rm_vision/assets/yolov8.xml
2025-12-15 02:33:20 +08:00

25212 lines
752 KiB
XML

<?xml version="1.0"?>
<net name="main_graph" version="11">
<layers>
<layer id="0" name="images" type="Parameter" version="opset1">
<data shape="1,3,416,416" element_type="f32" />
<output>
<port id="0" precision="FP32" names="images">
<dim>1</dim>
<dim>3</dim>
<dim>416</dim>
<dim>416</dim>
</port>
</output>
</layer>
<layer id="1" name="/model.28/Constant_13_output_0" type="Const" version="opset1">
<data element_type="f32" shape="1, 2, 3549" offset="0" size="28392" />
<output>
<port id="0" precision="FP32" names="/model.28/Constant_13_output_0">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="2" name="images/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="3" name="images/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28396" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="4" name="images/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="5" name="images/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28396" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="6" name="images/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>416</dim>
<dim>416</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>416</dim>
<dim>416</dim>
</port>
</output>
</layer>
<layer id="7" name="Constant_515003" type="Const" version="opset1">
<data element_type="i8" shape="8, 3, 3, 3" offset="28400" size="216" />
<output>
<port id="0" precision="I8">
<dim>8</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="8" name="Convert_515004" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>8</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="9" name="Constant_515005" type="Const" version="opset1">
<data element_type="f32" shape="8, 1, 1, 1" offset="28616" size="32" />
<output>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="10" name="/model.0/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>8</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="11" name="/model.0/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>416</dim>
<dim>416</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</output>
</layer>
<layer id="12" name="Reshape_260" type="Const" version="opset1">
<data element_type="f32" shape="1, 8, 1, 1" offset="28648" size="32" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="13" name="/model.0/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>208</dim>
<dim>208</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.0/conv/Conv_output_0">
<dim>1</dim>
<dim>8</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</output>
</layer>
<layer id="14" name="/model.0/act/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.0/act/Mul_output_0">
<dim>1</dim>
<dim>8</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</output>
</layer>
<layer id="15" name="/model.0/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28680" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="16" name="/model.0/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28684" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="17" name="/model.0/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28680" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="18" name="/model.0/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28684" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="19" name="/model.0/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>208</dim>
<dim>208</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</output>
</layer>
<layer id="20" name="Constant_515007" type="Const" version="opset1">
<data element_type="i8" shape="16, 8, 1, 1" offset="28688" size="128" />
<output>
<port id="0" precision="I8">
<dim>16</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="21" name="Convert_515008" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>16</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="22" name="Constant_515009" type="Const" version="opset1">
<data element_type="f32" shape="16, 1, 1, 1" offset="28816" size="64" />
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="23" name="/model.1/conv/conv.0/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>16</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="24" name="/model.1/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>208</dim>
<dim>208</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</output>
</layer>
<layer id="25" name="Reshape_281" type="Const" version="opset1">
<data element_type="f32" shape="1, 16, 1, 1" offset="28880" size="64" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="26" name="/model.1/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>208</dim>
<dim>208</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.1/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</output>
</layer>
<layer id="27" name="/model.1/conv/conv.2/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.1/conv/conv.2/Relu_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</output>
</layer>
<layer id="28" name="/model.1/conv/conv.2/Relu/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 16, 1, 1" offset="28944" size="64" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="29" name="/model.1/conv/conv.2/Relu/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 16, 1, 1" offset="29008" size="64" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="30" name="/model.1/conv/conv.2/Relu/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 16, 1, 1" offset="28944" size="64" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="31" name="/model.1/conv/conv.2/Relu/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 16, 1, 1" offset="29008" size="64" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="32" name="/model.1/conv/conv.2/Relu/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>208</dim>
<dim>208</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="3" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="4" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</output>
</layer>
<layer id="33" name="Constant_515011" type="Const" version="opset1">
<data element_type="i8" shape="16, 1, 1, 3, 3" offset="29072" size="144" />
<output>
<port id="0" precision="I8">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="34" name="Convert_515012" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="35" name="Constant_515013" type="Const" version="opset1">
<data element_type="f32" shape="16, 1, 1, 1, 1" offset="29216" size="64" />
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="36" name="/model.1/conv/conv.3/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="37" name="/model.1/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="1, 1" pads_begin="1, 1" pads_end="1, 1" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>208</dim>
<dim>208</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</output>
</layer>
<layer id="38" name="Reshape_345" type="Const" version="opset1">
<data element_type="f32" shape="1, 16, 1, 1" offset="29280" size="64" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="39" name="/model.1/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>208</dim>
<dim>208</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.1/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</output>
</layer>
<layer id="40" name="/model.1/conv/conv.6/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.1/conv/conv.6/Relu_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</output>
</layer>
<layer id="41" name="/model.1/conv/conv.6/Relu/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="42" name="/model.1/conv/conv.6/Relu/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="29344" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="43" name="/model.1/conv/conv.6/Relu/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="44" name="/model.1/conv/conv.6/Relu/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="29344" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="45" name="/model.1/conv/conv.6/Relu/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>208</dim>
<dim>208</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</output>
</layer>
<layer id="46" name="Constant_515015" type="Const" version="opset1">
<data element_type="i8" shape="8, 16, 1, 1" offset="29348" size="128" />
<output>
<port id="0" precision="I8">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="47" name="Convert_515016" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="48" name="Constant_515017" type="Const" version="opset1">
<data element_type="f32" shape="8, 1, 1, 1" offset="29476" size="32" />
<output>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="49" name="/model.1/conv/conv.7/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="50" name="/model.1/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>208</dim>
<dim>208</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</output>
</layer>
<layer id="51" name="Reshape_362" type="Const" version="opset1">
<data element_type="f32" shape="1, 8, 1, 1" offset="29508" size="32" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="52" name="/model.1/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>208</dim>
<dim>208</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.1/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>8</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</output>
</layer>
<layer id="53" name="/model.1/conv/conv.7/Conv/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="29540" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="54" name="/model.1/conv/conv.7/Conv/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="29544" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="55" name="/model.1/conv/conv.7/Conv/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="29540" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="56" name="/model.1/conv/conv.7/Conv/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="29544" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="57" name="/model.1/conv/conv.7/Conv/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>208</dim>
<dim>208</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</output>
</layer>
<layer id="58" name="/model.1/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>208</dim>
<dim>208</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.1/Add_output_0">
<dim>1</dim>
<dim>8</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</output>
</layer>
<layer id="59" name="/model.1/Add/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="29548" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="60" name="/model.1/Add/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="29552" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="61" name="/model.1/Add/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="29548" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="62" name="/model.1/Add/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="29552" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="63" name="/model.1/Add/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>208</dim>
<dim>208</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</output>
</layer>
<layer id="64" name="Constant_515019" type="Const" version="opset1">
<data element_type="i8" shape="64, 8, 1, 1" offset="29556" size="512" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="65" name="Convert_515020" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="66" name="Constant_515021" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="30068" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="67" name="/model.2/conv/conv.0/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="68" name="/model.2/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>208</dim>
<dim>208</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</output>
</layer>
<layer id="69" name="Reshape_379" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="30324" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="70" name="/model.2/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>208</dim>
<dim>208</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.2/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</output>
</layer>
<layer id="71" name="/model.2/conv/conv.2/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.2/conv/conv.2/Relu_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</output>
</layer>
<layer id="72" name="/model.2/conv/conv.2/Relu/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="30580" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="73" name="/model.2/conv/conv.2/Relu/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="30836" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="74" name="/model.2/conv/conv.2/Relu/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="30580" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="75" name="/model.2/conv/conv.2/Relu/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="30836" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="76" name="/model.2/conv/conv.2/Relu/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>208</dim>
<dim>208</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="3" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="4" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>208</dim>
<dim>208</dim>
</port>
</output>
</layer>
<layer id="77" name="Constant_515023" type="Const" version="opset1">
<data element_type="i8" shape="64, 1, 1, 3, 3" offset="31092" size="576" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="78" name="Convert_515024" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="79" name="Constant_515025" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1, 1" offset="31668" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="80" name="/model.2/conv/conv.3/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="81" name="/model.2/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="2, 2" pads_begin="1, 1" pads_end="1, 1" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>208</dim>
<dim>208</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="82" name="Reshape_443" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="31924" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="83" name="/model.2/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>104</dim>
<dim>104</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.2/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="84" name="/model.2/conv/conv.6/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.2/conv/conv.6/Relu_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="85" name="/model.2/conv/conv.6/Relu/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="86" name="/model.2/conv/conv.6/Relu/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="32180" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="87" name="/model.2/conv/conv.6/Relu/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="88" name="/model.2/conv/conv.6/Relu/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="32180" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="89" name="/model.2/conv/conv.6/Relu/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>104</dim>
<dim>104</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="90" name="Constant_515027" type="Const" version="opset1">
<data element_type="i8" shape="8, 64, 1, 1" offset="32184" size="512" />
<output>
<port id="0" precision="I8">
<dim>8</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="91" name="Convert_515028" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>8</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="92" name="Constant_515029" type="Const" version="opset1">
<data element_type="f32" shape="8, 1, 1, 1" offset="32696" size="32" />
<output>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="93" name="/model.2/conv/conv.7/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>8</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="94" name="/model.2/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>104</dim>
<dim>104</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="95" name="Reshape_460" type="Const" version="opset1">
<data element_type="f32" shape="1, 8, 1, 1" offset="32728" size="32" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="96" name="/model.2/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>104</dim>
<dim>104</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.2/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>8</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="97" name="/model.2/conv/conv.7/Conv/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="32760" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="98" name="/model.2/conv/conv.7/Conv/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="32764" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="99" name="/model.2/conv/conv.7/Conv/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="32760" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="100" name="/model.2/conv/conv.7/Conv/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="32764" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="101" name="/model.2/conv/conv.7/Conv/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>104</dim>
<dim>104</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="102" name="Constant_515031" type="Const" version="opset1">
<data element_type="i8" shape="72, 8, 1, 1" offset="32768" size="576" />
<output>
<port id="0" precision="I8">
<dim>72</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="103" name="Convert_515032" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>72</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>72</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="104" name="Constant_515033" type="Const" version="opset1">
<data element_type="f32" shape="72, 1, 1, 1" offset="33344" size="288" />
<output>
<port id="0" precision="FP32">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="105" name="/model.3/conv/conv.0/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>72</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>72</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="106" name="/model.3/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>104</dim>
<dim>104</dim>
</port>
<port id="1" precision="FP32">
<dim>72</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="107" name="Reshape_476" type="Const" version="opset1">
<data element_type="f32" shape="1, 72, 1, 1" offset="33632" size="288" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="108" name="/model.3/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.3/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="109" name="/model.3/conv/conv.2/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.3/conv/conv.2/Relu_output_0">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="110" name="/model.3/conv/conv.2/Relu/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 72, 1, 1" offset="33920" size="288" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="111" name="/model.3/conv/conv.2/Relu/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 72, 1, 1" offset="34208" size="288" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="112" name="/model.3/conv/conv.2/Relu/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 72, 1, 1" offset="33920" size="288" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="113" name="/model.3/conv/conv.2/Relu/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 72, 1, 1" offset="34208" size="288" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="114" name="/model.3/conv/conv.2/Relu/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="3" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="4" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="115" name="Constant_515035" type="Const" version="opset1">
<data element_type="i8" shape="72, 1, 1, 3, 3" offset="34496" size="648" />
<output>
<port id="0" precision="I8">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="116" name="Convert_515036" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="117" name="Constant_515037" type="Const" version="opset1">
<data element_type="f32" shape="72, 1, 1, 1, 1" offset="35144" size="288" />
<output>
<port id="0" precision="FP32">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="118" name="/model.3/conv/conv.3/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="119" name="/model.3/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="1, 1" pads_begin="1, 1" pads_end="1, 1" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
<port id="1" precision="FP32">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="120" name="Reshape_540" type="Const" version="opset1">
<data element_type="f32" shape="1, 72, 1, 1" offset="35432" size="288" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="121" name="/model.3/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.3/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="122" name="/model.3/conv/conv.6/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.3/conv/conv.6/Relu_output_0">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="123" name="/model.3/conv/conv.6/Relu/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="124" name="/model.3/conv/conv.6/Relu/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="35720" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="125" name="/model.3/conv/conv.6/Relu/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="126" name="/model.3/conv/conv.6/Relu/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="35720" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="127" name="/model.3/conv/conv.6/Relu/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="128" name="Constant_515039" type="Const" version="opset1">
<data element_type="i8" shape="8, 72, 1, 1" offset="35724" size="576" />
<output>
<port id="0" precision="I8">
<dim>8</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="129" name="Convert_515040" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>8</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="130" name="Constant_515041" type="Const" version="opset1">
<data element_type="f32" shape="8, 1, 1, 1" offset="36300" size="32" />
<output>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="131" name="/model.3/conv/conv.7/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>8</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="132" name="/model.3/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="133" name="Reshape_557" type="Const" version="opset1">
<data element_type="f32" shape="1, 8, 1, 1" offset="36332" size="32" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="134" name="/model.3/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>104</dim>
<dim>104</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.3/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>8</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="135" name="/model.3/conv/conv.7/Conv/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="36364" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="136" name="/model.3/conv/conv.7/Conv/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="36368" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="137" name="/model.3/conv/conv.7/Conv/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="36364" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="138" name="/model.3/conv/conv.7/Conv/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="36368" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="139" name="/model.3/conv/conv.7/Conv/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>104</dim>
<dim>104</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="140" name="/model.3/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>104</dim>
<dim>104</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.3/Add_output_0">
<dim>1</dim>
<dim>8</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="141" name="/model.3/Add/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="36372" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="142" name="/model.3/Add/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="36376" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="143" name="/model.3/Add/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="36372" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="144" name="/model.3/Add/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="36376" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="145" name="/model.3/Add/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>104</dim>
<dim>104</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="146" name="Constant_515043" type="Const" version="opset1">
<data element_type="i8" shape="72, 8, 1, 1" offset="36380" size="576" />
<output>
<port id="0" precision="I8">
<dim>72</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="147" name="Convert_515044" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>72</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>72</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="148" name="Constant_515045" type="Const" version="opset1">
<data element_type="f32" shape="72, 1, 1, 1" offset="36956" size="288" />
<output>
<port id="0" precision="FP32">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="149" name="/model.4/conv/conv.0/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>72</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>72</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="150" name="/model.4/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>104</dim>
<dim>104</dim>
</port>
<port id="1" precision="FP32">
