/* 底盘模组 */ #include "cmsis_os2.h" #include #include "bsp/mm.h" #include "bsp/can.h" #include "component/ahrs.h" #include "device/motor_rm.h" #include "device/motor.h" #include "module/chassis.h" /** * @brief 底盘小陀螺模式相关参数 */ #define CHASSIS_ROTOR_WZ_MIN 0.6f //小陀螺最小速度 #define CHASSIS_ROTOR_WZ_MAX 0.8f //小陀螺最大速度 #define M_7OVER72PI (M_2PI * 7.0f / 72.0f) //角度偏移量(用在跟随云台35°) #define CHASSIS_ROTOR_OMEGA 0.001f //角速度变化频率 /** * @brief 设置底盘模式 * @param c 底盘结构体指针 * @param mode 目标控制模式 * @param now 当前时间戳(ms) * @return CHASSIS_OK:成功 CHASSIS_ERR_NULL:空 */ static int8_t Chassis_SetMode(Chassis_t *c, Chassis_Mode_t mode, uint32_t now) { if (!c) return CHASSIS_ERR_NULL; if (mode == c->mode) return CHASSIS_OK; //随机种子,小陀螺模式随机设置旋转方向 if (mode == CHASSIS_MODE_ROTOR && c->mode != CHASSIS_MODE_ROTOR) { srand(now); c->wz_multi = (rand() % 2) ? -1 : 1; } //重置PID和滤波 for (uint8_t i = 0; i < c->num_wheel; i++) { PID_Reset(&c->pid.motor[i]); LowPassFilter2p_Reset(&c->filter.in[i], 0.0f); LowPassFilter2p_Reset(&c->filter.out[i], 0.0f); } c->mode = mode; return CHASSIS_OK; } /** * @brief 小陀螺模式动态角速度 * @param min 最小速度 * @param max 最大速度 * @param now 当前时间戳(ms) * @return 角速度值 */ static float Chassis_CalcWz(const float min, const float max, uint32_t now) { float wz_vary = fabsf(0.2f * sinf(CHASSIS_ROTOR_OMEGA * (float)now)) + min; return (wz_vary > max) ? max : wz_vary; } /** * @brief 底盘模式初始化 * @param c 底盘结构体指针 * @param param 底盘参数结构体指针 * @param mech_zero 机械零点欧拉角 * @param target_freq 控制频率(Hz) * @return CHASSIS_OK:成功 CHASSIS_ERR_NULL:空 CHASSIS_ERR_TYPE:不支持的模式 */ int8_t Chassis_Init(Chassis_t *c, const Chassis_Params_t *param, float target_freq) { if (!c) return CHASSIS_ERR_NULL; //初始化CAN通信 BSP_CAN_Init(); c->param = param; c->mode = CHASSIS_MODE_RELAX; c->param->feedforward.coefficient = 0.1f; //前馈系数 //根据底盘不同设置模式轮子与混合器 Mixer_Mode_t mixer_mode; switch (param->type) { case CHASSIS_TYPE_MECANUM://麦轮 c->num_wheel = 4; mixer_mode = MIXER_MECANUM; break; case CHASSIS_TYPE_PARLFIX4: c->num_wheel = 4; mixer_mode = MIXER_PARLFIX4; break; case CHASSIS_TYPE_PARLFIX2: c->num_wheel = 2; mixer_mode = MIXER_PARLFIX2; break; case CHASSIS_TYPE_OMNI_CROSS: c->num_wheel = 4; mixer_mode = MIXER_OMNICROSS; break; case CHASSIS_TYPE_OMNI_PLUS: //全向轮(老步兵类型) c->num_wheel = 4; mixer_mode = MIXER_OMNIPLUS; break; case CHASSIS_TYPE_SINGLE: c->num_wheel = 1; mixer_mode = MIXER_SINGLE; break; default: return CHASSIS_ERR_TYPE; } //初始化时间戳 c->last_wakeup = 0; c->dt = 0.0f; //初始化PID和滤波 for (uint8_t i = 0; i < c->num_wheel; i++) { PID_Init(&c->pid.motor[i], KPID_MODE_NO_D, target_freq, ¶m->pid.motor_pid_param); LowPassFilter2p_Init(&c->filter.in[i], target_freq, param->low_pass_cutoff_freq.in); LowPassFilter2p_Init(&c->filter.out[i], target_freq, param->low_pass_cutoff_freq.out); //清零电机反馈 c->feedback.motor[i].rotor_speed = 0; c->feedback.motor[i].torque_current = 0; c->feedback.motor[i].rotor_abs_angle = 0; c->feedback.motor[i].temp = 0; } //初始化PID和混合器 PID_Init(&c->pid.follow, KPID_MODE_NO_D, target_freq, ¶m->pid.follow_pid_param); Mixer_Init(&c->mixer, mixer_mode); //清零运动向量和输出 c->move_vec.vx = c->move_vec.vy = c->move_vec.wz = 0.0f; for (uint8_t i = 0; i < c->num_wheel; i++) { c->out.motor[i] = 0.0f; } //注册大疆电机 for (int i = 0; i < c->num_wheel; i++) { MOTOR_RM_Register(&(c->param->motor_param[i])); } return CHASSIS_OK; } /** * @brief 更新电机反馈(IMU+电机状态) * @param c 底盘结构体指针 * @param feedback 底盘反馈指针结构体 * @return CHASSIS_OK:成功 CHASSIS_ERR_NULL:空 */ int8_t Chassis_UpdateFeedback(Chassis_t *c) { //更新所有电机反馈 for (uint8_t i = 0; i < c->num_wheel; i++) { MOTOR_RM_Update(&(c->param->motor_param[i])); MOTOR_RM_t *rm_motor = MOTOR_RM_GetMotor(&(c->param->motor_param[i])); c->motors[i] = rm_motor; MOTOR_RM_t *rm = c->motors[i]; if (rm_motor != NULL) { c->feedback.motor[i] = rm_motor->feedback; }else { return CHASSIS_ERR_NULL; } } return CHASSIS_OK; } /** * @brief 底盘电机控制 * @param c 底盘结构体指针 * @param c_cmd 控制命令 * @param now 当前时间戳(ms) * @return CHASSIS_OK:成功 CHASSIS_ERR_NULL:空 */ int8_t Chassis_Control(Chassis_t *c, const Chassis_CMD_t *c_cmd, uint32_t now) { if (!c || !c_cmd) return CHASSIS_ERR_NULL; //计算控制周期 c->dt = (float)(now - c->last_wakeup) / 1000.0f; c->last_wakeup = now; if (!isfinite(c->dt) || c->dt <= 0.0f) { c->dt = 0.001f; } if (c->dt < 0.0005f) c->dt = 0.0005f; if (c->dt > 0.050f) c->dt = 0.050f; //设置模式 Chassis_SetMode(c, c_cmd->mode, now); //不同模式下对应解算(运动向量) switch (c->mode) { case CHASSIS_MODE_BREAK: c->move_vec.vx = c->move_vec.vy = 0.0f; break; case CHASSIS_MODE_INDEPENDENT: c->move_vec.vx = c_cmd->ctrl_vec.vx ; c->move_vec.vy = c_cmd->ctrl_vec.vy ; break; default: { //遥控器坐标->机体坐标系 float beta = c->feedback.encoder_gimbalYawMotor - c->mech_zero; float cosb = cosf(beta); float sinb = sinf(beta); c->move_vec.vx = cosb * c_cmd->ctrl_vec.vx - sinb * c_cmd->ctrl_vec.vy ; c->move_vec.vy = sinb * c_cmd->ctrl_vec.vx + cosb * c_cmd->ctrl_vec.vy ; break; } } //根据模式计算底盘角速度 switch (c->mode) { case CHASSIS_MODE_RELAX: case CHASSIS_MODE_BREAK: case CHASSIS_MODE_INDEPENDENT: c->move_vec.wz = 0.0f; break; case CHASSIS_MODE_OPEN: c->move_vec.wz = c_cmd->ctrl_vec.wz ; break; //云台跟随 case CHASSIS_MODE_FOLLOW_GIMBAL: c->move_vec.wz = PID_Calc(&c->pid.follow, c->mech_zero, c->feedback.encoder_gimbalYawMotor, 0.0f, c->dt) ; break; //云台跟随(偏移) case CHASSIS_MODE_FOLLOW_GIMBAL_35: c->move_vec.wz = PID_Calc(&c->pid.follow,c->mech_zero +M_7OVER72PI, c->feedback.encoder_gimbalYawMotor, 0.0f, c->dt) ; break; //小陀螺 case CHASSIS_MODE_ROTOR: c->move_vec.wz = c->wz_multi * Chassis_CalcWz(CHASSIS_ROTOR_WZ_MIN,CHASSIS_ROTOR_WZ_MAX, now) ; break; } //运动学逆解算,运动向量分解为电机转速 Mixer_Apply(&c->mixer, &c->move_vec, c->setpoint.motor_rpm, c->num_wheel, 500.0f); for (uint8_t i = 0; i < c->num_wheel; i++) { float rf = c->setpoint.motor_rpm[i];///目标转速 float fb = LowPassFilter2p_Apply(&c->filter.in[i], (float)c->feedback.motor[i].rotor_speed); float out_current; switch (c->mode) { case CHASSIS_MODE_BREAK: case CHASSIS_MODE_FOLLOW_GIMBAL: case CHASSIS_MODE_FOLLOW_GIMBAL_35: case CHASSIS_MODE_ROTOR: case CHASSIS_MODE_INDEPENDENT: out_current = PID_Calc(&c->pid.motor[i], c->setpoint.motor_rpm[i], fb, 0.0f, c->dt); const float K_FF = c->param->feedforward.coefficient; //前馈系数,具体值在初始化部分,使用时可以自己修改。 float feedforward_current = K_FF * c->setpoint.motor_rpm[i]; out_current += feedforward_current; //总电流 = 前馈电流 + 反馈电流 break; case CHASSIS_MODE_OPEN: out_current = c->setpoint.motor_rpm[i] / 7000.0f ; break; case CHASSIS_MODE_RELAX: out_current = 0.0f ; break; } //低通滤波和限幅 c->out.motor[i] = LowPassFilter2p_Apply(&c->filter.out[i], out_current); Clip(&c->out.motor[i], -c->param->limit.max_current, c->param->limit.max_current); } return CHASSIS_OK; } /** * @brief 电机输出 * @param c 底盘结构体指针 */ void Chassis_Output(Chassis_t *c) { if (!c) return; //每个电机目标输出 for (uint8_t i = 0; i < c->num_wheel; i++) { MOTOR_RM_t *rm = c->motors[i]; if (!rm) continue; MOTOR_RM_SetOutput(&rm->param, c->out.motor[i]); } //调用ctrl for (uint8_t i = 0; i < c->num_wheel; i++) { MOTOR_RM_t *rm = c->motors[i]; if (rm) { MOTOR_RM_Ctrl(&rm->param); } } } /** * @brief 重置底盘输出 * @param c 底盘结构体指针 */ void Chassis_ResetOutput(Chassis_t *c) { if (!c) return; for (uint8_t i = 0; i < c->num_wheel; i++) { MOTOR_RM_t *m = c->motors[i]; if (m) { MOTOR_RM_Relax(&(m->param)); } } }