上传文件至 src/rc_lidar

This commit is contained in:
JYC 2025-07-13 00:09:06 +08:00
parent a6209c06f0
commit 66d6ba5440
5 changed files with 354 additions and 0 deletions

102
src/rc_lidar/simple.py Normal file
View File

@ -0,0 +1,102 @@
import rclpy
from rclpy.node import Node
from sensor_msgs.msg import PointCloud2, PointField
import numpy as np
import struct
from sklearn.cluster import DBSCAN
class BasketballFrameDetector(Node):
def __init__(self):
super().__init__('basketball_frame_detector')
self.subscription = self.create_subscription(
PointCloud2,
'/livox/lidar_filtered',
self.pointcloud_callback,
10
)
self.publisher = self.create_publisher(
PointCloud2,
'/basketball_frame_cloud',
10
)
self.pointcloud_buffer = []
def pointcloud_callback(self, msg):
points = self.pointcloud2_to_xyz(msg)
self.pointcloud_buffer.append(points)
self.get_logger().info(f'已保存点云组数: {len(self.pointcloud_buffer)}')
if len(self.pointcloud_buffer) < 10:
return
# 合并10组点云
all_points = np.vstack(self.pointcloud_buffer)
xy_points = all_points[:, :2]
self.get_logger().info(f'合并后点数: {xy_points.shape[0]}')
# 清空缓存,准备下一批
self.pointcloud_buffer = []
# 聚类识别
if len(xy_points) < 10:
return
clustering = DBSCAN(eps=0.3, min_samples=10).fit(xy_points)
labels = clustering.labels_
unique_labels = set(labels)
for label in unique_labels:
if label == -1:
continue
cluster = all_points[labels == label]
if len(cluster) < 30:
continue
min_x, min_y = np.min(cluster[:, :2], axis=0)
max_x, max_y = np.max(cluster[:, :2], axis=0)
width = abs(max_x - min_x)
height = abs(max_y - min_y)
self.get_logger().info(
f'聚类: label={label}, width={width:.2f}, height={height:.2f}, 点数={len(cluster)}'
)
if 1.6 < width < 2.0 and 0.8 < height < 1.2:
self.get_logger().info(
f'可能是篮球框: label={label}, width={width:.2f}, height={height:.2f}, 点数={len(cluster)}'
)
# 发布识别到的篮球框点云
cloud_msg = self.xyz_array_to_pointcloud2(cluster, msg.header)
self.publisher.publish(cloud_msg)
def pointcloud2_to_xyz(self, cloud_msg):
fmt = 'ffff' # x, y, z, intensity
points = []
for i in range(cloud_msg.width):
offset = i * cloud_msg.point_step
x, y, z, intensity = struct.unpack_from(fmt, cloud_msg.data, offset)
points.append([x, y, z, intensity])
return np.array(points)
def xyz_array_to_pointcloud2(self, points, header):
# 构造 PointCloud2 消息
msg = PointCloud2()
msg.header = header
msg.height = 1
msg.width = len(points)
msg.is_dense = True
msg.is_bigendian = False
msg.point_step = 16
msg.row_step = msg.point_step * msg.width
msg.fields = [
PointField(name='x', offset=0, datatype=7, count=1),
PointField(name='y', offset=4, datatype=7, count=1),
PointField(name='z', offset=8, datatype=7, count=1),
PointField(name='intensity', offset=12, datatype=7, count=1),
]
msg.data = b''.join([struct.pack('ffff', *p) for p in points])
return msg
def main(args=None):
rclpy.init(args=args)
node = BasketballFrameDetector()
rclpy.spin(node)
node.destroy_node()
rclpy.shutdown()
if __name__ == '__main__':
main()

