUADSTEREOINPUTS_F16_ID,mgr);
|
|
coefs.reload(BIQUADF16::ALLBIQUADCOEFS_F16_ID,mgr);
|
|
ref.reload(BIQUADF16::ALLBIQUADSTEREOREFS_F16_ID,mgr);
|
|
configs.reload(BIQUADF16::ALLBIQUADCONFIGS_S16_ID,mgr);
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
output.create(ref.nbSamples(),BIQUADF16::OUT_F16_ID,mgr);
|
|
|
|
state.create(128,BIQUADF16::STATE_F16_ID,mgr);
|
|
|
|
|
|
}
|
|
|
|
void BIQUADF16::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
|
|
{
|
|
(void)id;
|
|
output.dump(mgr);
|
|
switch(id)
|
|
{
|
|
case BIQUADF16::TEST_BIQUAD_CASCADE_DF1_REF_1:
|
|
debugstate.dump(mgr);
|
|
break;
|
|
}
|
|
}
|