<dim>72</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="151" name="Reshape_574" type="Const" version="opset1">
<data element_type="f32" shape="1, 72, 1, 1" offset="37244" size="288" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="152" name="/model.4/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.4/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="153" name="/model.4/conv/conv.2/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.4/conv/conv.2/Relu_output_0">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="154" name="/model.4/conv/conv.2/Relu/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 72, 1, 1" offset="33920" size="288" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="155" name="/model.4/conv/conv.2/Relu/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 72, 1, 1" offset="37532" size="288" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="156" name="/model.4/conv/conv.2/Relu/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 72, 1, 1" offset="33920" size="288" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="157" name="/model.4/conv/conv.2/Relu/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 72, 1, 1" offset="37532" size="288" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="158" name="/model.4/conv/conv.2/Relu/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="3" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="4" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
</output>
</layer>
<layer id="159" name="Constant_515047" type="Const" version="opset1">
<data element_type="i8" shape="72, 1, 1, 5, 5" offset="37820" size="1800" />
<output>
<port id="0" precision="I8">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="160" name="Convert_515048" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="161" name="Constant_515049" type="Const" version="opset1">
<data element_type="f32" shape="72, 1, 1, 1, 1" offset="39620" size="288" />
<output>
<port id="0" precision="FP32">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="162" name="/model.4/conv/conv.3/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
<port id="1" precision="FP32">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="163" name="/model.4/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="2, 2" pads_begin="2, 2" pads_end="2, 2" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>104</dim>
<dim>104</dim>
</port>
<port id="1" precision="FP32">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="164" name="Reshape_638" type="Const" version="opset1">
<data element_type="f32" shape="1, 72, 1, 1" offset="39908" size="288" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="165" name="/model.4/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.4/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>72</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="166" name="/model.4/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="40196" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="167" name="/model.4/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="40200" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="168" name="/model.4/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="40196" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="169" name="/model.4/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="40200" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="170" name="/model.4/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="171" name="Range_648" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="40204" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="172" name="/model.4/conv/conv.5/avg_pool/GlobalAveragePool" type="ReduceMean" version="opset1">
<data keep_dims="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.4/conv/conv.5/avg_pool/GlobalAveragePool_output_0">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="173" name="/model.4/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="40220" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="174" name="/model.4/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="40224" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="175" name="/model.4/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="40220" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="176" name="/model.4/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="40224" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="177" name="/model.4/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="178" name="/model.4/conv/conv.5/Constant_output_0" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="40228" size="16" />
<output>
<port id="0" precision="I64" names="/model.4/conv/conv.5/Constant_output_0">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="179" name="/model.4/conv/conv.5/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.4/conv/conv.5/Reshape_output_0">
<dim>1</dim>
<dim>72</dim>
</port>
</output>
</layer>
<layer id="180" name="Constant_515051" type="Const" version="opset1">
<data element_type="i8" shape="18, 72" offset="40244" size="1296" />
<output>
<port id="0" precision="I8">
<dim>18</dim>
<dim>72</dim>
</port>
</output>
</layer>
<layer id="181" name="Convert_515052" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>18</dim>
<dim>72</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>18</dim>
<dim>72</dim>
</port>
</output>
</layer>
<layer id="182" name="Constant_515053" type="Const" version="opset1">
<data element_type="f32" shape="18, 1" offset="41540" size="72" />
<output>
<port id="0" precision="FP32">
<dim>18</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="183" name="/model.4/conv/conv.5/fc/fc.0/Gemm/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>18</dim>
<dim>72</dim>
</port>
<port id="1" precision="FP32">
<dim>18</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>18</dim>
<dim>72</dim>
</port>
</output>
</layer>
<layer id="184" name="/model.4/conv/conv.5/fc/fc.0/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
</port>
<port id="1" precision="FP32">
<dim>18</dim>
<dim>72</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>18</dim>
</port>
</output>
</layer>
<layer id="185" name="Constant_7120" type="Const" version="opset1">
<data element_type="f32" shape="1, 18" offset="41612" size="72" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>18</dim>
</port>
</output>
</layer>
<layer id="186" name="/model.4/conv/conv.5/fc/fc.0/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>18</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>18</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.4/conv/conv.5/fc/fc.0/Gemm_output_0">
<dim>1</dim>
<dim>18</dim>
</port>
</output>
</layer>
<layer id="187" name="/model.4/conv/conv.5/fc/fc.1/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>18</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.4/conv/conv.5/fc/fc.1/Relu_output_0">
<dim>1</dim>
<dim>18</dim>
</port>
</output>
</layer>
<layer id="188" name="/model.4/conv/conv.5/fc/fc.1/Relu/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="189" name="/model.4/conv/conv.5/fc/fc.1/Relu/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="41684" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="190" name="/model.4/conv/conv.5/fc/fc.1/Relu/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="191" name="/model.4/conv/conv.5/fc/fc.1/Relu/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="41684" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="192" name="/model.4/conv/conv.5/fc/fc.1/Relu/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>18</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>18</dim>
</port>
</output>
</layer>
<layer id="193" name="Constant_515055" type="Const" version="opset1">
<data element_type="i8" shape="72, 18" offset="41688" size="1296" />
<output>
<port id="0" precision="I8">
<dim>72</dim>
<dim>18</dim>
</port>
</output>
</layer>
<layer id="194" name="Convert_515056" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>72</dim>
<dim>18</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>72</dim>
<dim>18</dim>
</port>
</output>
</layer>
<layer id="195" name="Constant_515057" type="Const" version="opset1">
<data element_type="f32" shape="72, 1" offset="42984" size="288" />
<output>
<port id="0" precision="FP32">
<dim>72</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="196" name="/model.4/conv/conv.5/fc/fc.2/Gemm/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>72</dim>
<dim>18</dim>
</port>
<port id="1" precision="FP32">
<dim>72</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>72</dim>
<dim>18</dim>
</port>
</output>
</layer>
<layer id="197" name="/model.4/conv/conv.5/fc/fc.2/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>18</dim>
</port>
<port id="1" precision="FP32">
<dim>72</dim>
<dim>18</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>72</dim>
</port>
</output>
</layer>
<layer id="198" name="Constant_7121" type="Const" version="opset1">
<data element_type="f32" shape="1, 72" offset="43272" size="288" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
</port>
</output>
</layer>
<layer id="199" name="/model.4/conv/conv.5/fc/fc.2/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>72</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.4/conv/conv.5/fc/fc.2/Gemm_output_0">
<dim>1</dim>
<dim>72</dim>
</port>
</output>
</layer>
<layer id="200" name="/model.4/conv/conv.5/fc/fc.3/Div" type="HSigmoid" version="opset5">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.4/conv/conv.5/fc/fc.3/Div_output_0">
<dim>1</dim>
<dim>72</dim>
</port>
</output>
</layer>
<layer id="201" name="/model.4/conv/conv.5/Constant_1_output_0" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="43560" size="32" />
<output>
<port id="0" precision="I64" names="/model.4/conv/conv.5/Constant_1_output_0">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="202" name="/model.4/conv/conv.5/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.4/conv/conv.5/Reshape_1_output_0">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="203" name="/model.4/conv/conv.5/Mul" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.4/conv/conv.5/Mul_output_0">
<dim>1</dim>
<dim>72</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="204" name="/model.4/conv/conv.6/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.4/conv/conv.6/Relu_output_0">
<dim>1</dim>
<dim>72</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="205" name="/model.4/conv/conv.6/Relu/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="206" name="/model.4/conv/conv.6/Relu/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="43592" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="207" name="/model.4/conv/conv.6/Relu/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="208" name="/model.4/conv/conv.6/Relu/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="43592" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="209" name="/model.4/conv/conv.6/Relu/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="210" name="Constant_515059" type="Const" version="opset1">
<data element_type="i8" shape="16, 72, 1, 1" offset="43596" size="1152" />
<output>
<port id="0" precision="I8">
<dim>16</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="211" name="Convert_515060" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>16</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="212" name="Constant_515061" type="Const" version="opset1">
<data element_type="f32" shape="16, 1, 1, 1" offset="44748" size="64" />
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="213" name="/model.4/conv/conv.7/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>16</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="214" name="/model.4/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="215" name="Reshape_687" type="Const" version="opset1">
<data element_type="f32" shape="1, 16, 1, 1" offset="44812" size="64" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="216" name="/model.4/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.4/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="217" name="/model.4/conv/conv.7/Conv/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="44876" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="218" name="/model.4/conv/conv.7/Conv/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="44880" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="219" name="/model.4/conv/conv.7/Conv/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="44876" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="220" name="/model.4/conv/conv.7/Conv/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="44880" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="221" name="/model.4/conv/conv.7/Conv/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="222" name="Constant_515063" type="Const" version="opset1">
<data element_type="i8" shape="120, 16, 1, 1" offset="44884" size="1920" />
<output>
<port id="0" precision="I8">
<dim>120</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="223" name="Convert_515064" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>120</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="224" name="Constant_515065" type="Const" version="opset1">
<data element_type="f32" shape="120, 1, 1, 1" offset="46804" size="480" />
<output>
<port id="0" precision="FP32">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="225" name="/model.5/conv/conv.0/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>120</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>120</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="226" name="/model.5/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="227" name="Reshape_703" type="Const" version="opset1">
<data element_type="f32" shape="1, 120, 1, 1" offset="47284" size="480" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="228" name="/model.5/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.5/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="229" name="/model.5/conv/conv.2/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.5/conv/conv.2/Relu_output_0">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="230" name="/model.5/conv/conv.2/Relu/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 120, 1, 1" offset="47764" size="480" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="231" name="/model.5/conv/conv.2/Relu/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 120, 1, 1" offset="48244" size="480" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="232" name="/model.5/conv/conv.2/Relu/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 120, 1, 1" offset="47764" size="480" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="233" name="/model.5/conv/conv.2/Relu/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 120, 1, 1" offset="48244" size="480" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="234" name="/model.5/conv/conv.2/Relu/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="3" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="4" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="235" name="Constant_515067" type="Const" version="opset1">
<data element_type="i8" shape="120, 1, 1, 5, 5" offset="48724" size="3000" />
<output>
<port id="0" precision="I8">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="236" name="Convert_515068" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="237" name="Constant_515069" type="Const" version="opset1">
<data element_type="f32" shape="120, 1, 1, 1, 1" offset="51724" size="480" />
<output>
<port id="0" precision="FP32">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="238" name="/model.5/conv/conv.3/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="239" name="/model.5/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="1, 1" pads_begin="2, 2" pads_end="2, 2" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="240" name="Reshape_767" type="Const" version="opset1">
<data element_type="f32" shape="1, 120, 1, 1" offset="52204" size="480" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="241" name="/model.5/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.5/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="242" name="/model.5/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="52684" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="243" name="/model.5/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="52688" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="244" name="/model.5/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="52684" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="245" name="/model.5/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="52688" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="246" name="/model.5/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="247" name="Range_777" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="40204" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="248" name="/model.5/conv/conv.5/avg_pool/GlobalAveragePool" type="ReduceMean" version="opset1">
<data keep_dims="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.5/conv/conv.5/avg_pool/GlobalAveragePool_output_0">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="249" name="/model.5/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="52692" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="250" name="/model.5/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="52696" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="251" name="/model.5/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="52692" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="252" name="/model.5/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="52696" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="253" name="/model.5/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="254" name="/model.5/conv/conv.5/Constant_output_0" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="52700" size="16" />
<output>
<port id="0" precision="I64" names="/model.5/conv/conv.5/Constant_output_0">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="255" name="/model.5/conv/conv.5/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.5/conv/conv.5/Reshape_output_0">
<dim>1</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="256" name="Constant_515071" type="Const" version="opset1">
<data element_type="i8" shape="30, 120" offset="52716" size="3600" />
<output>
<port id="0" precision="I8">
<dim>30</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="257" name="Convert_515072" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>30</dim>
<dim>120</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>30</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="258" name="Constant_515073" type="Const" version="opset1">
<data element_type="f32" shape="30, 1" offset="56316" size="120" />
<output>
<port id="0" precision="FP32">
<dim>30</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="259" name="/model.5/conv/conv.5/fc/fc.0/Gemm/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>30</dim>
<dim>120</dim>
</port>
<port id="1" precision="FP32">
<dim>30</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>30</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="260" name="/model.5/conv/conv.5/fc/fc.0/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
<port id="1" precision="FP32">
<dim>30</dim>
<dim>120</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="261" name="Constant_7122" type="Const" version="opset1">
<data element_type="f32" shape="1, 30" offset="56436" size="120" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="262" name="/model.5/conv/conv.5/fc/fc.0/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.5/conv/conv.5/fc/fc.0/Gemm_output_0">
<dim>1</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="263" name="/model.5/conv/conv.5/fc/fc.1/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.5/conv/conv.5/fc/fc.1/Relu_output_0">
<dim>1</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="264" name="/model.5/conv/conv.5/fc/fc.1/Relu/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="265" name="/model.5/conv/conv.5/fc/fc.1/Relu/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="56556" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="266" name="/model.5/conv/conv.5/fc/fc.1/Relu/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="267" name="/model.5/conv/conv.5/fc/fc.1/Relu/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="56556" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="268" name="/model.5/conv/conv.5/fc/fc.1/Relu/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="269" name="Constant_515075" type="Const" version="opset1">
<data element_type="i8" shape="120, 30" offset="56560" size="3600" />
<output>
<port id="0" precision="I8">
<dim>120</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="270" name="Convert_515076" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>120</dim>
<dim>30</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="271" name="Constant_515077" type="Const" version="opset1">
<data element_type="f32" shape="120, 1" offset="60160" size="480" />
<output>
<port id="0" precision="FP32">
<dim>120</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="272" name="/model.5/conv/conv.5/fc/fc.2/Gemm/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>120</dim>
<dim>30</dim>
</port>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>120</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="273" name="/model.5/conv/conv.5/fc/fc.2/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>30</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="274" name="Constant_7123" type="Const" version="opset1">
<data element_type="f32" shape="1, 120" offset="60640" size="480" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="275" name="/model.5/conv/conv.5/fc/fc.2/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.5/conv/conv.5/fc/fc.2/Gemm_output_0">
<dim>1</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="276" name="/model.5/conv/conv.5/fc/fc.3/Div" type="HSigmoid" version="opset5">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.5/conv/conv.5/fc/fc.3/Div_output_0">
<dim>1</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="277" name="/model.5/conv/conv.5/Constant_1_output_0" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="61120" size="32" />
<output>
<port id="0" precision="I64" names="/model.5/conv/conv.5/Constant_1_output_0">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="278" name="/model.5/conv/conv.5/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.5/conv/conv.5/Reshape_1_output_0">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="279" name="/model.5/conv/conv.5/Mul" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.5/conv/conv.5/Mul_output_0">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="280" name="/model.5/conv/conv.6/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.5/conv/conv.6/Relu_output_0">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="281" name="/model.5/conv/conv.6/Relu/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="282" name="/model.5/conv/conv.6/Relu/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="61152" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="283" name="/model.5/conv/conv.6/Relu/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="284" name="/model.5/conv/conv.6/Relu/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="61152" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="285" name="/model.5/conv/conv.6/Relu/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="286" name="Constant_515079" type="Const" version="opset1">
<data element_type="i8" shape="16, 120, 1, 1" offset="61156" size="1920" />
<output>
<port id="0" precision="I8">
<dim>16</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="287" name="Convert_515080" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>16</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="288" name="Constant_515081" type="Const" version="opset1">
<data element_type="f32" shape="16, 1, 1, 1" offset="63076" size="64" />
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="289" name="/model.5/conv/conv.7/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>16</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="290" name="/model.5/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="291" name="Reshape_816" type="Const" version="opset1">
<data element_type="f32" shape="1, 16, 1, 1" offset="63140" size="64" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="292" name="/model.5/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.5/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="293" name="/model.5/conv/conv.7/Conv/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="63204" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="294" name="/model.5/conv/conv.7/Conv/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="63208" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="295" name="/model.5/conv/conv.7/Conv/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="63204" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="296" name="/model.5/conv/conv.7/Conv/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="63208" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="297" name="/model.5/conv/conv.7/Conv/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="298" name="/model.5/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.5/Add_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="299" name="/model.5/Add/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="63212" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="300" name="/model.5/Add/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="63216" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="301" name="/model.5/Add/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="63212" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="302" name="/model.5/Add/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="63216" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="303" name="/model.5/Add/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="304" name="Constant_515083" type="Const" version="opset1">