126
src/rc_lidar/simple_icp.py Normal file
View File

@ -0,0 +1,126 @@
#!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from sensor_msgs.msg import PointCloud2
from sensor_msgs_py import point_cloud2
from geometry_msgs.msg import PoseStamped
import open3d as o3d
import numpy as np
from transforms3d.quaternions import mat2quat
class PointCloudLocalization(Node):
def __init__(self):
super().__init__('point_cloud_localizer')
# 加载参考点云地图 (PCD文件)
self.reference_map = o3d.io.read_point_cloud("/home/robofish/RC2025/lankuang.pcd") # 替换为你的PCD文件路径
if not self.reference_map.has_points():
self.get_logger().error("Failed to load reference map!")
rclpy.shutdown()
# 预处理参考地图
self.reference_map = self.reference_map.voxel_down_sample(voxel_size=0.05)
self.reference_map.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0)[0]
# 创建ICP对象
self.icp = o3d.pipelines.registration.registration_icp
self.threshold = 0.5 # 匹配距离阈值 (米)
self.trans_init = np.identity(4) # 初始变换矩阵
# 订阅激光雷达点云
self.subscription = self.create_subscription(
PointCloud2,
'/livox/lidar_filtered',
self.lidar_callback,
10)
# 发布估计位置
self.pose_pub = self.create_publisher(PoseStamped, '/estimated_pose', 10)
self.get_logger().info("Point Cloud Localization Node Initialized!")
def ros_pc2_to_o3d(self, ros_cloud):
"""将ROS PointCloud2转换为Open3D点云"""
# 提取xyz坐标
points = point_cloud2.read_points(ros_cloud, field_names=("x", "y", "z"), skip_nans=True)
xyz = np.array([ [p[0], p[1], p[2]] for p in points ], dtype=np.float32)
if xyz.shape[0] == 0:
return None
# 创建Open3D点云
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(xyz)
return pcd
def preprocess_pointcloud(self, pcd):
"""点云预处理"""
# 降采样
pcd = pcd.voxel_down_sample(voxel_size=0.03)
# 移除离群点
pcd, _ = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=1.0)
# 移除地面 (可选)
# plane_model, inliers = pcd.segment_plane(distance_threshold=0.1, ransac_n=3, num_iterations=100)
# pcd = pcd.select_by_index(inliers, invert=True)
return pcd
def lidar_callback(self, msg):
"""处理新的激光雷达数据"""
# 转换为Open3D格式
current_pcd = self.ros_pc2_to_o3d(msg)
if current_pcd is None:
self.get_logger().warn("Received empty point cloud!")
return
# 预处理当前点云
current_pcd = self.preprocess_pointcloud(current_pcd)
# 执行ICP配准
reg_result = self.icp(
current_pcd, self.reference_map, self.threshold,
self.trans_init,
o3d.pipelines.registration.TransformationEstimationPointToPoint(),
o3d.pipelines.registration.ICPConvergenceCriteria(max_iteration=50)
)
# 更新变换矩阵
self.trans_init = reg_result.transformation
# 提取位置和方向
translation = reg_result.transformation[:3, 3]
rotation_matrix = reg_result.transformation[:3, :3]
# 转换为四元数
quaternion = mat2quat(reg_result.transformation[:3, :3]) # 注意返回顺序为 [w, x, y, z]
# 发布位姿
pose_msg = PoseStamped()
pose_msg.header.stamp = self.get_clock().now().to_msg()
pose_msg.header.frame_id = "livox_frame"
pose_msg.pose.position.x = translation[0]
pose_msg.pose.position.y = translation[1]
pose_msg.pose.position.z = translation[2]
pose_msg.pose.orientation.x = quaternion[1] # x
pose_msg.pose.orientation.y = quaternion[2] # y
pose_msg.pose.orientation.z = quaternion[3] # z
pose_msg.pose.orientation.w = quaternion[0] # w
self.pose_pub.publish(pose_msg)
self.get_logger().info(f"Estimated Position: x={translation[0]:.2f}, y={translation[1]:.2f}, z={translation[2]:.2f}")
def main(args=None):
rclpy.init(args=args)
node = PointCloudLocalization()
try:
rclpy.spin(node)
except KeyboardInterrupt:
pass
finally:
node.destroy_node()
rclpy.shutdown()
if __name__ == '__main__':
main()

