临时手动测试

This commit is contained in:
robofish 2025-07-12 06:26:25 +08:00
parent 21d105a0fc
commit 8972af238d
8 changed files with 517 additions and 140 deletions

4
nav.sh
View File

@ -11,7 +11,9 @@ commands=(
nav_rviz:=true"
"ros2 launch rm_simpal_move simple_move.launch.py"
"/bin/python3 /home/robofish/RC2025/src/rm_driver/rm_serial_driver/script/R2_Serial.py"
"/bin/python3 /home/robofish/RC2025/src/rm_driver/rm_serial_driver/script/slect.py map"
# "/usr/bin/python3 /home/robofish/RC2025/src/rc_lidar/juxing.py"
"/usr/bin/python3 /home/robofish/RC2025/src/rc_lidar/caijian.py"
# "/bin/python3 /home/robofish/RC2025/src/rm_driver/rm_serial_driver/script/slect.py map"
)

View File

@ -12,7 +12,7 @@ class LidarFilterNode(Node):
self.publisher_ = self.create_publisher(PointCloud2, '/livox/lidar_filtered', 10)
self.subscription = self.create_subscription(
PointCloud2,
'/livox/lidar',
'/livox/lidar/pointcloud',
self.filter_callback,
10)
self.get_logger().info('caijian_node started, numpy filtering z in [1.5,3]m, distance<=12m, remove isolated points')

63
src/rc_lidar/fliter.py Normal file
View File

@ -0,0 +1,63 @@
#!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from sensor_msgs.msg import PointCloud2, PointField
import numpy as np
import struct
from sklearn.cluster import DBSCAN
class LidarFilterNode(Node):
def __init__(self):
super().__init__('caijian_node')
self.publisher_ = self.create_publisher(PointCloud2, '/livox/lidar_filtered', 10)
self.subscription = self.create_subscription(
PointCloud2,
'/livox/lidar/pointcloud',
self.filter_callback,
10)
self.get_logger().info('caijian_node started, numpy filtering z in [1.5,3]m, distance<=12m, remove isolated points')
def filter_callback(self, msg):
num_points = msg.width * msg.height
data = np.frombuffer(msg.data, dtype=np.uint8)
points = np.zeros((num_points, 4), dtype=np.float32) # x, y, z, intensity
for i in range(num_points):
offset = i * msg.point_step
x = struct.unpack_from('f', data, offset)[0]
y = struct.unpack_from('f', data, offset + 4)[0]
z = struct.unpack_from('f', data, offset + 8)[0]
intensity = struct.unpack_from('f', data, offset + 12)[0]
points[i] = [x, y, z, intensity]
z_mask = (points[:,2] >= 1.5) & (points[:,2] <= 3.0)
dist_mask = np.linalg.norm(points[:,:3], axis=1) <= 12.0
mask = z_mask & dist_mask
filtered_points = points[mask]
# 使用DBSCAN去除孤立点
if filtered_points.shape[0] > 0:
clustering = DBSCAN(eps=0.3, min_samples=5).fit(filtered_points[:,:3])
core_mask = clustering.labels_ != -1
filtered_points = filtered_points[core_mask]
fields = [
PointField(name='x', offset=0, datatype=PointField.FLOAT32, count=1),
PointField(name='y', offset=4, datatype=PointField.FLOAT32, count=1),
PointField(name='z', offset=8, datatype=PointField.FLOAT32, count=1),
PointField(name='intensity', offset=12, datatype=PointField.FLOAT32, count=1),
]
filtered_points_list = filtered_points.tolist()
import sensor_msgs_py.point_cloud2 as pc2
filtered_msg = pc2.create_cloud(msg.header, fields, filtered_points_list)
self.publisher_.publish(filtered_msg)
def main(args=None):
rclpy.init(args=args)
node = LidarFilterNode()
rclpy.spin(node)
node.destroy_node()
rclpy.shutdown()
if __name__ == '__main__':
main()