<data element_type="i8" shape="120, 16, 1, 1" offset="63220" size="1920" />
<output>
<port id="0" precision="I8">
<dim>120</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="305" name="Convert_515084" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>120</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="306" name="Constant_515085" type="Const" version="opset1">
<data element_type="f32" shape="120, 1, 1, 1" offset="65140" size="480" />
<output>
<port id="0" precision="FP32">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="307" name="/model.6/conv/conv.0/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>120</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>120</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="308" name="/model.6/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="309" name="Reshape_833" type="Const" version="opset1">
<data element_type="f32" shape="1, 120, 1, 1" offset="65620" size="480" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="310" name="/model.6/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.6/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="311" name="/model.6/conv/conv.2/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.6/conv/conv.2/Relu_output_0">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="312" name="/model.6/conv/conv.2/Relu/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 120, 1, 1" offset="47764" size="480" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="313" name="/model.6/conv/conv.2/Relu/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 120, 1, 1" offset="66100" size="480" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="314" name="/model.6/conv/conv.2/Relu/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 120, 1, 1" offset="47764" size="480" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="315" name="/model.6/conv/conv.2/Relu/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 120, 1, 1" offset="66100" size="480" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="316" name="/model.6/conv/conv.2/Relu/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="3" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="4" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="317" name="Constant_515087" type="Const" version="opset1">
<data element_type="i8" shape="120, 1, 1, 5, 5" offset="66580" size="3000" />
<output>
<port id="0" precision="I8">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="318" name="Convert_515088" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="319" name="Constant_515089" type="Const" version="opset1">
<data element_type="f32" shape="120, 1, 1, 1, 1" offset="69580" size="480" />
<output>
<port id="0" precision="FP32">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="320" name="/model.6/conv/conv.3/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="321" name="/model.6/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="1, 1" pads_begin="2, 2" pads_end="2, 2" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="322" name="Reshape_897" type="Const" version="opset1">
<data element_type="f32" shape="1, 120, 1, 1" offset="70060" size="480" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="323" name="/model.6/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.6/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="324" name="/model.6/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="70540" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="325" name="/model.6/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="70544" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="326" name="/model.6/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="70540" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="327" name="/model.6/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="70544" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="328" name="/model.6/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="329" name="Range_907" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="40204" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="330" name="/model.6/conv/conv.5/avg_pool/GlobalAveragePool" type="ReduceMean" version="opset1">
<data keep_dims="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.6/conv/conv.5/avg_pool/GlobalAveragePool_output_0">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="331" name="/model.6/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="70548" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="332" name="/model.6/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="70552" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="333" name="/model.6/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="70548" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="334" name="/model.6/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="70552" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="335" name="/model.6/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="336" name="/model.6/conv/conv.5/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.6/conv/conv.5/Reshape_output_0">
<dim>1</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="337" name="Constant_515091" type="Const" version="opset1">
<data element_type="i8" shape="30, 120" offset="70556" size="3600" />
<output>
<port id="0" precision="I8">
<dim>30</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="338" name="Convert_515092" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>30</dim>
<dim>120</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>30</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="339" name="Constant_515093" type="Const" version="opset1">
<data element_type="f32" shape="30, 1" offset="74156" size="120" />
<output>
<port id="0" precision="FP32">
<dim>30</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="340" name="/model.6/conv/conv.5/fc/fc.0/Gemm/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>30</dim>
<dim>120</dim>
</port>
<port id="1" precision="FP32">
<dim>30</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>30</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="341" name="/model.6/conv/conv.5/fc/fc.0/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
<port id="1" precision="FP32">
<dim>30</dim>
<dim>120</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="342" name="Constant_7124" type="Const" version="opset1">
<data element_type="f32" shape="1, 30" offset="74276" size="120" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="343" name="/model.6/conv/conv.5/fc/fc.0/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.6/conv/conv.5/fc/fc.0/Gemm_output_0">
<dim>1</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="344" name="/model.6/conv/conv.5/fc/fc.1/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.6/conv/conv.5/fc/fc.1/Relu_output_0">
<dim>1</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="345" name="/model.6/conv/conv.5/fc/fc.1/Relu/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="346" name="/model.6/conv/conv.5/fc/fc.1/Relu/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="74396" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="347" name="/model.6/conv/conv.5/fc/fc.1/Relu/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="348" name="/model.6/conv/conv.5/fc/fc.1/Relu/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="74396" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="349" name="/model.6/conv/conv.5/fc/fc.1/Relu/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="350" name="Constant_515095" type="Const" version="opset1">
<data element_type="i8" shape="120, 30" offset="74400" size="3600" />
<output>
<port id="0" precision="I8">
<dim>120</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="351" name="Convert_515096" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>120</dim>
<dim>30</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="352" name="Constant_515097" type="Const" version="opset1">
<data element_type="f32" shape="120, 1" offset="78000" size="480" />
<output>
<port id="0" precision="FP32">
<dim>120</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="353" name="/model.6/conv/conv.5/fc/fc.2/Gemm/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>120</dim>
<dim>30</dim>
</port>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>120</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="354" name="/model.6/conv/conv.5/fc/fc.2/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>30</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="355" name="Constant_7125" type="Const" version="opset1">
<data element_type="f32" shape="1, 120" offset="78480" size="480" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="356" name="/model.6/conv/conv.5/fc/fc.2/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.6/conv/conv.5/fc/fc.2/Gemm_output_0">
<dim>1</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="357" name="/model.6/conv/conv.5/fc/fc.3/Div" type="HSigmoid" version="opset5">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.6/conv/conv.5/fc/fc.3/Div_output_0">
<dim>1</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="358" name="/model.6/conv/conv.5/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.6/conv/conv.5/Reshape_1_output_0">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="359" name="/model.6/conv/conv.5/Mul" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.6/conv/conv.5/Mul_output_0">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="360" name="/model.6/conv/conv.6/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.6/conv/conv.6/Relu_output_0">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="361" name="/model.6/conv/conv.6/Relu/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="362" name="/model.6/conv/conv.6/Relu/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="78960" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="363" name="/model.6/conv/conv.6/Relu/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="364" name="/model.6/conv/conv.6/Relu/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="78960" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="365" name="/model.6/conv/conv.6/Relu/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="366" name="Constant_515099" type="Const" version="opset1">
<data element_type="i8" shape="16, 120, 1, 1" offset="78964" size="1920" />
<output>
<port id="0" precision="I8">
<dim>16</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="367" name="Convert_515100" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>16</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="368" name="Constant_515101" type="Const" version="opset1">
<data element_type="f32" shape="16, 1, 1, 1" offset="80884" size="64" />
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="369" name="/model.6/conv/conv.7/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>16</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="370" name="/model.6/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="371" name="Reshape_946" type="Const" version="opset1">
<data element_type="f32" shape="1, 16, 1, 1" offset="80948" size="64" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="372" name="/model.6/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.6/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="373" name="/model.6/conv/conv.7/Conv/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="81012" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="374" name="/model.6/conv/conv.7/Conv/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="81016" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="375" name="/model.6/conv/conv.7/Conv/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="81012" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="376" name="/model.6/conv/conv.7/Conv/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="81016" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="377" name="/model.6/conv/conv.7/Conv/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="378" name="/model.6/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.6/Add_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="379" name="/model.6/Add/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="81020" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="380" name="/model.6/Add/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="81024" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="381" name="/model.6/Add/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="81020" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="382" name="/model.6/Add/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="81024" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="383" name="/model.6/Add/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="384" name="Constant_515103" type="Const" version="opset1">
<data element_type="i8" shape="240, 16, 1, 1" offset="81028" size="3840" />
<output>
<port id="0" precision="I8">
<dim>240</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="385" name="Convert_515104" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>240</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>240</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="386" name="Constant_515105" type="Const" version="opset1">
<data element_type="f32" shape="240, 1, 1, 1" offset="84868" size="960" />
<output>
<port id="0" precision="FP32">
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="387" name="/model.7/conv/conv.0/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>240</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>240</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="388" name="/model.7/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>240</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="389" name="Reshape_963" type="Const" version="opset1">
<data element_type="f32" shape="1, 240, 1, 1" offset="85828" size="960" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="390" name="/model.7/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.7/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>240</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="391" name="/model.7/conv/conv.2/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.7/conv/conv.2/Mul_output_0">
<dim>1</dim>
<dim>240</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="392" name="/model.7/conv/conv.2/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 240, 1, 1" offset="86788" size="960" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="393" name="/model.7/conv/conv.2/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 240, 1, 1" offset="87748" size="960" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="394" name="/model.7/conv/conv.2/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 240, 1, 1" offset="86788" size="960" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="395" name="/model.7/conv/conv.2/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 240, 1, 1" offset="87748" size="960" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="396" name="/model.7/conv/conv.2/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="3" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="4" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="397" name="Constant_515107" type="Const" version="opset1">
<data element_type="i8" shape="240, 1, 1, 3, 3" offset="88708" size="2160" />
<output>
<port id="0" precision="I8">
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="398" name="Convert_515108" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="399" name="Constant_515109" type="Const" version="opset1">
<data element_type="f32" shape="240, 1, 1, 1, 1" offset="90868" size="960" />
<output>
<port id="0" precision="FP32">
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="400" name="/model.7/conv/conv.3/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="401" name="/model.7/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="2, 2" pads_begin="1, 1" pads_end="1, 1" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="402" name="Reshape_1031" type="Const" version="opset1">
<data element_type="f32" shape="1, 240, 1, 1" offset="91828" size="960" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="403" name="/model.7/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.7/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>240</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="404" name="/model.7/conv/conv.6/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.7/conv/conv.6/Mul_output_0">
<dim>1</dim>
<dim>240</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="405" name="/model.7/conv/conv.6/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="92788" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="406" name="/model.7/conv/conv.6/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="92792" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="407" name="/model.7/conv/conv.6/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="92788" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="408" name="/model.7/conv/conv.6/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="92792" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="409" name="/model.7/conv/conv.6/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="410" name="Constant_515111" type="Const" version="opset1">
<data element_type="i8" shape="24, 240, 1, 1" offset="92796" size="5760" />
<output>
<port id="0" precision="I8">
<dim>24</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="411" name="Convert_515112" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>24</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="412" name="Constant_515113" type="Const" version="opset1">
<data element_type="f32" shape="24, 1, 1, 1" offset="98556" size="96" />
<output>
<port id="0" precision="FP32">
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="413" name="/model.7/conv/conv.7/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>24</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>24</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="414" name="/model.7/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="415" name="Reshape_1052" type="Const" version="opset1">
<data element_type="f32" shape="1, 24, 1, 1" offset="98652" size="96" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="416" name="/model.7/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.7/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="417" name="/model.7/conv/conv.7/Conv/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="98748" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="418" name="/model.7/conv/conv.7/Conv/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="98752" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="419" name="/model.7/conv/conv.7/Conv/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="98748" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="420" name="/model.7/conv/conv.7/Conv/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="98752" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="421" name="/model.7/conv/conv.7/Conv/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="422" name="Constant_515115" type="Const" version="opset1">
<data element_type="i8" shape="200, 24, 1, 1" offset="98756" size="4800" />
<output>
<port id="0" precision="I8">
<dim>200</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="423" name="Convert_515116" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>200</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>200</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="424" name="Constant_515117" type="Const" version="opset1">
<data element_type="f32" shape="200, 1, 1, 1" offset="103556" size="800" />
<output>
<port id="0" precision="FP32">
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="425" name="/model.8/conv/conv.0/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>200</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>200</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="426" name="/model.8/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>200</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="427" name="Reshape_1068" type="Const" version="opset1">
<data element_type="f32" shape="1, 200, 1, 1" offset="104356" size="800" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="428" name="/model.8/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.8/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>200</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="429" name="/model.8/conv/conv.2/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.8/conv/conv.2/Mul_output_0">
<dim>1</dim>
<dim>200</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="430" name="/model.8/conv/conv.2/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 200, 1, 1" offset="105156" size="800" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="431" name="/model.8/conv/conv.2/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 200, 1, 1" offset="105956" size="800" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="432" name="/model.8/conv/conv.2/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 200, 1, 1" offset="105156" size="800" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="433" name="/model.8/conv/conv.2/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 200, 1, 1" offset="105956" size="800" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="434" name="/model.8/conv/conv.2/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="3" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="4" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="435" name="Constant_515119" type="Const" version="opset1">
<data element_type="i8" shape="200, 1, 1, 3, 3" offset="106756" size="1800" />
<output>
<port id="0" precision="I8">
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="436" name="Convert_515120" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="437" name="Constant_515121" type="Const" version="opset1">
<data element_type="f32" shape="200, 1, 1, 1, 1" offset="108556" size="800" />
<output>
<port id="0" precision="FP32">
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="438" name="/model.8/conv/conv.3/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="439" name="/model.8/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="1, 1" pads_begin="1, 1" pads_end="1, 1" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="440" name="Reshape_1136" type="Const" version="opset1">
<data element_type="f32" shape="1, 200, 1, 1" offset="109356" size="800" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="441" name="/model.8/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.8/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>200</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="442" name="/model.8/conv/conv.6/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.8/conv/conv.6/Mul_output_0">
<dim>1</dim>
<dim>200</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="443" name="/model.8/conv/conv.6/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="110156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="444" name="/model.8/conv/conv.6/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="110160" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="445" name="/model.8/conv/conv.6/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="110156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="446" name="/model.8/conv/conv.6/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="110160" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="447" name="/model.8/conv/conv.6/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="448" name="Constant_515123" type="Const" version="opset1">
<data element_type="i8" shape="24, 200, 1, 1" offset="110164" size="4800" />
<output>
<port id="0" precision="I8">
<dim>24</dim>
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="449" name="Convert_515124" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>24</dim>
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="450" name="Constant_515125" type="Const" version="opset1">
<data element_type="f32" shape="24, 1, 1, 1" offset="114964" size="96" />
<output>
<port id="0" precision="FP32">
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="451" name="/model.8/conv/conv.7/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>24</dim>
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>24</dim>
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="452" name="/model.8/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>200</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>200</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="453" name="Reshape_1157" type="Const" version="opset1">
