上传文件至 src/rc_lidar
This commit is contained in:
parent
a6209c06f0
commit
66d6ba5440
102
src/rc_lidar/simple.py
Normal file
102
src/rc_lidar/simple.py
Normal file
@ -0,0 +1,102 @@
|
||||
import rclpy
|
||||
from rclpy.node import Node
|
||||
from sensor_msgs.msg import PointCloud2, PointField
|
||||
import numpy as np
|
||||
import struct
|
||||
from sklearn.cluster import DBSCAN
|
||||
|
||||
class BasketballFrameDetector(Node):
|
||||
def __init__(self):
|
||||
super().__init__('basketball_frame_detector')
|
||||
self.subscription = self.create_subscription(
|
||||
PointCloud2,
|
||||
'/livox/lidar_filtered',
|
||||
self.pointcloud_callback,
|
||||
10
|
||||
)
|
||||
self.publisher = self.create_publisher(
|
||||
PointCloud2,
|
||||
'/basketball_frame_cloud',
|
||||
10
|
||||
)
|
||||
self.pointcloud_buffer = []
|
||||
|
||||
def pointcloud_callback(self, msg):
|
||||
points = self.pointcloud2_to_xyz(msg)
|
||||
self.pointcloud_buffer.append(points)
|
||||
self.get_logger().info(f'已保存点云组数: {len(self.pointcloud_buffer)}')
|
||||
if len(self.pointcloud_buffer) < 10:
|
||||
return
|
||||
|
||||
# 合并10组点云
|
||||
all_points = np.vstack(self.pointcloud_buffer)
|
||||
xy_points = all_points[:, :2]
|
||||
self.get_logger().info(f'合并后点数: {xy_points.shape[0]}')
|
||||
|
||||
# 清空缓存,准备下一批
|
||||
self.pointcloud_buffer = []
|
||||
|
||||
# 聚类识别
|
||||
if len(xy_points) < 10:
|
||||
return
|
||||
clustering = DBSCAN(eps=0.3, min_samples=10).fit(xy_points)
|
||||
labels = clustering.labels_
|
||||
unique_labels = set(labels)
|
||||
for label in unique_labels:
|
||||
if label == -1:
|
||||
continue
|
||||
cluster = all_points[labels == label]
|
||||
if len(cluster) < 30:
|
||||
continue
|
||||
min_x, min_y = np.min(cluster[:, :2], axis=0)
|
||||
max_x, max_y = np.max(cluster[:, :2], axis=0)
|
||||
width = abs(max_x - min_x)
|
||||
height = abs(max_y - min_y)
|
||||
self.get_logger().info(
|
||||
f'聚类: label={label}, width={width:.2f}, height={height:.2f}, 点数={len(cluster)}'
|
||||
)
|
||||
if 1.6 < width < 2.0 and 0.8 < height < 1.2:
|
||||
self.get_logger().info(
|
||||
f'可能是篮球框: label={label}, width={width:.2f}, height={height:.2f}, 点数={len(cluster)}'
|
||||
)
|
||||
# 发布识别到的篮球框点云
|
||||
cloud_msg = self.xyz_array_to_pointcloud2(cluster, msg.header)
|
||||
self.publisher.publish(cloud_msg)
|
||||
|
||||
def pointcloud2_to_xyz(self, cloud_msg):
|
||||
fmt = 'ffff' # x, y, z, intensity
|
||||
points = []
|
||||
for i in range(cloud_msg.width):
|
||||
offset = i * cloud_msg.point_step
|
||||
x, y, z, intensity = struct.unpack_from(fmt, cloud_msg.data, offset)
|
||||
points.append([x, y, z, intensity])
|
||||
return np.array(points)
|
||||
|
||||
def xyz_array_to_pointcloud2(self, points, header):
|
||||
# 构造 PointCloud2 消息
|
||||
msg = PointCloud2()
|
||||
msg.header = header
|
||||
msg.height = 1
|
||||
msg.width = len(points)
|
||||
msg.is_dense = True
|
||||
msg.is_bigendian = False
|
||||
msg.point_step = 16
|
||||
msg.row_step = msg.point_step * msg.width
|
||||
msg.fields = [
|
||||
PointField(name='x', offset=0, datatype=7, count=1),
|
||||
PointField(name='y', offset=4, datatype=7, count=1),
|
||||