View File

@ -1,164 +1,337 @@
import rclpy
from rclpy.node import Node
from sensor_msgs.msg import PointCloud2
from sensor_msgs.msg import PointCloud2, PointField
import numpy as np
import open3d as o3d
import sensor_msgs_py.point_cloud2 as pc2
import struct
from sklearn.cluster import DBSCAN
import cv2
from visualization_msgs.msg import Marker
import std_msgs.msg
import geometry_msgs.msg
import collections
from sklearn.linear_model import RANSACRegressor
class RectangleDetector(Node):
def ransac_line_3d(points, threshold=0.05, min_inliers=20):
best_inliers = []
best_line = None
N = len(points)
if N < min_inliers:
return None, []
for _ in range(100):
idx = np.random.choice(N, 2, replace=False)
p1, p2 = points[idx]
v = p2 - p1
v = v / np.linalg.norm(v)
dists = np.linalg.norm(np.cross(points - p1, v), axis=1)
inliers = np.where(dists < threshold)[0]
if len(inliers) > len(best_inliers):
best_inliers = inliers
best_line = (p1, p2)
if len(best_inliers) > N * 0.5:
break
return best_line, best_inliers
def fit_rectangle_pca(cluster):
# 用PCA找主方向和边界点
pts = cluster[:, :3]
mean = np.mean(pts, axis=0)
cov = np.cov(pts.T)
eigvals, eigvecs = np.linalg.eigh(cov)
order = np.argsort(eigvals)[::-1]
main_dir = eigvecs[:, order[0]]
second_dir = eigvecs[:, order[1]]
# 投影到主方向和次方向
proj_main = np.dot(pts - mean, main_dir)
proj_second = np.dot(pts - mean, second_dir)
# 找四个角点
corners = []
for xm in [np.min(proj_main), np.max(proj_main)]:
for xs in [np.min(proj_second), np.max(proj_second)]:
idx = np.argmin((proj_main - xm)**2 + (proj_second - xs)**2)
corners.append(pts[idx])
return corners
def rectangle_score(pts):
# 评估4个点是否接近矩形
d = [np.linalg.norm(pts[i] - pts[(i+1)%4]) for i in range(4)]
diag1 = np.linalg.norm(pts[0] - pts[2])
diag2 = np.linalg.norm(pts[1] - pts[3])
w = max(d)
h = min(d)
ratio = w / h if h > 0 else 0
ideal_ratio = 1.8 / 1.05
score = abs(ratio - ideal_ratio) + abs(diag1 - diag2) / max(diag1, diag2)
return score
def classify_lines(lines):
# lines: 每条线是 [x, y, z, intensity]
# 假设 lines 是8个端点两两为一条线
vertical_lines = []
horizontal_lines = []
for i in range(0, len(lines), 2):
p1 = np.array(lines[i][:3])
p2 = np.array(lines[i+1][:3])
vec = p2 - p1
length = np.linalg.norm(vec)
# 计算与地面的夹角假设地面为z轴为0垂直为z方向
dz = abs(vec[2])
dxy = np.linalg.norm(vec[:2])
# 垂直线z方向分量大长度约1.05m
if dz > dxy and 0.95 < length < 1.15:
vertical_lines.append((i, i+1, length))
# 水平线z方向分量小长度约1.8m
elif dz < dxy and 1.7 < length < 1.9:
horizontal_lines.append((i, i+1, length))
return vertical_lines, horizontal_lines
def find_best_rectangle_from_lines(lines):
vertical_lines, horizontal_lines = classify_lines(lines)
# 只选出2条垂直线和2条水平线
if len(vertical_lines) < 2 or len(horizontal_lines) < 2:
return None
# 取长度最接近目标的两条
vertical_lines = sorted(vertical_lines, key=lambda x: abs(x[2]-1.05))[:2]
horizontal_lines = sorted(horizontal_lines, key=lambda x: abs(x[2]-1.8))[:2]
# 组合4个端点
indices = [vertical_lines[0][0], vertical_lines[0][1],
vertical_lines[1][0], vertical_lines[1][1],
horizontal_lines[0][0], horizontal_lines[0][1],
horizontal_lines[1][0], horizontal_lines[1][1]]
# 去重只保留4个顶点
unique_indices = list(set(indices))
if len(unique_indices) < 4:
return None
pts = [lines[idx] for idx in unique_indices[:4]]
# 按矩形评分排序
from itertools import permutations
best_score = float('inf')
best_rect = None
for order in permutations(range(4)):