<data element_type="f32" shape="1, 24, 1, 1" offset="115060" size="96" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="454" name="/model.8/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.8/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="455" name="/model.8/conv/conv.7/Conv/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="115156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="456" name="/model.8/conv/conv.7/Conv/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="115160" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="457" name="/model.8/conv/conv.7/Conv/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="115156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="458" name="/model.8/conv/conv.7/Conv/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="115160" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="459" name="/model.8/conv/conv.7/Conv/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="460" name="/model.8/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.8/Add_output_0">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="461" name="/model.8/Add/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="115164" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="462" name="/model.8/Add/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="115168" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="463" name="/model.8/Add/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="115164" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="464" name="/model.8/Add/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="115168" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="465" name="/model.8/Add/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="466" name="Constant_515127" type="Const" version="opset1">
<data element_type="i8" shape="184, 24, 1, 1" offset="115172" size="4416" />
<output>
<port id="0" precision="I8">
<dim>184</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="467" name="Convert_515128" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>184</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>184</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="468" name="Constant_515129" type="Const" version="opset1">
<data element_type="f32" shape="184, 1, 1, 1" offset="119588" size="736" />
<output>
<port id="0" precision="FP32">
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="469" name="/model.9/conv/conv.0/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>184</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>184</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="470" name="/model.9/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>184</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="471" name="Reshape_1174" type="Const" version="opset1">
<data element_type="f32" shape="1, 184, 1, 1" offset="120324" size="736" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="472" name="/model.9/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.9/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="473" name="/model.9/conv/conv.2/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.9/conv/conv.2/Mul_output_0">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="474" name="/model.9/conv/conv.2/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 184, 1, 1" offset="121060" size="736" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="475" name="/model.9/conv/conv.2/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 184, 1, 1" offset="121796" size="736" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="476" name="/model.9/conv/conv.2/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 184, 1, 1" offset="121060" size="736" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="477" name="/model.9/conv/conv.2/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 184, 1, 1" offset="121796" size="736" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="478" name="/model.9/conv/conv.2/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="3" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="4" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="479" name="Constant_515131" type="Const" version="opset1">
<data element_type="i8" shape="184, 1, 1, 3, 3" offset="122532" size="1656" />
<output>
<port id="0" precision="I8">
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="480" name="Convert_515132" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="481" name="Constant_515133" type="Const" version="opset1">
<data element_type="f32" shape="184, 1, 1, 1, 1" offset="124188" size="736" />
<output>
<port id="0" precision="FP32">
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="482" name="/model.9/conv/conv.3/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="483" name="/model.9/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="1, 1" pads_begin="1, 1" pads_end="1, 1" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="484" name="Reshape_1242" type="Const" version="opset1">
<data element_type="f32" shape="1, 184, 1, 1" offset="124924" size="736" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="485" name="/model.9/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.9/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="486" name="/model.9/conv/conv.6/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.9/conv/conv.6/Mul_output_0">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="487" name="/model.9/conv/conv.6/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="92788" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="488" name="/model.9/conv/conv.6/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="125660" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="489" name="/model.9/conv/conv.6/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="92788" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="490" name="/model.9/conv/conv.6/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="125660" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="491" name="/model.9/conv/conv.6/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="492" name="Constant_515135" type="Const" version="opset1">
<data element_type="i8" shape="24, 184, 1, 1" offset="125664" size="4416" />
<output>
<port id="0" precision="I8">
<dim>24</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="493" name="Convert_515136" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>24</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="494" name="Constant_515137" type="Const" version="opset1">
<data element_type="f32" shape="24, 1, 1, 1" offset="130080" size="96" />
<output>
<port id="0" precision="FP32">
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="495" name="/model.9/conv/conv.7/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>24</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>24</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="496" name="/model.9/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="497" name="Reshape_1263" type="Const" version="opset1">
<data element_type="f32" shape="1, 24, 1, 1" offset="130176" size="96" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="498" name="/model.9/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.9/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="499" name="/model.9/conv/conv.7/Conv/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="130272" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="500" name="/model.9/conv/conv.7/Conv/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="130276" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="501" name="/model.9/conv/conv.7/Conv/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="130272" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="502" name="/model.9/conv/conv.7/Conv/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="130276" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="503" name="/model.9/conv/conv.7/Conv/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="504" name="/model.9/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.9/Add_output_0">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="505" name="/model.9/Add/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="130280" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="506" name="/model.9/Add/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="130284" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="507" name="/model.9/Add/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="130280" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="508" name="/model.9/Add/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="130284" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="509" name="/model.9/Add/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="510" name="Constant_515139" type="Const" version="opset1">
<data element_type="i8" shape="184, 24, 1, 1" offset="130288" size="4416" />
<output>
<port id="0" precision="I8">
<dim>184</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="511" name="Convert_515140" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>184</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>184</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="512" name="Constant_515141" type="Const" version="opset1">
<data element_type="f32" shape="184, 1, 1, 1" offset="134704" size="736" />
<output>
<port id="0" precision="FP32">
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="513" name="/model.10/conv/conv.0/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>184</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>184</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="514" name="/model.10/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>184</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="515" name="Reshape_1280" type="Const" version="opset1">
<data element_type="f32" shape="1, 184, 1, 1" offset="135440" size="736" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="516" name="/model.10/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.10/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="517" name="/model.10/conv/conv.2/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.10/conv/conv.2/Mul_output_0">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="518" name="/model.10/conv/conv.2/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 184, 1, 1" offset="136176" size="736" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="519" name="/model.10/conv/conv.2/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 184, 1, 1" offset="136912" size="736" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="520" name="/model.10/conv/conv.2/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 184, 1, 1" offset="136176" size="736" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="521" name="/model.10/conv/conv.2/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 184, 1, 1" offset="136912" size="736" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="522" name="/model.10/conv/conv.2/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="3" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="4" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="523" name="Constant_515143" type="Const" version="opset1">
<data element_type="i8" shape="184, 1, 1, 3, 3" offset="137648" size="1656" />
<output>
<port id="0" precision="I8">
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="524" name="Convert_515144" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="525" name="Constant_515145" type="Const" version="opset1">
<data element_type="f32" shape="184, 1, 1, 1, 1" offset="139304" size="736" />
<output>
<port id="0" precision="FP32">
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="526" name="/model.10/conv/conv.3/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="527" name="/model.10/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="1, 1" pads_begin="1, 1" pads_end="1, 1" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="528" name="Reshape_1348" type="Const" version="opset1">
<data element_type="f32" shape="1, 184, 1, 1" offset="140040" size="736" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="529" name="/model.10/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.10/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="530" name="/model.10/conv/conv.6/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.10/conv/conv.6/Mul_output_0">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="531" name="/model.10/conv/conv.6/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="140776" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="532" name="/model.10/conv/conv.6/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="140780" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="533" name="/model.10/conv/conv.6/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="140776" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="534" name="/model.10/conv/conv.6/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="140780" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="535" name="/model.10/conv/conv.6/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="536" name="Constant_515147" type="Const" version="opset1">
<data element_type="i8" shape="24, 184, 1, 1" offset="140784" size="4416" />
<output>
<port id="0" precision="I8">
<dim>24</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="537" name="Convert_515148" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>24</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="538" name="Constant_515149" type="Const" version="opset1">
<data element_type="f32" shape="24, 1, 1, 1" offset="145200" size="96" />
<output>
<port id="0" precision="FP32">
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="539" name="/model.10/conv/conv.7/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>24</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>24</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="540" name="/model.10/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>184</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>184</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="541" name="Reshape_1369" type="Const" version="opset1">
<data element_type="f32" shape="1, 24, 1, 1" offset="145296" size="96" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="542" name="/model.10/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.10/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="543" name="/model.10/conv/conv.7/Conv/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="145392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="544" name="/model.10/conv/conv.7/Conv/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="145396" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="545" name="/model.10/conv/conv.7/Conv/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="145392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="546" name="/model.10/conv/conv.7/Conv/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="145396" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="547" name="/model.10/conv/conv.7/Conv/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="548" name="/model.10/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.10/Add_output_0">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="549" name="/model.10/Add/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="145400" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="550" name="/model.10/Add/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="145404" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="551" name="/model.10/Add/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="145400" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="552" name="/model.10/Add/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="145404" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="553" name="/model.10/Add/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="554" name="Constant_515151" type="Const" version="opset1">
<data element_type="i8" shape="480, 24, 1, 1" offset="145408" size="11520" />
<output>
<port id="0" precision="I8">
<dim>480</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="555" name="Convert_515152" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>480</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>480</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="556" name="Constant_515153" type="Const" version="opset1">
<data element_type="f32" shape="480, 1, 1, 1" offset="156928" size="1920" />
<output>
<port id="0" precision="FP32">
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="557" name="/model.11/conv/conv.0/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>480</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>480</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="558" name="/model.11/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>480</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="559" name="Reshape_1386" type="Const" version="opset1">
<data element_type="f32" shape="1, 480, 1, 1" offset="158848" size="1920" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="560" name="/model.11/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.11/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>480</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="561" name="/model.11/conv/conv.2/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.11/conv/conv.2/Mul_output_0">
<dim>1</dim>
<dim>480</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="562" name="/model.11/conv/conv.2/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 480, 1, 1" offset="160768" size="1920" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="563" name="/model.11/conv/conv.2/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 480, 1, 1" offset="162688" size="1920" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="564" name="/model.11/conv/conv.2/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 480, 1, 1" offset="160768" size="1920" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="565" name="/model.11/conv/conv.2/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 480, 1, 1" offset="162688" size="1920" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="566" name="/model.11/conv/conv.2/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="3" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="4" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="567" name="Constant_515155" type="Const" version="opset1">
<data element_type="i8" shape="480, 1, 1, 3, 3" offset="164608" size="4320" />
<output>
<port id="0" precision="I8">
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="568" name="Convert_515156" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="569" name="Constant_515157" type="Const" version="opset1">
<data element_type="f32" shape="480, 1, 1, 1, 1" offset="168928" size="1920" />
<output>
<port id="0" precision="FP32">
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="570" name="/model.11/conv/conv.3/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="571" name="/model.11/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="1, 1" pads_begin="1, 1" pads_end="1, 1" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="572" name="Reshape_1454" type="Const" version="opset1">
<data element_type="f32" shape="1, 480, 1, 1" offset="170848" size="1920" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="573" name="/model.11/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.11/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>480</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="574" name="/model.11/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="172768" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="575" name="/model.11/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="172772" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="576" name="/model.11/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="172768" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="577" name="/model.11/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="172772" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="578" name="/model.11/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="579" name="Range_1464" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="40204" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="580" name="/model.11/conv/conv.5/avg_pool/GlobalAveragePool" type="ReduceMean" version="opset1">
<data keep_dims="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.11/conv/conv.5/avg_pool/GlobalAveragePool_output_0">
<dim>1</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="581" name="/model.11/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="172776" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="582" name="/model.11/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="172780" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="583" name="/model.11/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="172776" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="584" name="/model.11/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="172780" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="585" name="/model.11/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="586" name="/model.11/conv/conv.5/Constant_output_0" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="172784" size="16" />
<output>
<port id="0" precision="I64" names="/model.11/conv/conv.5/Constant_output_0">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="587" name="/model.11/conv/conv.5/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.11/conv/conv.5/Reshape_output_0">
<dim>1</dim>
<dim>480</dim>
</port>
</output>
</layer>
<layer id="588" name="Constant_515159" type="Const" version="opset1">
<data element_type="i8" shape="120, 480" offset="172800" size="57600" />
<output>
<port id="0" precision="I8">
<dim>120</dim>
<dim>480</dim>
</port>
</output>
</layer>
<layer id="589" name="Convert_515160" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>120</dim>
<dim>480</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>480</dim>
</port>
</output>
</layer>
<layer id="590" name="Constant_515161" type="Const" version="opset1">
<data element_type="f32" shape="120, 1" offset="230400" size="480" />
<output>
<port id="0" precision="FP32">
<dim>120</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="591" name="/model.11/conv/conv.5/fc/fc.0/Gemm/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>120</dim>
<dim>480</dim>
</port>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>120</dim>
<dim>480</dim>
</port>
</output>
</layer>
<layer id="592" name="/model.11/conv/conv.5/fc/fc.0/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
</port>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>480</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="593" name="Constant_7126" type="Const" version="opset1">
<data element_type="f32" shape="1, 120" offset="230880" size="480" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="594" name="/model.11/conv/conv.5/fc/fc.0/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.11/conv/conv.5/fc/fc.0/Gemm_output_0">
<dim>1</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="595" name="/model.11/conv/conv.5/fc/fc.1/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.11/conv/conv.5/fc/fc.1/Relu_output_0">
<dim>1</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="596" name="/model.11/conv/conv.5/fc/fc.1/Relu/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="597" name="/model.11/conv/conv.5/fc/fc.1/Relu/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="231360" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="598" name="/model.11/conv/conv.5/fc/fc.1/Relu/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="599" name="/model.11/conv/conv.5/fc/fc.1/Relu/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="231360" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="600" name="/model.11/conv/conv.5/fc/fc.1/Relu/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="601" name="Constant_515163" type="Const" version="opset1">
<data element_type="i8" shape="480, 120" offset="231364" size="57600" />
<output>
<port id="0" precision="I8">
<dim>480</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="602" name="Convert_515164" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>480</dim>
<dim>120</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>480</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="603" name="Constant_515165" type="Const" version="opset1">
<data element_type="f32" shape="480, 1" offset="288964" size="1920" />
<output>
<port id="0" precision="FP32">
<dim>480</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="604" name="/model.11/conv/conv.5/fc/fc.2/Gemm/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>480</dim>
<dim>120</dim>
</port>
<port id="1" precision="FP32">
<dim>480</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>480</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="605" name="/model.11/conv/conv.5/fc/fc.2/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
<port id="1" precision="FP32">
<dim>480</dim>
<dim>120</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>480</dim>
</port>
</output>
</layer>
<layer id="606" name="Constant_7127" type="Const" version="opset1">
<data element_type="f32" shape="1, 480" offset="290884" size="1920" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
</port>
</output>
</layer>
<layer id="607" name="/model.11/conv/conv.5/fc/fc.2/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>480</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.11/conv/conv.5/fc/fc.2/Gemm_output_0">
<dim>1</dim>
<dim>480</dim>
</port>
</output>
</layer>