PointField(name='z', offset=8, datatype=7, count=1),
|
||||
PointField(name='intensity', offset=12, datatype=7, count=1),
|
||||
]
|
||||
msg.data = b''.join([struct.pack('ffff', *p) for p in points])
|
||||
return msg
|
||||
|
||||
def main(args=None):
|
||||
rclpy.init(args=args)
|
||||
node = BasketballFrameDetector()
|
||||
rclpy.spin(node)
|
||||
node.destroy_node()
|
||||
rclpy.shutdown()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
126
src/rc_lidar/simple_icp.py
Normal file
126
src/rc_lidar/simple_icp.py
Normal file
@ -0,0 +1,126 @@
|
||||
#!/usr/bin/env python3
|
||||
import rclpy
|
||||
from rclpy.node import Node
|
||||
from sensor_msgs.msg import PointCloud2
|
||||
from sensor_msgs_py import point_cloud2
|
||||
from geometry_msgs.msg import PoseStamped
|
||||
import open3d as o3d
|
||||
import numpy as np
|
||||
from transforms3d.quaternions import mat2quat
|
||||
|
||||
class PointCloudLocalization(Node):
|
||||
def __init__(self):
|
||||
super().__init__('point_cloud_localizer')
|
||||
|
||||
# 加载参考点云地图 (PCD文件)
|
||||
self.reference_map = o3d.io.read_point_cloud("/home/robofish/RC2025/lankuang.pcd") # 替换为你的PCD文件路径
|
||||
if not self.reference_map.has_points():
|
||||
self.get_logger().error("Failed to load reference map!")
|
||||
rclpy.shutdown()
|
||||
|
||||
# 预处理参考地图
|
||||
self.reference_map = self.reference_map.voxel_down_sample(voxel_size=0.05)
|
||||
self.reference_map.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0)[0]
|
||||
|
||||
# 创建ICP对象
|
||||
self.icp = o3d.pipelines.registration.registration_icp
|
||||
self.threshold = 0.5 # 匹配距离阈值 (米)
|
||||
self.trans_init = np.identity(4) # 初始变换矩阵
|
||||
|
||||
# 订阅激光雷达点云
|
||||
self.subscription = self.create_subscription(
|
||||
PointCloud2,
|
||||
'/livox/lidar_filtered',
|
||||
self.lidar_callback,
|
||||
10)
|
||||
|
||||
# 发布估计位置
|
||||
self.pose_pub = self.create_publisher(PoseStamped, '/estimated_pose', 10)
|
||||
|
||||
self.get_logger().info("Point Cloud Localization Node Initialized!")
|
||||
|
||||
def ros_pc2_to_o3d(self, ros_cloud):
|
||||
"""将ROS PointCloud2转换为Open3D点云"""
|
||||
# 提取xyz坐标
|
||||
points = point_cloud2.read_points(ros_cloud, field_names=("x", "y", "z"), skip_nans=True)
|
||||
xyz = np.array([ [p[0], p[1], p[2]] for p in points ], dtype=np.float32)
|
||||
|
||||
if xyz.shape[0] == 0:
|
||||
return None
|
||||
|
||||
# 创建Open3D点云
|
||||
pcd = o3d.geometry.PointCloud()
|
||||
pcd.points = o3d.utility.Vector3dVector(xyz)
|
||||
return pcd
|
||||
|
||||
def preprocess_pointcloud(self, pcd):
|
||||
"""点云预处理"""
|
||||
# 降采样
|
||||
pcd = pcd.voxel_down_sample(voxel_size=0.03)
|
||||
|
||||
# 移除离群点
|
||||
pcd, _ = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=1.0)
|
||||
|
||||
# 移除地面 (可选)
|
||||
# plane_model, inliers = pcd.segment_plane(distance_threshold=0.1, ransac_n=3, num_iterations=100)
|
||||
# pcd = pcd.select_by_index(inliers, invert=True)
|
||||
|
||||
return pcd
|
||||
|
||||
def lidar_callback(self, msg):
|
||||
"""处理新的激光雷达数据"""
|
||||
# 转换为Open3D格式
|
||||
current_pcd = self.ros_pc2_to_o3d(msg)
|
||||
if current_pcd is None:
|
||||
self.get_logger().warn("Received empty point cloud!")