ordered = [pts[i] for i in order]
score = rectangle_score(np.array([p[:3] for p in ordered]))
if score < best_score:
best_score = score
best_rect = ordered
return best_rect
class BasketballFrameDetector(Node):
def __init__(self):
super().__init__('rectangle_detector')
super().__init__('basketball_frame_detector')
self.subscription = self.create_subscription(
PointCloud2,
'/livox/lidar_filtered',
self.pointcloud_callback,
10
)
self.marker_pub = self.create_publisher(Marker, '/rectangle_marker', 10)
# 可选:发布原始点云
self.cloud_pub = self.create_publisher(PointCloud2, '/rectangle_cloud', 10)
self.history = collections.deque(maxlen=5)
self.last_bbox = None
self.last_time = None
# 目标矩形尺寸(单位:米)
self.length = 1.8
self.width = 1.05
self.thickness = 0.04
def filter_points(self, points):
# 统计滤波:去除离群点
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0)
filtered = np.asarray(cl.points)
# 半径滤波
cl2, ind2 = cl.remove_radius_outlier(nb_points=10, radius=0.05)
return np.asarray(cl2.points)
def smooth_bbox(self, bbox):
# 保存历史中心和尺寸
center = bbox.center
extent = bbox.extent
self.history.append((center, extent))
# 计算加权平均
centers = np.array([h[0] for h in self.history])
extents = np.array([h[1] for h in self.history])
smooth_center = np.mean(centers, axis=0)
smooth_extent = np.mean(extents, axis=0)
bbox.center = smooth_center
bbox.extent = smooth_extent
return bbox
def publish_marker(self, bbox):
marker = Marker()
marker.header.frame_id = "livox_frame"
marker.header.stamp = self.get_clock().now().to_msg()
marker.ns = "rectangle_corners"
marker.id = 0
marker.type = Marker.SPHERE_LIST
marker.action = Marker.ADD
corners = np.asarray(bbox.get_box_points())
center = bbox.center
# 展示角点
for c in corners:
pt = geometry_msgs.msg.Point()
pt.x, pt.y, pt.z = c
marker.points.append(pt)
# 展示中心点
center_pt = geometry_msgs.msg.Point()
center_pt.x, center_pt.y, center_pt.z = center
marker.points.append(center_pt)
# 沿中心点到原点方向向外移动10cm
origin = np.array([0.0, 0.0, 0.0])
direction = origin - center
norm = np.linalg.norm(direction)
if norm > 0:
move_vec = direction / norm * 0.46
moved_pt = center + move_vec
else:
moved_pt = center
out_pt = geometry_msgs.msg.Point()
out_pt.x, out_pt.y, out_pt.z = moved_pt
marker.points.append(out_pt)
marker.scale.x = 0.08
marker.scale.y = 0.08
marker.scale.z = 0.08
marker.color.r = 0.0
marker.color.g = 1.0
marker.color.b = 0.0
marker.color.a = 1.0
marker.lifetime.sec = 1
marker.lifetime.nanosec = 0
self.marker_pub.publish(marker)
# ...existing code...
self.publisher = self.create_publisher(
PointCloud2,
'/basketball_frame_cloud',
10
)
self.marker_pub = self.create_publisher(
Marker,
'/basketball_frame_lines',
10
)
self.pointcloud_buffer = []
self.max_buffer_size = 10 # 减少缓冲帧数,加快响应
self.center_buffer = []
self.center_buffer_size = 5
def pointcloud_callback(self, msg):
points_list = []
for p in pc2.read_points(msg, skip_nans=True):
try:
points_list.append([p[0], p[1], p[2]])
except Exception as e:
self.get_logger().warn(f'点异常: {e}, 内容: {p}')
if len(points_list) == 0:
self.get_logger().info('点云为空')
points = self.pointcloud2_to_xyz(msg)
if points.shape[0] == 0:
return # 跳过空点云
self.pointcloud_buffer.append(points)
# 只保留非空点云
self.pointcloud_buffer = [arr for arr in self.pointcloud_buffer if arr.shape[0] > 0]
if len(self.pointcloud_buffer) > self.max_buffer_size:
self.pointcloud_buffer.pop(0)