<layer id="608" name="/model.11/conv/conv.5/fc/fc.3/Div" type="HSigmoid" version="opset5">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.11/conv/conv.5/fc/fc.3/Div_output_0">
<dim>1</dim>
<dim>480</dim>
</port>
</output>
</layer>
<layer id="609" name="/model.11/conv/conv.5/Constant_1_output_0" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="292804" size="32" />
<output>
<port id="0" precision="I64" names="/model.11/conv/conv.5/Constant_1_output_0">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="610" name="/model.11/conv/conv.5/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.11/conv/conv.5/Reshape_1_output_0">
<dim>1</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="611" name="/model.11/conv/conv.5/Mul" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.11/conv/conv.5/Mul_output_0">
<dim>1</dim>
<dim>480</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="612" name="/model.11/conv/conv.6/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.11/conv/conv.6/Mul_output_0">
<dim>1</dim>
<dim>480</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="613" name="/model.11/conv/conv.6/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="92788" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="614" name="/model.11/conv/conv.6/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="292836" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="615" name="/model.11/conv/conv.6/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="92788" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="616" name="/model.11/conv/conv.6/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="292836" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="617" name="/model.11/conv/conv.6/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="618" name="Constant_515167" type="Const" version="opset1">
<data element_type="i8" shape="32, 480, 1, 1" offset="292840" size="15360" />
<output>
<port id="0" precision="I8">
<dim>32</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="619" name="Convert_515168" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>32</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="620" name="Constant_515169" type="Const" version="opset1">
<data element_type="f32" shape="32, 1, 1, 1" offset="308200" size="128" />
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="621" name="/model.11/conv/conv.7/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>32</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="622" name="/model.11/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>480</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>480</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="623" name="Reshape_1507" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1, 1" offset="308328" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="624" name="/model.11/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.11/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>32</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="625" name="/model.11/conv/conv.7/Conv/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="308456" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="626" name="/model.11/conv/conv.7/Conv/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="308460" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="627" name="/model.11/conv/conv.7/Conv/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="308456" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="628" name="/model.11/conv/conv.7/Conv/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="308460" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="629" name="/model.11/conv/conv.7/Conv/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="630" name="Constant_515171" type="Const" version="opset1">
<data element_type="i8" shape="672, 32, 1, 1" offset="308464" size="21504" />
<output>
<port id="0" precision="I8">
<dim>672</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="631" name="Convert_515172" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>672</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="632" name="Constant_515173" type="Const" version="opset1">
<data element_type="f32" shape="672, 1, 1, 1" offset="329968" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="633" name="/model.12/conv/conv.0/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>672</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>672</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="634" name="/model.12/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="635" name="Reshape_1523" type="Const" version="opset1">
<data element_type="f32" shape="1, 672, 1, 1" offset="332656" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="636" name="/model.12/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.12/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="637" name="/model.12/conv/conv.2/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.12/conv/conv.2/Mul_output_0">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="638" name="/model.12/conv/conv.2/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 672, 1, 1" offset="335344" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="639" name="/model.12/conv/conv.2/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 672, 1, 1" offset="338032" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="640" name="/model.12/conv/conv.2/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 672, 1, 1" offset="335344" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="641" name="/model.12/conv/conv.2/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 672, 1, 1" offset="338032" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="642" name="/model.12/conv/conv.2/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="3" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="4" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="643" name="Constant_515175" type="Const" version="opset1">
<data element_type="i8" shape="672, 1, 1, 3, 3" offset="340720" size="6048" />
<output>
<port id="0" precision="I8">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="644" name="Convert_515176" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="645" name="Constant_515177" type="Const" version="opset1">
<data element_type="f32" shape="672, 1, 1, 1, 1" offset="346768" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="646" name="/model.12/conv/conv.3/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="647" name="/model.12/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="1, 1" pads_begin="1, 1" pads_end="1, 1" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="648" name="Reshape_1591" type="Const" version="opset1">
<data element_type="f32" shape="1, 672, 1, 1" offset="349456" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="649" name="/model.12/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.12/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="650" name="/model.12/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="352144" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="651" name="/model.12/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="352148" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="652" name="/model.12/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="352144" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="653" name="/model.12/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="352148" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="654" name="/model.12/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="655" name="Range_1601" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="40204" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="656" name="/model.12/conv/conv.5/avg_pool/GlobalAveragePool" type="ReduceMean" version="opset1">
<data keep_dims="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.12/conv/conv.5/avg_pool/GlobalAveragePool_output_0">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="657" name="/model.12/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="352152" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="658" name="/model.12/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="352156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="659" name="/model.12/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="352152" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="660" name="/model.12/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="352156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="661" name="/model.12/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="662" name="/model.12/conv/conv.5/Constant_output_0" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="352160" size="16" />
<output>
<port id="0" precision="I64" names="/model.12/conv/conv.5/Constant_output_0">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="663" name="/model.12/conv/conv.5/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.12/conv/conv.5/Reshape_output_0">
<dim>1</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="664" name="Constant_515179" type="Const" version="opset1">
<data element_type="i8" shape="168, 672" offset="352176" size="112896" />
<output>
<port id="0" precision="I8">
<dim>168</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="665" name="Convert_515180" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>168</dim>
<dim>672</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>168</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="666" name="Constant_515181" type="Const" version="opset1">
<data element_type="f32" shape="168, 1" offset="465072" size="672" />
<output>
<port id="0" precision="FP32">
<dim>168</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="667" name="/model.12/conv/conv.5/fc/fc.0/Gemm/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>168</dim>
<dim>672</dim>
</port>
<port id="1" precision="FP32">
<dim>168</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>168</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="668" name="/model.12/conv/conv.5/fc/fc.0/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
</port>
<port id="1" precision="FP32">
<dim>168</dim>
<dim>672</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="669" name="Constant_7128" type="Const" version="opset1">
<data element_type="f32" shape="1, 168" offset="465744" size="672" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="670" name="/model.12/conv/conv.5/fc/fc.0/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.12/conv/conv.5/fc/fc.0/Gemm_output_0">
<dim>1</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="671" name="/model.12/conv/conv.5/fc/fc.1/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.12/conv/conv.5/fc/fc.1/Relu_output_0">
<dim>1</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="672" name="/model.12/conv/conv.5/fc/fc.1/Relu/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="673" name="/model.12/conv/conv.5/fc/fc.1/Relu/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="466416" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="674" name="/model.12/conv/conv.5/fc/fc.1/Relu/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="675" name="/model.12/conv/conv.5/fc/fc.1/Relu/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="466416" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="676" name="/model.12/conv/conv.5/fc/fc.1/Relu/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="677" name="Constant_515183" type="Const" version="opset1">
<data element_type="i8" shape="672, 168" offset="466420" size="112896" />
<output>
<port id="0" precision="I8">
<dim>672</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="678" name="Convert_515184" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>672</dim>
<dim>168</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="679" name="Constant_515185" type="Const" version="opset1">
<data element_type="f32" shape="672, 1" offset="579316" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>672</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="680" name="/model.12/conv/conv.5/fc/fc.2/Gemm/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>672</dim>
<dim>168</dim>
</port>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>672</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="681" name="/model.12/conv/conv.5/fc/fc.2/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>168</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="682" name="Constant_7129" type="Const" version="opset1">
<data element_type="f32" shape="1, 672" offset="582004" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="683" name="/model.12/conv/conv.5/fc/fc.2/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>672</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.12/conv/conv.5/fc/fc.2/Gemm_output_0">
<dim>1</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="684" name="/model.12/conv/conv.5/fc/fc.3/Div" type="HSigmoid" version="opset5">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.12/conv/conv.5/fc/fc.3/Div_output_0">
<dim>1</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="685" name="/model.12/conv/conv.5/Constant_1_output_0" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="584692" size="32" />
<output>
<port id="0" precision="I64" names="/model.12/conv/conv.5/Constant_1_output_0">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="686" name="/model.12/conv/conv.5/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.12/conv/conv.5/Reshape_1_output_0">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="687" name="/model.12/conv/conv.5/Mul" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.12/conv/conv.5/Mul_output_0">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="688" name="/model.12/conv/conv.6/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.12/conv/conv.6/Mul_output_0">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="689" name="/model.12/conv/conv.6/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="92788" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="690" name="/model.12/conv/conv.6/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="292836" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="691" name="/model.12/conv/conv.6/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="92788" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="692" name="/model.12/conv/conv.6/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="292836" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="693" name="/model.12/conv/conv.6/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="694" name="Constant_515187" type="Const" version="opset1">
<data element_type="i8" shape="32, 672, 1, 1" offset="584724" size="21504" />
<output>
<port id="0" precision="I8">
<dim>32</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="695" name="Convert_515188" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>32</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="696" name="Constant_515189" type="Const" version="opset1">
<data element_type="f32" shape="32, 1, 1, 1" offset="606228" size="128" />
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="697" name="/model.12/conv/conv.7/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>32</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="698" name="/model.12/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="699" name="Reshape_1644" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1, 1" offset="606356" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="700" name="/model.12/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.12/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>32</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="701" name="/model.12/conv/conv.7/Conv/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="606484" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="702" name="/model.12/conv/conv.7/Conv/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="606488" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="703" name="/model.12/conv/conv.7/Conv/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="606484" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="704" name="/model.12/conv/conv.7/Conv/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="606488" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="705" name="/model.12/conv/conv.7/Conv/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="706" name="/model.12/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.12/Add_output_0">
<dim>1</dim>
<dim>32</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="707" name="/model.12/Add/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="606492" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="708" name="/model.12/Add/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="606496" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="709" name="/model.12/Add/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="606492" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="710" name="/model.12/Add/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="606496" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="711" name="/model.12/Add/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="712" name="Constant_515191" type="Const" version="opset1">
<data element_type="i8" shape="672, 32, 1, 1" offset="606500" size="21504" />
<output>
<port id="0" precision="I8">
<dim>672</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="713" name="Convert_515192" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>672</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="714" name="Constant_515193" type="Const" version="opset1">
<data element_type="f32" shape="672, 1, 1, 1" offset="628004" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="715" name="/model.13/conv/conv.0/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>672</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>672</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="716" name="/model.13/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="717" name="Reshape_1661" type="Const" version="opset1">
<data element_type="f32" shape="1, 672, 1, 1" offset="630692" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="718" name="/model.13/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.13/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="719" name="/model.13/conv/conv.2/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.13/conv/conv.2/Mul_output_0">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="720" name="/model.13/conv/conv.2/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 672, 1, 1" offset="633380" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="721" name="/model.13/conv/conv.2/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 672, 1, 1" offset="636068" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="722" name="/model.13/conv/conv.2/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 672, 1, 1" offset="633380" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="723" name="/model.13/conv/conv.2/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 672, 1, 1" offset="636068" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="724" name="/model.13/conv/conv.2/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="3" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="4" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="725" name="Constant_515195" type="Const" version="opset1">
<data element_type="i8" shape="672, 1, 1, 5, 5" offset="638756" size="16800" />
<output>
<port id="0" precision="I8">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="726" name="Convert_515196" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="727" name="Constant_515197" type="Const" version="opset1">
<data element_type="f32" shape="672, 1, 1, 1, 1" offset="655556" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="728" name="/model.13/conv/conv.3/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="729" name="/model.13/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="1, 1" pads_begin="2, 2" pads_end="2, 2" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="730" name="Reshape_1729" type="Const" version="opset1">
<data element_type="f32" shape="1, 672, 1, 1" offset="658244" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="731" name="/model.13/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.13/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="732" name="/model.13/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="660932" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="733" name="/model.13/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="660936" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="734" name="/model.13/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="660932" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="735" name="/model.13/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="660936" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="736" name="/model.13/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="737" name="Range_1739" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="40204" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="738" name="/model.13/conv/conv.5/avg_pool/GlobalAveragePool" type="ReduceMean" version="opset1">
<data keep_dims="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.13/conv/conv.5/avg_pool/GlobalAveragePool_output_0">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="739" name="/model.13/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="660940" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="740" name="/model.13/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="660944" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="741" name="/model.13/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="660940" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="742" name="/model.13/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="660944" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="743" name="/model.13/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="744" name="/model.13/conv/conv.5/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.13/conv/conv.5/Reshape_output_0">
<dim>1</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="745" name="Constant_515199" type="Const" version="opset1">
<data element_type="i8" shape="168, 672" offset="660948" size="112896" />
<output>
<port id="0" precision="I8">
<dim>168</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="746" name="Convert_515200" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>168</dim>
<dim>672</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>168</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="747" name="Constant_515201" type="Const" version="opset1">
<data element_type="f32" shape="168, 1" offset="773844" size="672" />
<output>
<port id="0" precision="FP32">
<dim>168</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="748" name="/model.13/conv/conv.5/fc/fc.0/Gemm/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>168</dim>
<dim>672</dim>
</port>
<port id="1" precision="FP32">
<dim>168</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>168</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="749" name="/model.13/conv/conv.5/fc/fc.0/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
</port>
<port id="1" precision="FP32">
<dim>168</dim>
<dim>672</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="750" name="Constant_7130" type="Const" version="opset1">
<data element_type="f32" shape="1, 168" offset="774516" size="672" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="751" name="/model.13/conv/conv.5/fc/fc.0/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.13/conv/conv.5/fc/fc.0/Gemm_output_0">
<dim>1</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="752" name="/model.13/conv/conv.5/fc/fc.1/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.13/conv/conv.5/fc/fc.1/Relu_output_0">
<dim>1</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="753" name="/model.13/conv/conv.5/fc/fc.1/Relu/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="754" name="/model.13/conv/conv.5/fc/fc.1/Relu/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="775188" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="755" name="/model.13/conv/conv.5/fc/fc.1/Relu/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="756" name="/model.13/conv/conv.5/fc/fc.1/Relu/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="775188" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="757" name="/model.13/conv/conv.5/fc/fc.1/Relu/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="758" name="Constant_515203" type="Const" version="opset1">
<data element_type="i8" shape="672, 168" offset="775192" size="112896" />
<output>
<port id="0" precision="I8">
<dim>672</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="759" name="Convert_515204" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>672</dim>
<dim>168</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="760" name="Constant_515205" type="Const" version="opset1">
<data element_type="f32" shape="672, 1" offset="888088" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>672</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="761" name="/model.13/conv/conv.5/fc/fc.2/Gemm/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>672</dim>
<dim>168</dim>
</port>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>672</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="762" name="/model.13/conv/conv.5/fc/fc.2/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>168</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="763" name="Constant_7131" type="Const" version="opset1">