75
src/rc_lidar/xiamian.py Normal file
View File

@ -0,0 +1,75 @@
import rclpy
from rclpy.node import Node
from sensor_msgs.msg import PointCloud2
from nav_msgs.msg import OccupancyGrid
import numpy as np
import struct
import time
class PointCloudToGrid(Node):
def __init__(self):
super().__init__('pointcloud_to_grid')
self.subscription = self.create_subscription(
PointCloud2,
'/livox/lidar_filtered',
self.pointcloud_callback,
10)
self.publisher = self.create_publisher(OccupancyGrid, '/lidar_grid', 10)
self.grid_size = 2000
self.resolution = 0.02
self.origin_x = -20.0
self.origin_y = -20.0
self.points_buffer = []
self.last_header = None
# 定时器每0.5秒触发一次
self.timer = self.create_timer(0.5, self.publish_grid)
def pointcloud_callback(self, msg):
points = self.pointcloud2_to_xyz_array(msg)
self.points_buffer.append(points)
self.last_header = msg.header # 保存最新header用于地图消息
def publish_grid(self):
if not self.points_buffer:
return
# 合并0.5秒内所有点
all_points = np.concatenate(self.points_buffer, axis=0)
grid = np.zeros((self.grid_size, self.grid_size), dtype=np.int8)
for x, y, z in all_points:
if z < 2.0:
ix = int((x - self.origin_x) / self.resolution)
iy = int((y - self.origin_y) / self.resolution)
if 0 <= ix < self.grid_size and 0 <= iy < self.grid_size:
grid[iy, ix] = 100
grid_msg = OccupancyGrid()
if self.last_header:
grid_msg.header = self.last_header
grid_msg.info.resolution = self.resolution
grid_msg.info.width = self.grid_size
grid_msg.info.height = self.grid_size
grid_msg.info.origin.position.x = self.origin_x
grid_msg.info.origin.position.y = self.origin_y
grid_msg.data = grid.flatten().tolist()
self.publisher.publish(grid_msg)
self.points_buffer.clear() # 清空缓存
def pointcloud2_to_xyz_array(self, cloud_msg):
# 解析 PointCloud2 数据为 numpy 数组
fmt = 'fff' # x, y, z
point_step = cloud_msg.point_step
data = cloud_msg.data
points = []
for i in range(0, len(data), point_step):
x, y, z = struct.unpack_from(fmt, data, i)
points.append([x, y, z])
return np.array(points)
def main(args=None):
rclpy.init(args=args)
node = PointCloudToGrid()
rclpy.spin(node)
node.destroy_node()
rclpy.shutdown()
if __name__ == '__main__':
main()

51
src/rc_lidar/zhaoban.py Normal file
View File

@ -0,0 +1,51 @@
import numpy as np
from sklearn.cluster import DBSCAN
from scipy.optimize import leastsq
import matplotlib.pyplot as plt
def fit_circle(x, y):
# 拟合圆的函数
def calc_R(xc, yc):
return np.sqrt((x - xc)**2 + (y - yc)**2)
def f(c):
Ri = calc_R(*c)
return Ri - Ri.mean()
center_estimate = np.mean(x), np.mean(y)
center, _ = leastsq(f, center_estimate)
radius = calc_R(*center).mean()
return center[0], center[1], radius
def find_circle(points, eps=0.5, min_samples=10):
# 聚类
clustering = DBSCAN(eps=eps, min_samples=min_samples).fit(points)
labels = clustering.labels_
# 只取最大簇
unique, counts = np.unique(labels[labels != -1], return_counts=True)
if len(unique) == 0:
raise ValueError("未找到有效聚类")
main_cluster = unique[np.argmax(counts)]
cluster_points = points[labels == main_cluster]
x, y = cluster_points[:, 0], cluster_points[:, 1]
# 拟合圆
xc, yc, r = fit_circle(x, y)
return xc, yc, r, cluster_points
if __name__ == "__main__":
# 示例数据
np.random.seed(0)
angle = np.linspace(0, 2 * np.pi, 100)
x = 5 + 3 * np.cos(angle) + np.random.normal(0, 0.1, 100)
y = 2 + 3 * np.sin(angle) + np.random.normal(0, 0.1, 100)
points = np.vstack((x, y)).T
xc, yc, r, cluster_points = find_circle(points)
print(f"圆心: ({xc:.2f}, {yc:.2f}), 半径: {r:.2f}")
# 可视化
plt.scatter(points[:, 0], points[:, 1], label='所有点')
plt.scatter(cluster_points[:, 0], cluster_points[:, 1], label='聚类点')
circle = plt.Circle((xc, yc), r, color='r', fill=False, label='拟合圆')
plt.gca().add_patch(circle)
plt.legend()
plt.axis('equal')
plt.show()

BIN
src/rc_lidar/zhaoyuan.py Normal file

Binary file not shown.