上传文件至 src/rc_lidar

This commit is contained in:
JYC 2025-07-13 00:07:59 +08:00
parent 2f3e6caa8d
commit a6209c06f0

63
src/rc_lidar/caijian.py Normal file
View File

@ -0,0 +1,63 @@
#!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from sensor_msgs.msg import PointCloud2, PointField
import numpy as np
import struct
from sklearn.cluster import DBSCAN
class LidarFilterNode(Node):
def __init__(self):
super().__init__('caijian_node')
self.publisher_ = self.create_publisher(PointCloud2, '/livox/lidar_filtered', 10)
self.subscription = self.create_subscription(
PointCloud2,
'/livox/lidar/pointcloud',
self.filter_callback,
10)
self.get_logger().info('caijian_node started, numpy filtering z in [1.5,3]m, distance<=12m, remove isolated points')
def filter_callback(self, msg):
num_points = msg.width * msg.height
data = np.frombuffer(msg.data, dtype=np.uint8)
points = np.zeros((num_points, 4), dtype=np.float32) # x, y, z, intensity
for i in range(num_points):
offset = i * msg.point_step
x = struct.unpack_from('f', data, offset)[0]
y = struct.unpack_from('f', data, offset + 4)[0]
z = struct.unpack_from('f', data, offset + 8)[0]
intensity = struct.unpack_from('f', data, offset + 12)[0]
points[i] = [x, y, z, intensity]
z_mask = (points[:,2] >= 1.5) & (points[:,2] <= 3.0)
dist_mask = np.linalg.norm(points[:,:3], axis=1) <= 16.0
mask = z_mask & dist_mask
filtered_points = points[mask]
# 使用DBSCAN去除孤立点
if filtered_points.shape[0] > 0:
clustering = DBSCAN(eps=0.3, min_samples=5).fit(filtered_points[:,:3])
core_mask = clustering.labels_ != -1
filtered_points = filtered_points[core_mask]
fields = [
PointField(name='x', offset=0, datatype=PointField.FLOAT32, count=1),
PointField(name='y', offset=4, datatype=PointField.FLOAT32, count=1),
PointField(name='z', offset=8, datatype=PointField.FLOAT32, count=1),
PointField(name='intensity', offset=12, datatype=PointField.FLOAT32, count=1),
]
filtered_points_list = filtered_points.tolist()
import sensor_msgs_py.point_cloud2 as pc2
filtered_msg = pc2.create_cloud(msg.header, fields, filtered_points_list)
self.publisher_.publish(filtered_msg)
def main(args=None):
rclpy.init(args=args)
node = LidarFilterNode()
rclpy.spin(node)
node.destroy_node()
rclpy.shutdown()
if __name__ == '__main__':
main()