<data element_type="f32" shape="1, 672" offset="890776" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="764" name="/model.13/conv/conv.5/fc/fc.2/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>672</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.13/conv/conv.5/fc/fc.2/Gemm_output_0">
<dim>1</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="765" name="/model.13/conv/conv.5/fc/fc.3/Div" type="HSigmoid" version="opset5">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.13/conv/conv.5/fc/fc.3/Div_output_0">
<dim>1</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="766" name="/model.13/conv/conv.5/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.13/conv/conv.5/Reshape_1_output_0">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="767" name="/model.13/conv/conv.5/Mul" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.13/conv/conv.5/Mul_output_0">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="768" name="/model.13/conv/conv.6/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.13/conv/conv.6/Mul_output_0">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="769" name="/model.13/conv/conv.6/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="893464" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="770" name="/model.13/conv/conv.6/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="893468" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="771" name="/model.13/conv/conv.6/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="893464" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="772" name="/model.13/conv/conv.6/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="893468" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="773" name="/model.13/conv/conv.6/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="774" name="Constant_515207" type="Const" version="opset1">
<data element_type="i8" shape="40, 672, 1, 1" offset="893472" size="26880" />
<output>
<port id="0" precision="I8">
<dim>40</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="775" name="Convert_515208" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>40</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>40</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="776" name="Constant_515209" type="Const" version="opset1">
<data element_type="f32" shape="40, 1, 1, 1" offset="920352" size="160" />
<output>
<port id="0" precision="FP32">
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="777" name="/model.13/conv/conv.7/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>40</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>40</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="778" name="/model.13/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>40</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="779" name="Reshape_1782" type="Const" version="opset1">
<data element_type="f32" shape="1, 40, 1, 1" offset="920512" size="160" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="780" name="/model.13/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.13/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>40</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="781" name="/model.13/conv/conv.7/Conv/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="920672" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="782" name="/model.13/conv/conv.7/Conv/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="920676" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="783" name="/model.13/conv/conv.7/Conv/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="920672" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="784" name="/model.13/conv/conv.7/Conv/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="920676" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="785" name="/model.13/conv/conv.7/Conv/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="786" name="Constant_515211" type="Const" version="opset1">
<data element_type="i8" shape="672, 40, 1, 1" offset="920680" size="26880" />
<output>
<port id="0" precision="I8">
<dim>672</dim>
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="787" name="Convert_515212" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>672</dim>
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="788" name="Constant_515213" type="Const" version="opset1">
<data element_type="f32" shape="672, 1, 1, 1" offset="947560" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="789" name="/model.14/conv/conv.0/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>672</dim>
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>672</dim>
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="790" name="/model.14/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="791" name="Reshape_1798" type="Const" version="opset1">
<data element_type="f32" shape="1, 672, 1, 1" offset="950248" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="792" name="/model.14/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.14/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="793" name="/model.14/conv/conv.2/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.14/conv/conv.2/Mul_output_0">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="794" name="/model.14/conv/conv.2/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 672, 1, 1" offset="952936" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="795" name="/model.14/conv/conv.2/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 672, 1, 1" offset="955624" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="796" name="/model.14/conv/conv.2/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 672, 1, 1" offset="952936" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="797" name="/model.14/conv/conv.2/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 672, 1, 1" offset="955624" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="798" name="/model.14/conv/conv.2/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="3" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="4" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="799" name="Constant_515215" type="Const" version="opset1">
<data element_type="i8" shape="672, 1, 1, 5, 5" offset="958312" size="16800" />
<output>
<port id="0" precision="I8">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="800" name="Convert_515216" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="801" name="Constant_515217" type="Const" version="opset1">
<data element_type="f32" shape="672, 1, 1, 1, 1" offset="975112" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="802" name="/model.14/conv/conv.3/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="803" name="/model.14/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="2, 2" pads_begin="2, 2" pads_end="2, 2" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="804" name="Reshape_1866" type="Const" version="opset1">
<data element_type="f32" shape="1, 672, 1, 1" offset="977800" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="805" name="/model.14/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.14/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>672</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="806" name="/model.14/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="980488" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="807" name="/model.14/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="980492" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="808" name="/model.14/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="980488" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="809" name="/model.14/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="980492" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="810" name="/model.14/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="811" name="Range_1876" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="40204" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="812" name="/model.14/conv/conv.5/avg_pool/GlobalAveragePool" type="ReduceMean" version="opset1">
<data keep_dims="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.14/conv/conv.5/avg_pool/GlobalAveragePool_output_0">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="813" name="/model.14/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="980496" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="814" name="/model.14/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="980500" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="815" name="/model.14/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="980496" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="816" name="/model.14/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="980500" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="817" name="/model.14/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="818" name="/model.14/conv/conv.5/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.14/conv/conv.5/Reshape_output_0">
<dim>1</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="819" name="Constant_515219" type="Const" version="opset1">
<data element_type="i8" shape="168, 672" offset="980504" size="112896" />
<output>
<port id="0" precision="I8">
<dim>168</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="820" name="Convert_515220" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>168</dim>
<dim>672</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>168</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="821" name="Constant_515221" type="Const" version="opset1">
<data element_type="f32" shape="168, 1" offset="1093400" size="672" />
<output>
<port id="0" precision="FP32">
<dim>168</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="822" name="/model.14/conv/conv.5/fc/fc.0/Gemm/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>168</dim>
<dim>672</dim>
</port>
<port id="1" precision="FP32">
<dim>168</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>168</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="823" name="/model.14/conv/conv.5/fc/fc.0/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
</port>
<port id="1" precision="FP32">
<dim>168</dim>
<dim>672</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="824" name="Constant_7132" type="Const" version="opset1">
<data element_type="f32" shape="1, 168" offset="1094072" size="672" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="825" name="/model.14/conv/conv.5/fc/fc.0/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.14/conv/conv.5/fc/fc.0/Gemm_output_0">
<dim>1</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="826" name="/model.14/conv/conv.5/fc/fc.1/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.14/conv/conv.5/fc/fc.1/Relu_output_0">
<dim>1</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="827" name="/model.14/conv/conv.5/fc/fc.1/Relu/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="828" name="/model.14/conv/conv.5/fc/fc.1/Relu/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1094744" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="829" name="/model.14/conv/conv.5/fc/fc.1/Relu/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="830" name="/model.14/conv/conv.5/fc/fc.1/Relu/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1094744" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="831" name="/model.14/conv/conv.5/fc/fc.1/Relu/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="832" name="Constant_515223" type="Const" version="opset1">
<data element_type="i8" shape="672, 168" offset="1094748" size="112896" />
<output>
<port id="0" precision="I8">
<dim>672</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="833" name="Convert_515224" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>672</dim>
<dim>168</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="834" name="Constant_515225" type="Const" version="opset1">
<data element_type="f32" shape="672, 1" offset="1207644" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>672</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="835" name="/model.14/conv/conv.5/fc/fc.2/Gemm/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>672</dim>
<dim>168</dim>
</port>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>672</dim>
<dim>168</dim>
</port>
</output>
</layer>
<layer id="836" name="/model.14/conv/conv.5/fc/fc.2/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>168</dim>
</port>
<port id="1" precision="FP32">
<dim>672</dim>
<dim>168</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="837" name="Constant_7133" type="Const" version="opset1">
<data element_type="f32" shape="1, 672" offset="1210332" size="2688" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="838" name="/model.14/conv/conv.5/fc/fc.2/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>672</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.14/conv/conv.5/fc/fc.2/Gemm_output_0">
<dim>1</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="839" name="/model.14/conv/conv.5/fc/fc.3/Div" type="HSigmoid" version="opset5">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.14/conv/conv.5/fc/fc.3/Div_output_0">
<dim>1</dim>
<dim>672</dim>
</port>
</output>
</layer>
<layer id="840" name="/model.14/conv/conv.5/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.14/conv/conv.5/Reshape_1_output_0">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="841" name="/model.14/conv/conv.5/Mul" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.14/conv/conv.5/Mul_output_0">
<dim>1</dim>
<dim>672</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="842" name="/model.14/conv/conv.6/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.14/conv/conv.6/Mul_output_0">
<dim>1</dim>
<dim>672</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="843" name="/model.14/conv/conv.6/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="92788" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="844" name="/model.14/conv/conv.6/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1213020" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="845" name="/model.14/conv/conv.6/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="92788" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="846" name="/model.14/conv/conv.6/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1213020" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="847" name="/model.14/conv/conv.6/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="848" name="Constant_515227" type="Const" version="opset1">
<data element_type="i8" shape="40, 672, 1, 1" offset="1213024" size="26880" />
<output>
<port id="0" precision="I8">
<dim>40</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="849" name="Convert_515228" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>40</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>40</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="850" name="Constant_515229" type="Const" version="opset1">
<data element_type="f32" shape="40, 1, 1, 1" offset="1239904" size="160" />
<output>
<port id="0" precision="FP32">
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="851" name="/model.14/conv/conv.7/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>40</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>40</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="852" name="/model.14/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>672</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>40</dim>
<dim>672</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="853" name="Reshape_1919" type="Const" version="opset1">
<data element_type="f32" shape="1, 40, 1, 1" offset="1240064" size="160" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="854" name="/model.14/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.14/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>40</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="855" name="/model.14/conv/conv.7/Conv/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1240224" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="856" name="/model.14/conv/conv.7/Conv/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1240228" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="857" name="/model.14/conv/conv.7/Conv/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1240224" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="858" name="/model.14/conv/conv.7/Conv/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1240228" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="859" name="/model.14/conv/conv.7/Conv/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="860" name="Constant_515231" type="Const" version="opset1">
<data element_type="i8" shape="960, 40, 1, 1" offset="1240232" size="38400" />
<output>
<port id="0" precision="I8">
<dim>960</dim>
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="861" name="Convert_515232" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>960</dim>
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>960</dim>
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="862" name="Constant_515233" type="Const" version="opset1">
<data element_type="f32" shape="960, 1, 1, 1" offset="1278632" size="3840" />
<output>
<port id="0" precision="FP32">
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="863" name="/model.15/conv/conv.0/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>960</dim>
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>960</dim>
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="864" name="/model.15/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>960</dim>
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="865" name="Reshape_1935" type="Const" version="opset1">
<data element_type="f32" shape="1, 960, 1, 1" offset="1282472" size="3840" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="866" name="/model.15/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.15/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>960</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="867" name="/model.15/conv/conv.2/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.15/conv/conv.2/Mul_output_0">
<dim>1</dim>
<dim>960</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="868" name="/model.15/conv/conv.2/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 960, 1, 1" offset="1286312" size="3840" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="869" name="/model.15/conv/conv.2/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 960, 1, 1" offset="1290152" size="3840" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="870" name="/model.15/conv/conv.2/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="1, 960, 1, 1" offset="1286312" size="3840" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="871" name="/model.15/conv/conv.2/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="1, 960, 1, 1" offset="1290152" size="3840" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="872" name="/model.15/conv/conv.2/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="3" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="4" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="873" name="Constant_515235" type="Const" version="opset1">
<data element_type="i8" shape="960, 1, 1, 5, 5" offset="1293992" size="24000" />
<output>
<port id="0" precision="I8">
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="874" name="Convert_515236" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="875" name="Constant_515237" type="Const" version="opset1">
<data element_type="f32" shape="960, 1, 1, 1, 1" offset="1317992" size="3840" />
<output>
<port id="0" precision="FP32">
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="876" name="/model.15/conv/conv.3/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
<port id="1" precision="FP32">
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="877" name="/model.15/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="1, 1" pads_begin="2, 2" pads_end="2, 2" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="878" name="Reshape_2003" type="Const" version="opset1">
<data element_type="f32" shape="1, 960, 1, 1" offset="1321832" size="3840" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="879" name="/model.15/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.15/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>960</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="880" name="/model.15/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1325672" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="881" name="/model.15/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1325676" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="882" name="/model.15/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1325672" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="883" name="/model.15/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1325676" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="884" name="/model.15/conv/conv.5/avg_pool/GlobalAveragePool/fq_input_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="885" name="Range_2013" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="40204" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="886" name="/model.15/conv/conv.5/avg_pool/GlobalAveragePool" type="ReduceMean" version="opset1">
<data keep_dims="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.15/conv/conv.5/avg_pool/GlobalAveragePool_output_0">
<dim>1</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="887" name="/model.15/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1325680" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="888" name="/model.15/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1325684" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="889" name="/model.15/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1325680" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="890" name="/model.15/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1325684" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="891" name="/model.15/conv/conv.5/avg_pool/GlobalAveragePool/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="892" name="/model.15/conv/conv.5/Constant_output_0" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="1325688" size="16" />
<output>
<port id="0" precision="I64" names="/model.15/conv/conv.5/Constant_output_0">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="893" name="/model.15/conv/conv.5/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.15/conv/conv.5/Reshape_output_0">
<dim>1</dim>
<dim>960</dim>
</port>
</output>
</layer>
<layer id="894" name="Constant_515239" type="Const" version="opset1">
<data element_type="i8" shape="240, 960" offset="1325704" size="230400" />
<output>
<port id="0" precision="I8">
<dim>240</dim>
<dim>960</dim>
</port>
</output>
</layer>
<layer id="895" name="Convert_515240" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>240</dim>
<dim>960</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>240</dim>
<dim>960</dim>
</port>
</output>
</layer>
<layer id="896" name="Constant_515241" type="Const" version="opset1">
<data element_type="f32" shape="240, 1" offset="1556104" size="960" />
<output>
<port id="0" precision="FP32">
<dim>240</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="897" name="/model.15/conv/conv.5/fc/fc.0/Gemm/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>240</dim>
<dim>960</dim>
</port>
<port id="1" precision="FP32">
<dim>240</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>240</dim>
<dim>960</dim>
</port>
</output>
</layer>
<layer id="898" name="/model.15/conv/conv.5/fc/fc.0/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
</port>
<port id="1" precision="FP32">
<dim>240</dim>
<dim>960</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="899" name="Constant_7134" type="Const" version="opset1">
<data element_type="f32" shape="1, 240" offset="1557064" size="960" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="900" name="/model.15/conv/conv.5/fc/fc.0/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.15/conv/conv.5/fc/fc.0/Gemm_output_0">
<dim>1</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="901" name="/model.15/conv/conv.5/fc/fc.1/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.15/conv/conv.5/fc/fc.1/Relu_output_0">
<dim>1</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="902" name="/model.15/conv/conv.5/fc/fc.1/Relu/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="903" name="/model.15/conv/conv.5/fc/fc.1/Relu/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1558024" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="904" name="/model.15/conv/conv.5/fc/fc.1/Relu/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="905" name="/model.15/conv/conv.5/fc/fc.1/Relu/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1558024" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="906" name="/model.15/conv/conv.5/fc/fc.1/Relu/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="907" name="Constant_515243" type="Const" version="opset1">
<data element_type="i8" shape="960, 240" offset="1558028" size="230400" />
<output>
<port id="0" precision="I8">
<dim>960</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="908" name="Convert_515244" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>960</dim>
<dim>240</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>960</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="909" name="Constant_515245" type="Const" version="opset1">