all_points = np.vstack(self.pointcloud_buffer)
xy_points = all_points[:, :2]
if len(xy_points) < 10:
self.get_logger().info('点数太少,跳过')
return
points = np.array(points_list)
clustering = DBSCAN(eps=0.3, min_samples=10).fit(xy_points)
labels = clustering.labels_
unique_labels = set(labels)
found = False
for label in unique_labels:
if label == -1:
continue
cluster = all_points[labels == label]
if len(cluster) < 30:
continue
min_x, min_y = np.min(cluster[:, :2], axis=0)
max_x, max_y = np.max(cluster[:, :2], axis=0)
width = abs(max_x - min_x)
height = abs(max_y - min_y)
if 1.5 < width < 2.1 and 0.7 < height < 1.3:
cloud_msg = self.xyz_array_to_pointcloud2(cluster, msg.header)
self.publisher.publish(cloud_msg)
# 点云预处理
# points = self.filter_points(points)
if len(points) == 0:
self.get_logger().info('滤波后点云为空')
return
# 用PCA直接找矩形四角
corners = fit_rectangle_pca(cluster)
from itertools import permutations
best_score = float('inf')
best_rect = None
for order in permutations(range(4)):
ordered = [corners[i] for i in order]
score = rectangle_score(np.array(ordered))
if score < best_score:
best_score = score
best_rect = ordered
rect_lines = best_rect
if rect_lines is None or len(rect_lines) < 4:
self.get_logger().info('未找到合适矩形')
continue
self.cloud_pub.publish(msg)
# 发布最新的矩形
marker = Marker()
marker.header = msg.header
marker.ns = "basketball_frame"
marker.id = 0
marker.type = Marker.LINE_LIST
marker.action = Marker.ADD
marker.scale.x = 0.08
marker.color.r = 0.0
marker.color.g = 1.0
marker.color.b = 0.0
marker.color.a = 1.0
marker.points = []
from geometry_msgs.msg import Point
for i in range(4):
p1 = rect_lines[i]
p2 = rect_lines[(i+1)%4]
pt1 = Point(x=float(p1[0]), y=float(p1[1]), z=float(p1[2]))
pt2 = Point(x=float(p2[0]), y=float(p2[1]), z=float(p2[2]))
marker.points.append(pt1)
marker.points.append(pt2)
self.marker_pub.publish(marker)
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
voxel_size = 0.03
pcd = pcd.voxel_down_sample(voxel_size=voxel_size)
# 分别发布4条最优边线
for i in range(4):
edge_marker = Marker()
edge_marker.header = msg.header
edge_marker.ns = "basketball_frame_edges"
edge_marker.id = i
edge_marker.type = Marker.LINE_STRIP
edge_marker.action = Marker.ADD
edge_marker.scale.x = 0.12
colors = [
(1.0, 0.0, 0.0),
(0.0, 1.0, 0.0),
(0.0, 0.0, 1.0),
(1.0, 1.0, 0.0)
]
edge_marker.color.r = colors[i][0]
edge_marker.color.g = colors[i][1]
edge_marker.color.b = colors[i][2]
edge_marker.color.a = 1.0
pt1 = Point(x=float(rect_lines[i][0]), y=float(rect_lines[i][1]), z=float(rect_lines[i][2]))
pt2 = Point(x=float(rect_lines[(i+1)%4][0]), y=float(rect_lines[(i+1)%4][1]), z=float(rect_lines[(i+1)%4][2]))
edge_marker.points = [pt1, pt2]
self.marker_pub.publish(edge_marker)
plane_model, inliers = pcd.segment_plane(
distance_threshold=0.02,
ransac_n=3,
num_iterations=2000
)
inlier_cloud = pcd.select_by_index(inliers)
bbox = inlier_cloud.get_oriented_bounding_box()
extent = bbox.extent
center = bbox.center
# 中心点滑动平均
center = np.mean(np.array(rect_lines), axis=0)
self.center_buffer.append(center)
if len(self.center_buffer) > self.center_buffer_size:
self.center_buffer.pop(0)
stable_center = np.mean(self.center_buffer, axis=0)
dims = sorted(extent)
# 检测阈值收紧
if (abs(dims[0] - self.thickness) < 0.1 and
abs(dims[1] - self.width) < 0.2 and
abs(dims[2] - self.length) < 0.2):