|
||||
return
|
||||
|
||||
# 预处理当前点云
|
||||
current_pcd = self.preprocess_pointcloud(current_pcd)
|
||||
|
||||
# 执行ICP配准
|
||||
reg_result = self.icp(
|
||||
current_pcd, self.reference_map, self.threshold,
|
||||
self.trans_init,
|
||||
o3d.pipelines.registration.TransformationEstimationPointToPoint(),
|
||||
o3d.pipelines.registration.ICPConvergenceCriteria(max_iteration=50)
|
||||
)
|
||||
|
||||
# 更新变换矩阵
|
||||
self.trans_init = reg_result.transformation
|
||||
|
||||
# 提取位置和方向
|
||||
translation = reg_result.transformation[:3, 3]
|
||||
rotation_matrix = reg_result.transformation[:3, :3]
|
||||
|
||||
# 转换为四元数
|
||||
quaternion = mat2quat(reg_result.transformation[:3, :3]) # 注意返回顺序为 [w, x, y, z]
|
||||
|
||||
# 发布位姿
|
||||
pose_msg = PoseStamped()
|
||||
pose_msg.header.stamp = self.get_clock().now().to_msg()
|
||||
pose_msg.header.frame_id = "livox_frame"
|
||||
pose_msg.pose.position.x = translation[0]
|
||||
pose_msg.pose.position.y = translation[1]
|
||||
pose_msg.pose.position.z = translation[2]
|
||||
pose_msg.pose.orientation.x = quaternion[1] # x
|
||||
pose_msg.pose.orientation.y = quaternion[2] # y
|
||||
pose_msg.pose.orientation.z = quaternion[3] # z
|
||||
pose_msg.pose.orientation.w = quaternion[0] # w
|
||||
|
||||
self.pose_pub.publish(pose_msg)
|
||||
self.get_logger().info(f"Estimated Position: x={translation[0]:.2f}, y={translation[1]:.2f}, z={translation[2]:.2f}")
|
||||
|
||||
def main(args=None):
|
||||
rclpy.init(args=args)
|
||||
node = PointCloudLocalization()
|
||||
try:
|
||||
rclpy.spin(node)
|
||||
except KeyboardInterrupt:
|
||||
pass
|
||||
finally:
|
||||
node.destroy_node()
|
||||
rclpy.shutdown()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
75
src/rc_lidar/xiamian.py
Normal file
75
src/rc_lidar/xiamian.py
Normal file
@ -0,0 +1,75 @@
|
||||
import rclpy
|
||||
from rclpy.node import Node
|
||||
from sensor_msgs.msg import PointCloud2
|
||||
from nav_msgs.msg import OccupancyGrid
|
||||
import numpy as np
|
||||
import struct
|
||||
import time
|
||||
|
||||
class PointCloudToGrid(Node):
|
||||
def __init__(self):
|
||||
super().__init__('pointcloud_to_grid')
|
||||
self.subscription = self.create_subscription(
|
||||
PointCloud2,
|
||||
'/livox/lidar_filtered',
|
||||
self.pointcloud_callback,
|
||||
10)
|
||||
self.publisher = self.create_publisher(OccupancyGrid, '/lidar_grid', 10)
|
||||
self.grid_size = 2000
|
||||
self.resolution = 0.02
|
||||
self.origin_x = -20.0
|
||||
self.origin_y = -20.0
|
||||
self.points_buffer = []
|
||||
self.last_header = None
|
||||
# 定时器每0.5秒触发一次
|
||||
self.timer = self.create_timer(0.5, self.publish_grid)
|
||||
|
||||
def pointcloud_callback(self, msg):
|
||||
points = self.pointcloud2_to_xyz_array(msg)
|
||||
self.points_buffer.append(points)
|
||||
self.last_header = msg.header # 保存最新header用于地图消息
|
||||
|
||||
def publish_grid(self):
|
||||
if not self.points_buffer:
|
||||
return
|
||||
# 合并0.5秒内所有点
|
||||
all_points = np.concatenate(self.points_buffer, axis=0)
|
||||
grid = np.zeros((self.grid_size, self.grid_size), dtype=np.int8)
|
||||
for x, y, z in all_points:
|
||||
if z < 2.0:
|
||||
ix = int((x - self.origin_x) / self.resolution)
|
||||
iy = int((y - self.origin_y) / self.resolution)
|
||||