<data element_type="f32" shape="960, 1" offset="1788428" size="3840" />
<output>
<port id="0" precision="FP32">
<dim>960</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="910" name="/model.15/conv/conv.5/fc/fc.2/Gemm/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>960</dim>
<dim>240</dim>
</port>
<port id="1" precision="FP32">
<dim>960</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>960</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="911" name="/model.15/conv/conv.5/fc/fc.2/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
<port id="1" precision="FP32">
<dim>960</dim>
<dim>240</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>960</dim>
</port>
</output>
</layer>
<layer id="912" name="Constant_7135" type="Const" version="opset1">
<data element_type="f32" shape="1, 960" offset="1792268" size="3840" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
</port>
</output>
</layer>
<layer id="913" name="/model.15/conv/conv.5/fc/fc.2/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>960</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.15/conv/conv.5/fc/fc.2/Gemm_output_0">
<dim>1</dim>
<dim>960</dim>
</port>
</output>
</layer>
<layer id="914" name="/model.15/conv/conv.5/fc/fc.3/Div" type="HSigmoid" version="opset5">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.15/conv/conv.5/fc/fc.3/Div_output_0">
<dim>1</dim>
<dim>960</dim>
</port>
</output>
</layer>
<layer id="915" name="/model.15/conv/conv.5/Constant_1_output_0" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="1796108" size="32" />
<output>
<port id="0" precision="I64" names="/model.15/conv/conv.5/Constant_1_output_0">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="916" name="/model.15/conv/conv.5/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.15/conv/conv.5/Reshape_1_output_0">
<dim>1</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="917" name="/model.15/conv/conv.5/Mul" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.15/conv/conv.5/Mul_output_0">
<dim>1</dim>
<dim>960</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="918" name="/model.15/conv/conv.6/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.15/conv/conv.6/Mul_output_0">
<dim>1</dim>
<dim>960</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="919" name="/model.15/conv/conv.6/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="92788" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="920" name="/model.15/conv/conv.6/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1213020" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="921" name="/model.15/conv/conv.6/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="92788" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="922" name="/model.15/conv/conv.6/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1213020" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="923" name="/model.15/conv/conv.6/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="924" name="Constant_515247" type="Const" version="opset1">
<data element_type="i8" shape="40, 960, 1, 1" offset="1796140" size="38400" />
<output>
<port id="0" precision="I8">
<dim>40</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="925" name="Convert_515248" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>40</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>40</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="926" name="Constant_515249" type="Const" version="opset1">
<data element_type="f32" shape="40, 1, 1, 1" offset="1834540" size="160" />
<output>
<port id="0" precision="FP32">
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="927" name="/model.15/conv/conv.7/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>40</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>40</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="928" name="/model.15/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>960</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>40</dim>
<dim>960</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="929" name="Reshape_2056" type="Const" version="opset1">
<data element_type="f32" shape="1, 40, 1, 1" offset="1834700" size="160" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="930" name="/model.15/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.15/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>40</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="931" name="/model.15/conv/conv.7/Conv/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1834860" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="932" name="/model.15/conv/conv.7/Conv/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1834864" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="933" name="/model.15/conv/conv.7/Conv/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1834860" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="934" name="/model.15/conv/conv.7/Conv/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1834864" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="935" name="/model.15/conv/conv.7/Conv/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="936" name="/model.15/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.15/Add_output_0">
<dim>1</dim>
<dim>40</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="937" name="/model.15/Add/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1834868" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="938" name="/model.15/Add/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1834872" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="939" name="/model.15/Add/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1834868" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="940" name="/model.15/Add/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1834872" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="941" name="/model.15/Add/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="942" name="/model.16/Constant_output_0" type="Const" version="opset1">
<data element_type="f32" shape="4" offset="1834876" size="16" />
<output>
<port id="0" precision="FP32" names="/model.16/Constant_output_0">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="943" name="/model.16/Resize" type="Interpolate" version="opset11">
<data mode="nearest" shape_calculation_mode="scales" coordinate_transformation_mode="asymmetric" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.16/Resize_output_0">
<dim>1</dim>
<dim>40</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="944" name="/model.16/Resize/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="920672" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="945" name="/model.16/Resize/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="920676" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="946" name="/model.16/Resize/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="920672" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="947" name="/model.16/Resize/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="920676" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="948" name="/model.16/Resize/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="949" name="/model.17/Concat" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.17/Concat_output_0">
<dim>1</dim>
<dim>80</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="950" name="Constant_515251" type="Const" version="opset1">
<data element_type="i8" shape="128, 80, 1, 1" offset="1834892" size="10240" />
<output>
<port id="0" precision="I8">
<dim>128</dim>
<dim>80</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="951" name="Convert_515252" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>128</dim>
<dim>80</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>80</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="952" name="Constant_515253" type="Const" version="opset1">
<data element_type="f32" shape="128, 1, 1, 1" offset="1845132" size="512" />
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="953" name="/model.18/cv1/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>80</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>128</dim>
<dim>80</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="954" name="/model.18/cv1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>80</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>80</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="955" name="Reshape_2076" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="1845644" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="956" name="/model.18/cv1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.18/cv1/conv/Conv_output_0">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="957" name="/model.18/cv1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.18/cv1/act/Mul_output_0">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="958" name="/model.18/cv1/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="959" name="/model.18/cv1/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846160" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="960" name="/model.18/cv1/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="961" name="/model.18/cv1/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846160" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="962" name="/model.18/cv1/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="963" name="Constant_2082" type="Const" version="opset1">
<data element_type="i64" shape="" offset="1846164" size="8" />
<output>
<port id="0" precision="I64" />
</output>
</layer>
<layer id="964" name="onnx::Split_917" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="1846172" size="16" />
<output>
<port id="0" precision="I64" names="onnx::Split_917">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="965" name="/model.18/Split" type="VariadicSplit" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="I64" />
<port id="2" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="/model.18/Split_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="4" precision="FP32" names="/model.18/Split_output_1">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="966" name="Constant_515255" type="Const" version="opset1">
<data element_type="i8" shape="64, 64, 3, 3" offset="1846188" size="36864" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="967" name="Convert_515256" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="968" name="Constant_515257" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="1883052" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="969" name="/model.18/m.0/cv1/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="970" name="/model.18/m.0/cv1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="971" name="Reshape_2096" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="1883308" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="972" name="/model.18/m.0/cv1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.18/m.0/cv1/conv/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="973" name="/model.18/m.0/cv1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.18/m.0/cv1/act/Mul_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="974" name="/model.18/m.0/cv1/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1883564" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="975" name="/model.18/m.0/cv1/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1883568" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="976" name="/model.18/m.0/cv1/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1883564" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="977" name="/model.18/m.0/cv1/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1883568" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="978" name="/model.18/m.0/cv1/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="979" name="Constant_515259" type="Const" version="opset1">
<data element_type="i8" shape="64, 64, 3, 3" offset="1883572" size="36864" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="980" name="Convert_515260" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="981" name="Constant_515261" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="1920436" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="982" name="/model.18/m.0/cv2/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="983" name="/model.18/m.0/cv2/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="984" name="Reshape_2114" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="1920692" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="985" name="/model.18/m.0/cv2/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.18/m.0/cv2/conv/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="986" name="/model.18/m.0/cv2/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.18/m.0/cv2/act/Mul_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="987" name="/model.18/m.0/cv2/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="988" name="/model.18/m.0/cv2/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846160" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="989" name="/model.18/m.0/cv2/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="990" name="/model.18/m.0/cv2/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846160" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="991" name="/model.18/m.0/cv2/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="992" name="/model.18/Concat" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="/model.18/Concat_output_0">
<dim>1</dim>
<dim>192</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="993" name="Constant_515263" type="Const" version="opset1">
<data element_type="i8" shape="128, 192, 1, 1" offset="1920948" size="24576" />
<output>
<port id="0" precision="I8">
<dim>128</dim>
<dim>192</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="994" name="Convert_515264" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>128</dim>
<dim>192</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>192</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="995" name="Constant_515265" type="Const" version="opset1">
<data element_type="f32" shape="128, 1, 1, 1" offset="1945524" size="512" />
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="996" name="/model.18/cv2/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>192</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>128</dim>
<dim>192</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="997" name="/model.18/cv2/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>192</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>192</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="998" name="Reshape_2133" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="1946036" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="999" name="/model.18/cv2/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.18/cv2/conv/Conv_output_0">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1000" name="/model.18/cv2/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.18/cv2/act/Mul_output_0">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1001" name="/model.18/cv2/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1946548" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1002" name="/model.18/cv2/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="81024" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1003" name="/model.18/cv2/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1946548" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1004" name="/model.18/cv2/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="81024" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1005" name="/model.18/cv2/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1006" name="/model.19/Resize" type="Interpolate" version="opset11">
<data mode="nearest" shape_calculation_mode="scales" coordinate_transformation_mode="asymmetric" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.19/Resize_output_0">
<dim>1</dim>
<dim>128</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1007" name="/model.19/Resize/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="81020" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1008" name="/model.19/Resize/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="81024" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1009" name="/model.19/Resize/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="81020" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1010" name="/model.19/Resize/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="81024" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1011" name="/model.19/Resize/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1012" name="/model.20/Concat" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.20/Concat_output_0">
<dim>1</dim>
<dim>144</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1013" name="Constant_515267" type="Const" version="opset1">
<data element_type="i8" shape="64, 144, 1, 1" offset="1946552" size="9216" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1014" name="Convert_515268" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1015" name="Constant_515269" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="1955768" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1016" name="/model.21/cv1/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1017" name="/model.21/cv1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>144</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1018" name="Reshape_2154" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="1956024" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1019" name="/model.21/cv1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.21/cv1/conv/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1020" name="/model.21/cv1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.21/cv1/act/Mul_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1021" name="/model.21/cv1/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1022" name="/model.21/cv1/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1956280" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1023" name="/model.21/cv1/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1024" name="/model.21/cv1/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1956280" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1025" name="/model.21/cv1/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1026" name="Constant_2160" type="Const" version="opset1">
<data element_type="i64" shape="" offset="1846164" size="8" />
<output>
<port id="0" precision="I64" />
</output>
</layer>
<layer id="1027" name="onnx::Split_939" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="1956284" size="16" />
<output>
<port id="0" precision="I64" names="onnx::Split_939">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="1028" name="/model.21/Split" type="VariadicSplit" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="I64" />
<port id="2" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="/model.21/Split_output_0">
<dim>1</dim>
<dim>32</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="4" precision="FP32" names="/model.21/Split_output_1">
<dim>1</dim>
<dim>32</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1029" name="Constant_515271" type="Const" version="opset1">
<data element_type="i8" shape="32, 32, 3, 3" offset="1956300" size="9216" />
<output>
<port id="0" precision="I8">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1030" name="Convert_515272" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1031" name="Constant_515273" type="Const" version="opset1">
<data element_type="f32" shape="32, 1, 1, 1" offset="1965516" size="128" />
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1032" name="/model.21/m.0/cv1/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1033" name="/model.21/m.0/cv1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1034" name="Reshape_2174" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1, 1" offset="1965644" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1035" name="/model.21/m.0/cv1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.21/m.0/cv1/conv/Conv_output_0">
<dim>1</dim>
<dim>32</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1036" name="/model.21/m.0/cv1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.21/m.0/cv1/act/Mul_output_0">
<dim>1</dim>
<dim>32</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1037" name="/model.21/m.0/cv1/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1965772" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1038" name="/model.21/m.0/cv1/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1965776" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1039" name="/model.21/m.0/cv1/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1965772" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1040" name="/model.21/m.0/cv1/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1965776" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1041" name="/model.21/m.0/cv1/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1042" name="Constant_515275" type="Const" version="opset1">
<data element_type="i8" shape="32, 32, 3, 3" offset="1965780" size="9216" />
<output>
<port id="0" precision="I8">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1043" name="Convert_515276" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1044" name="Constant_515277" type="Const" version="opset1">
<data element_type="f32" shape="32, 1, 1, 1" offset="1974996" size="128" />
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1045" name="/model.21/m.0/cv2/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1046" name="/model.21/m.0/cv2/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1047" name="Reshape_2192" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1, 1" offset="1975124" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1048" name="/model.21/m.0/cv2/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.21/m.0/cv2/conv/Conv_output_0">
<dim>1</dim>
<dim>32</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1049" name="/model.21/m.0/cv2/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.21/m.0/cv2/act/Mul_output_0">
<dim>1</dim>
<dim>32</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1050" name="/model.21/m.0/cv2/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1051" name="/model.21/m.0/cv2/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1956280" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1052" name="/model.21/m.0/cv2/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1053" name="/model.21/m.0/cv2/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1956280" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1054" name="/model.21/m.0/cv2/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1055" name="/model.21/Concat" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="/model.21/Concat_output_0">
<dim>1</dim>
<dim>96</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1056" name="Constant_515279" type="Const" version="opset1">
<data element_type="i8" shape="64, 96, 1, 1" offset="1975252" size="6144" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1057" name="Convert_515280" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1058" name="Constant_515281" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="1981396" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1059" name="/model.21/cv2/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1060" name="/model.21/cv2/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>96</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1061" name="Reshape_2211" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="1981652" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1062" name="/model.21/cv2/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.21/cv2/conv/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1063" name="/model.21/cv2/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.21/cv2/act/Mul_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1064" name="/model.21/cv2/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1981908" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1065" name="/model.21/cv2/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1981912" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1066" name="/model.21/cv2/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1981908" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1067" name="/model.21/cv2/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1981912" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1068" name="/model.21/cv2/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1069" name="Constant_515283" type="Const" version="opset1">