bbox = self.smooth_bbox(bbox)
self.get_logger().info(f'检测到目标矩形框,位置: {bbox.center}, 尺寸: {bbox.extent}')
self.publish_marker(bbox)
self.last_bbox = bbox
self.last_time = self.get_clock().now()
else:
# 若上一帧有结果且时间间隔<0.5s,则继续发布上一帧
now = self.get_clock().now()
if self.last_bbox and self.last_time and (now - self.last_time).nanoseconds < 5e8:
self.get_logger().info('本帧未检测到,使用上一帧结果')
self.publish_marker(self.last_bbox)
else:
self.get_logger().info('未检测到目标矩形框')
# 发布中心点Marker
center_marker = Marker()
center_marker.header = msg.header
center_marker.ns = "basketball_frame"
center_marker.id = 1
center_marker.type = Marker.SPHERE
center_marker.action = Marker.ADD
center_marker.scale.x = 0.15
center_marker.scale.y = 0.15
center_marker.scale.z = 0.15
center_marker.color.r = 1.0
center_marker.color.g = 0.0
center_marker.color.b = 0.0
center_marker.color.a = 1.0
center_marker.pose.position.x = float(stable_center[0])
center_marker.pose.position.y = float(stable_center[1])
center_marker.pose.position.z = float(stable_center[2])
center_marker.pose.orientation.x = 0.0
center_marker.pose.orientation.y = 0.0
center_marker.pose.orientation.z = 0.0
center_marker.pose.orientation.w = 1.0
self.marker_pub.publish(center_marker)
# 计算法向量篮板主方向PCA最小特征值方向
pts = np.array(rect_lines)
mean = np.mean(pts, axis=0)
cov = np.cov(pts.T)
eigvals, eigvecs = np.linalg.eigh(cov)
order = np.argsort(eigvals)[::-1]
normal_vec = eigvecs[:, order[2]]
normal_vec = normal_vec / np.linalg.norm(normal_vec)
# 向内侧偏移30cm
offset_point = stable_center + 0.3 * normal_vec
# 发布偏移点Marker
offset_marker = Marker()
offset_marker.header = msg.header
offset_marker.ns = "basketball_frame"
offset_marker.id = 2
offset_marker.type = Marker.SPHERE
offset_marker.action = Marker.ADD
offset_marker.scale.x = 0.12
offset_marker.scale.y = 0.12
offset_marker.scale.z = 0.12
offset_marker.color.r = 0.0
offset_marker.color.g = 0.0
offset_marker.color.b = 1.0
offset_marker.color.a = 1.0
offset_marker.pose.position.x = float(offset_point[0])
offset_marker.pose.position.y = float(offset_point[1])
offset_marker.pose.position.z = float(offset_point[2])
offset_marker.pose.orientation.x = 0.0
offset_marker.pose.orientation.y = 0.0
offset_marker.pose.orientation.z = 0.0
offset_marker.pose.orientation.w = 1.0
self.marker_pub.publish(offset_marker)
found = True
break
if not found:
self.get_logger().info('本帧未找到矩形')
def pointcloud2_to_xyz(self, cloud_msg):
fmt = 'ffff'
points = []
for i in range(cloud_msg.width):
offset = i * cloud_msg.point_step
x, y, z, intensity = struct.unpack_from(fmt, cloud_msg.data, offset)
points.append([x, y, z, intensity])
return np.array(points)
def xyz_array_to_pointcloud2(self, points, header):
msg = PointCloud2()
msg.header = header
msg.height = 1
msg.width = len(points)
msg.is_dense = True
msg.is_bigendian = False
msg.point_step = 16
msg.row_step = msg.point_step * msg.width
msg.fields = [
PointField(name='x', offset=0, datatype=7, count=1),
PointField(name='y', offset=4, datatype=7, count=1),
PointField(name='z', offset=8, datatype=7, count=1),
PointField(name='intensity', offset=12, datatype=7, count=1),
]
msg.data = b''.join([struct.pack('ffff', *p) for p in points])
return msg
def main(args=None):
rclpy.init(args=args)
node = RectangleDetector()
node = BasketballFrameDetector()
rclpy.spin(node)
node.destroy_node()
rclpy.shutdown()