if 0 <= ix < self.grid_size and 0 <= iy < self.grid_size:
|
||||
grid[iy, ix] = 100
|
||||
grid_msg = OccupancyGrid()
|
||||
if self.last_header:
|
||||
grid_msg.header = self.last_header
|
||||
grid_msg.info.resolution = self.resolution
|
||||
grid_msg.info.width = self.grid_size
|
||||
grid_msg.info.height = self.grid_size
|
||||
grid_msg.info.origin.position.x = self.origin_x
|
||||
grid_msg.info.origin.position.y = self.origin_y
|
||||
grid_msg.data = grid.flatten().tolist()
|
||||
self.publisher.publish(grid_msg)
|
||||
self.points_buffer.clear() # 清空缓存
|
||||
|
||||
def pointcloud2_to_xyz_array(self, cloud_msg):
|
||||
# 解析 PointCloud2 数据为 numpy 数组
|
||||
fmt = 'fff' # x, y, z
|
||||
point_step = cloud_msg.point_step
|
||||
data = cloud_msg.data
|
||||
points = []
|
||||
for i in range(0, len(data), point_step):
|
||||
x, y, z = struct.unpack_from(fmt, data, i)
|
||||
points.append([x, y, z])
|
||||
return np.array(points)
|
||||
|
||||
def main(args=None):
|
||||
rclpy.init(args=args)
|
||||
node = PointCloudToGrid()
|
||||
rclpy.spin(node)
|
||||
node.destroy_node()
|
||||
rclpy.shutdown()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
51
src/rc_lidar/zhaoban.py
Normal file
51
src/rc_lidar/zhaoban.py
Normal file
@ -0,0 +1,51 @@
|
||||
import numpy as np
|
||||
from sklearn.cluster import DBSCAN
|
||||
from scipy.optimize import leastsq
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def fit_circle(x, y):
|
||||
# 拟合圆的函数
|
||||
def calc_R(xc, yc):
|
||||
return np.sqrt((x - xc)**2 + (y - yc)**2)
|
||||
def f(c):
|
||||
Ri = calc_R(*c)
|
||||
return Ri - Ri.mean()
|
||||
center_estimate = np.mean(x), np.mean(y)
|
||||
center, _ = leastsq(f, center_estimate)
|
||||
radius = calc_R(*center).mean()
|
||||
return center[0], center[1], radius
|
||||
|
||||
def find_circle(points, eps=0.5, min_samples=10):
|
||||
# 聚类
|
||||
clustering = DBSCAN(eps=eps, min_samples=min_samples).fit(points)
|
||||
labels = clustering.labels_
|
||||
# 只取最大簇
|
||||
unique, counts = np.unique(labels[labels != -1], return_counts=True)
|
||||
if len(unique) == 0:
|
||||
raise ValueError("未找到有效聚类")
|
||||
main_cluster = unique[np.argmax(counts)]
|
||||
cluster_points = points[labels == main_cluster]
|
||||
x, y = cluster_points[:, 0], cluster_points[:, 1]
|
||||
# 拟合圆
|
||||
xc, yc, r = fit_circle(x, y)
|
||||
return xc, yc, r, cluster_points
|
||||
|
||||
if __name__ == "__main__":
|
||||
# 示例数据
|
||||
np.random.seed(0)
|
||||
angle = np.linspace(0, 2 * np.pi, 100)
|
||||
x = 5 + 3 * np.cos(angle) + np.random.normal(0, 0.1, 100)
|
||||
y = 2 + 3 * np.sin(angle) + np.random.normal(0, 0.1, 100)
|
||||
points = np.vstack((x, y)).T
|
||||
|
||||
xc, yc, r, cluster_points = find_circle(points)
|
||||
print(f"圆心: ({xc:.2f}, {yc:.2f}), 半径: {r:.2f}")
|
||||
|
||||
# 可视化
|
||||
plt.scatter(points[:, 0], points[:, 1], label='所有点')
|
||||
plt.scatter(cluster_points[:, 0], cluster_points[:, 1], label='聚类点')
|
||||
circle = plt.Circle((xc, yc), r, color='r', fill=False, label='拟合圆')
|
||||
plt.gca().add_patch(circle)
|
||||
plt.legend()
|
||||
plt.axis('equal')
|
||||
plt.show()
|
BIN
src/rc_lidar/zhaoyuan.py
Normal file
BIN
src/rc_lidar/zhaoyuan.py
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user