0
src/rc_lidar/line.py Normal file
View File

102
src/rc_lidar/simple.py Normal file
View File

@ -0,0 +1,102 @@
import rclpy
from rclpy.node import Node
from sensor_msgs.msg import PointCloud2, PointField
import numpy as np
import struct
from sklearn.cluster import DBSCAN
class BasketballFrameDetector(Node):
def __init__(self):
super().__init__('basketball_frame_detector')
self.subscription = self.create_subscription(
PointCloud2,
'/livox/lidar_filtered',
self.pointcloud_callback,
10
)
self.publisher = self.create_publisher(
PointCloud2,
'/basketball_frame_cloud',
10
)
self.pointcloud_buffer = []
def pointcloud_callback(self, msg):
points = self.pointcloud2_to_xyz(msg)
self.pointcloud_buffer.append(points)
self.get_logger().info(f'已保存点云组数: {len(self.pointcloud_buffer)}')
if len(self.pointcloud_buffer) < 10:
return
# 合并10组点云
all_points = np.vstack(self.pointcloud_buffer)
xy_points = all_points[:, :2]
self.get_logger().info(f'合并后点数: {xy_points.shape[0]}')
# 清空缓存,准备下一批
self.pointcloud_buffer = []
# 聚类识别
if len(xy_points) < 10:
return
clustering = DBSCAN(eps=0.3, min_samples=10).fit(xy_points)
labels = clustering.labels_
unique_labels = set(labels)
for label in unique_labels:
if label == -1:
continue
cluster = all_points[labels == label]
if len(cluster) < 30:
continue
min_x, min_y = np.min(cluster[:, :2], axis=0)
max_x, max_y = np.max(cluster[:, :2], axis=0)
width = abs(max_x - min_x)
height = abs(max_y - min_y)
self.get_logger().info(
f'聚类: label={label}, width={width:.2f}, height={height:.2f}, 点数={len(cluster)}'
)
if 1.6 < width < 2.0 and 0.8 < height < 1.2:
self.get_logger().info(
f'可能是篮球框: label={label}, width={width:.2f}, height={height:.2f}, 点数={len(cluster)}'
)
# 发布识别到的篮球框点云
cloud_msg = self.xyz_array_to_pointcloud2(cluster, msg.header)
self.publisher.publish(cloud_msg)
def pointcloud2_to_xyz(self, cloud_msg):
fmt = 'ffff' # x, y, z, intensity
points = []
for i in range(cloud_msg.width):
offset = i * cloud_msg.point_step
x, y, z, intensity = struct.unpack_from(fmt, cloud_msg.data, offset)
points.append([x, y, z, intensity])
return np.array(points)
def xyz_array_to_pointcloud2(self, points, header):
# 构造 PointCloud2 消息
msg = PointCloud2()
msg.header = header
msg.height = 1
msg.width = len(points)
msg.is_dense = True
msg.is_bigendian = False
msg.point_step = 16
msg.row_step = msg.point_step * msg.width
msg.fields = [
PointField(name='x', offset=0, datatype=7, count=1),
PointField(name='y', offset=4, datatype=7, count=1),
PointField(name='z', offset=8, datatype=7, count=1),
PointField(name='intensity', offset=12, datatype=7, count=1),
]
msg.data = b''.join([struct.pack('ffff', *p) for p in points])
return msg
def main(args=None):
rclpy.init(args=args)
node = BasketballFrameDetector()
rclpy.spin(node)
node.destroy_node()
rclpy.shutdown()
if __name__ == '__main__':
main()

View File

@ -0,0 +1,36 @@
import rclpy
from rclpy.node import Node
from geometry_msgs.msg import PointStamped
from rm_msgs.msg import MoveGoal
class ClickedGoalPublisher(Node):
def __init__(self):
super().__init__('clicked_goal_publisher')
self.subscription = self.create_subscription(
PointStamped,
'/clicked_point',
self.clicked_callback,
10
)
self.publisher = self.create_publisher(MoveGoal, '/move_goal', 10)
def clicked_callback(self, msg):
goal = MoveGoal()
goal.x = msg.point.x
goal.y = msg.point.y
goal.angle = 0.0
goal.max_speed = 0.0
goal.tolerance = 0.1
goal.rotor = False
self.publisher.publish(goal)
self.get_logger().info(f'发布目标: x={goal.x:.2f}, y={goal.y:.2f}')
def main(args=None):
rclpy.init(args=args)
node = ClickedGoalPublisher()
rclpy.spin(node)
node.destroy_node()
rclpy.shutdown()
if __name__ == '__main__':
main()

1
test.sh Normal file
View File

@ -0,0 +1 @@
ros2 topic pub /move_goal rm_msgs/msg/MoveGoal '{x: 0.65, y: 3.91, angle: 0.0, max_speed: 10.0, tolerance: 0.1, rotor: false}' --once