<data element_type="i8" shape="64, 64, 3, 3" offset="1981916" size="36864" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1070" name="Convert_515284" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1071" name="Constant_515285" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="2018780" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1072" name="/model.28/cv2.0/cv2.0.0/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1073" name="/model.28/cv2.0/cv2.0.0/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1074" name="Reshape_2577" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="2019036" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1075" name="/model.28/cv2.0/cv2.0.0/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv2.0/cv2.0.0/conv/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1076" name="/model.28/cv2.0/cv2.0.0/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.28/cv2.0/cv2.0.0/act/Mul_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1077" name="/model.28/cv2.0/cv2.0.0/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2019292" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1078" name="/model.28/cv2.0/cv2.0.0/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2019296" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1079" name="/model.28/cv2.0/cv2.0.0/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2019292" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1080" name="/model.28/cv2.0/cv2.0.0/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2019296" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1081" name="/model.28/cv2.0/cv2.0.0/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1082" name="Constant_515287" type="Const" version="opset1">
<data element_type="i8" shape="64, 64, 3, 3" offset="2019300" size="36864" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1083" name="Convert_515288" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1084" name="Constant_515289" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="2056164" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1085" name="/model.28/cv2.0/cv2.0.1/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1086" name="/model.28/cv2.0/cv2.0.1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1087" name="Reshape_2595" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="2056420" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1088" name="/model.28/cv2.0/cv2.0.1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv2.0/cv2.0.1/conv/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1089" name="/model.28/cv2.0/cv2.0.1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.28/cv2.0/cv2.0.1/act/Mul_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1090" name="/model.28/cv2.0/cv2.0.1/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1091" name="/model.28/cv2.0/cv2.0.1/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2056676" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1092" name="/model.28/cv2.0/cv2.0.1/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1093" name="/model.28/cv2.0/cv2.0.1/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2056676" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1094" name="/model.28/cv2.0/cv2.0.1/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1095" name="Constant_515291" type="Const" version="opset1">
<data element_type="i8" shape="64, 64, 1, 1" offset="2056680" size="4096" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1096" name="Convert_515292" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1097" name="Constant_515293" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="2060776" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1098" name="/model.28/cv2.0/cv2.0.2/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1099" name="/model.28/cv2.0/cv2.0.2/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1100" name="Reshape_2613" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="2061032" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1101" name="/model.28/cv2.0/cv2.0.2/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv2.0/cv2.0.2/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1102" name="Constant_515295" type="Const" version="opset1">
<data element_type="i8" shape="64, 64, 3, 3" offset="2061288" size="36864" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1103" name="Convert_515296" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1104" name="Constant_515297" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="2098152" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1105" name="/model.28/cv3.0/cv3.0.0/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1106" name="/model.28/cv3.0/cv3.0.0/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1107" name="Reshape_2629" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="2098408" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1108" name="/model.28/cv3.0/cv3.0.0/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv3.0/cv3.0.0/conv/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1109" name="/model.28/cv3.0/cv3.0.0/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.28/cv3.0/cv3.0.0/act/Mul_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1110" name="/model.28/cv3.0/cv3.0.0/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1111" name="/model.28/cv3.0/cv3.0.0/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2098664" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1112" name="/model.28/cv3.0/cv3.0.0/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1113" name="/model.28/cv3.0/cv3.0.0/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2098664" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1114" name="/model.28/cv3.0/cv3.0.0/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1115" name="Constant_515299" type="Const" version="opset1">
<data element_type="i8" shape="64, 64, 3, 3" offset="2098668" size="36864" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1116" name="Convert_515300" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1117" name="Constant_515301" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="2135532" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1118" name="/model.28/cv3.0/cv3.0.1/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1119" name="/model.28/cv3.0/cv3.0.1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1120" name="Reshape_2647" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="2135788" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1121" name="/model.28/cv3.0/cv3.0.1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv3.0/cv3.0.1/conv/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1122" name="/model.28/cv3.0/cv3.0.1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.28/cv3.0/cv3.0.1/act/Mul_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1123" name="/model.28/cv3.0/cv3.0.1/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2136044" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1124" name="/model.28/cv3.0/cv3.0.1/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2136048" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1125" name="/model.28/cv3.0/cv3.0.1/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2136044" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1126" name="/model.28/cv3.0/cv3.0.1/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2136048" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1127" name="/model.28/cv3.0/cv3.0.1/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1128" name="Constant_515303" type="Const" version="opset1">
<data element_type="i8" shape="2, 64, 1, 1" offset="2136052" size="128" />
<output>
<port id="0" precision="I8">
<dim>2</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1129" name="Convert_515304" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>2</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>2</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1130" name="Constant_515305" type="Const" version="opset1">
<data element_type="f32" shape="2, 1, 1, 1" offset="2136180" size="8" />
<output>
<port id="0" precision="FP32">
<dim>2</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1131" name="/model.28/cv3.0/cv3.0.2/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>2</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>2</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>2</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1132" name="/model.28/cv3.0/cv3.0.2/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>2</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1133" name="Reshape_2665" type="Const" version="opset1">
<data element_type="f32" shape="1, 2, 1, 1" offset="2136188" size="8" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1134" name="/model.28/cv3.0/cv3.0.2/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv3.0/cv3.0.2/Conv_output_0">
<dim>1</dim>
<dim>2</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1135" name="/model.28/Concat_1" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/Concat_1_output_0">
<dim>1</dim>
<dim>66</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1136" name="/model.28/Constant_4_output_0" type="Const" version="opset1">
<data element_type="i64" shape="3" offset="2136196" size="24" />
<output>
<port id="0" precision="I64" names="/model.28/Constant_4_output_0">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1137" name="/model.28/Reshape_3" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/Reshape_3_output_0">
<dim>1</dim>
<dim>66</dim>
<dim>2704</dim>
</port>
</output>
</layer>
<layer id="1138" name="Constant_515307" type="Const" version="opset1">
<data element_type="i8" shape="64, 64, 3, 3" offset="2136220" size="36864" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1139" name="Convert_515308" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1140" name="Constant_515309" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="2173084" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1141" name="/model.22/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1142" name="/model.22/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1143" name="Reshape_2229" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="2173340" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1144" name="/model.22/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.22/conv/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1145" name="/model.22/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.22/act/Mul_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1146" name="/model.22/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1946548" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1147" name="/model.22/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="81024" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1148" name="/model.22/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1946548" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1149" name="/model.22/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="81024" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1150" name="/model.22/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1151" name="/model.23/Concat" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.23/Concat_output_0">
<dim>1</dim>
<dim>192</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1152" name="Constant_515311" type="Const" version="opset1">
<data element_type="i8" shape="128, 192, 1, 1" offset="2173596" size="24576" />
<output>
<port id="0" precision="I8">
<dim>128</dim>
<dim>192</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1153" name="Convert_515312" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>128</dim>
<dim>192</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>192</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1154" name="Constant_515313" type="Const" version="opset1">
<data element_type="f32" shape="128, 1, 1, 1" offset="2198172" size="512" />
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1155" name="/model.24/cv1/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>192</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>128</dim>
<dim>192</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1156" name="/model.24/cv1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>192</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>192</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1157" name="Reshape_2248" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="2198684" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1158" name="/model.24/cv1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.24/cv1/conv/Conv_output_0">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1159" name="/model.24/cv1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.24/cv1/act/Mul_output_0">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1160" name="/model.24/cv1/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2199196" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1161" name="/model.24/cv1/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2199200" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1162" name="/model.24/cv1/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2199196" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1163" name="/model.24/cv1/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2199200" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1164" name="/model.24/cv1/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1165" name="Constant_2254" type="Const" version="opset1">
<data element_type="i64" shape="" offset="1846164" size="8" />
<output>
<port id="0" precision="I64" />
</output>
</layer>
<layer id="1166" name="/model.24/Split" type="VariadicSplit" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="I64" />
<port id="2" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="/model.24/Split_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="4" precision="FP32" names="/model.24/Split_output_1">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1167" name="Constant_515315" type="Const" version="opset1">
<data element_type="i8" shape="64, 64, 3, 3" offset="2199204" size="36864" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1168" name="Convert_515316" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1169" name="Constant_515317" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="2236068" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1170" name="/model.24/m.0/cv1/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1171" name="/model.24/m.0/cv1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1172" name="Reshape_2268" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="2236324" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1173" name="/model.24/m.0/cv1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.24/m.0/cv1/conv/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1174" name="/model.24/m.0/cv1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.24/m.0/cv1/act/Mul_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1175" name="/model.24/m.0/cv1/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2236580" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1176" name="/model.24/m.0/cv1/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2236584" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1177" name="/model.24/m.0/cv1/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2236580" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1178" name="/model.24/m.0/cv1/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2236584" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1179" name="/model.24/m.0/cv1/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1180" name="Constant_515319" type="Const" version="opset1">
<data element_type="i8" shape="64, 64, 3, 3" offset="2236588" size="36864" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1181" name="Convert_515320" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1182" name="Constant_515321" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="2273452" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1183" name="/model.24/m.0/cv2/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1184" name="/model.24/m.0/cv2/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1185" name="Reshape_2286" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="2273708" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1186" name="/model.24/m.0/cv2/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.24/m.0/cv2/conv/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1187" name="/model.24/m.0/cv2/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.24/m.0/cv2/act/Mul_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1188" name="/model.24/m.0/cv2/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2199196" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1189" name="/model.24/m.0/cv2/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2199200" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1190" name="/model.24/m.0/cv2/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2199196" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1191" name="/model.24/m.0/cv2/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2199200" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1192" name="/model.24/m.0/cv2/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1193" name="/model.24/Concat" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="/model.24/Concat_output_0">
<dim>1</dim>
<dim>192</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1194" name="Constant_515323" type="Const" version="opset1">
<data element_type="i8" shape="128, 192, 1, 1" offset="2273964" size="24576" />
<output>
<port id="0" precision="I8">
<dim>128</dim>
<dim>192</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1195" name="Convert_515324" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>128</dim>
<dim>192</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>192</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1196" name="Constant_515325" type="Const" version="opset1">
<data element_type="f32" shape="128, 1, 1, 1" offset="2298540" size="512" />
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1197" name="/model.24/cv2/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>192</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>128</dim>
<dim>192</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1198" name="/model.24/cv2/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>192</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>192</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1199" name="Reshape_2305" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="2299052" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1200" name="/model.24/cv2/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.24/cv2/conv/Conv_output_0">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1201" name="/model.24/cv2/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.24/cv2/act/Mul_output_0">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1202" name="/model.24/cv2/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1203" name="/model.24/cv2/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2098664" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1204" name="/model.24/cv2/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1205" name="/model.24/cv2/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2098664" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1206" name="/model.24/cv2/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1207" name="Constant_515327" type="Const" version="opset1">
<data element_type="i8" shape="64, 128, 3, 3" offset="2299564" size="73728" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1208" name="Convert_515328" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1209" name="Constant_515329" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="2373292" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1210" name="/model.28/cv2.1/cv2.1.0/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1211" name="/model.28/cv2.1/cv2.1.0/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1212" name="Reshape_2682" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="2373548" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1213" name="/model.28/cv2.1/cv2.1.0/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv2.1/cv2.1.0/conv/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1214" name="/model.28/cv2.1/cv2.1.0/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.28/cv2.1/cv2.1.0/act/Mul_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1215" name="/model.28/cv2.1/cv2.1.0/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1216" name="/model.28/cv2.1/cv2.1.0/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2098664" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1217" name="/model.28/cv2.1/cv2.1.0/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1218" name="/model.28/cv2.1/cv2.1.0/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2098664" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1219" name="/model.28/cv2.1/cv2.1.0/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1220" name="Constant_515331" type="Const" version="opset1">
<data element_type="i8" shape="64, 64, 3, 3" offset="2373804" size="36864" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1221" name="Convert_515332" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1222" name="Constant_515333" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="2410668" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1223" name="/model.28/cv2.1/cv2.1.1/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1224" name="/model.28/cv2.1/cv2.1.1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1225" name="Reshape_2700" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="2410924" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1226" name="/model.28/cv2.1/cv2.1.1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv2.1/cv2.1.1/conv/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1227" name="/model.28/cv2.1/cv2.1.1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.28/cv2.1/cv2.1.1/act/Mul_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1228" name="/model.28/cv2.1/cv2.1.1/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2411180" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1229" name="/model.28/cv2.1/cv2.1.1/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2411184" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1230" name="/model.28/cv2.1/cv2.1.1/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2411180" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1231" name="/model.28/cv2.1/cv2.1.1/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2411184" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1232" name="/model.28/cv2.1/cv2.1.1/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1233" name="Constant_515335" type="Const" version="opset1">
<data element_type="i8" shape="64, 64, 1, 1" offset="2411188" size="4096" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1234" name="Convert_515336" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1235" name="Constant_515337" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="2415284" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1236" name="/model.28/cv2.1/cv2.1.2/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1237" name="/model.28/cv2.1/cv2.1.2/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1238" name="Reshape_2718" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="2415540" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1239" name="/model.28/cv2.1/cv2.1.2/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv2.1/cv2.1.2/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1240" name="Constant_515339" type="Const" version="opset1">
<data element_type="i8" shape="64, 128, 3, 3" offset="2415796" size="73728" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1241" name="Convert_515340" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1242" name="Constant_515341" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="2489524" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1243" name="/model.28/cv3.1/cv3.1.0/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1244" name="/model.28/cv3.1/cv3.1.0/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1245" name="Reshape_2734" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="2489780" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1246" name="/model.28/cv3.1/cv3.1.0/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv3.1/cv3.1.0/conv/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1247" name="/model.28/cv3.1/cv3.1.0/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.28/cv3.1/cv3.1.0/act/Mul_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1248" name="/model.28/cv3.1/cv3.1.0/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1249" name="/model.28/cv3.1/cv3.1.0/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2490036" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1250" name="/model.28/cv3.1/cv3.1.0/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1251" name="/model.28/cv3.1/cv3.1.0/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2490036" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1252" name="/model.28/cv3.1/cv3.1.0/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1253" name="Constant_515343" type="Const" version="opset1">
<data element_type="i8" shape="64, 64, 3, 3" offset="2490040" size="36864" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1254" name="Convert_515344" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1255" name="Constant_515345" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="2526904" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1256" name="/model.28/cv3.1/cv3.1.1/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1257" name="/model.28/cv3.1/cv3.1.1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1258" name="Reshape_2752" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="2527160" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1259" name="/model.28/cv3.1/cv3.1.1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv3.1/cv3.1.1/conv/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1260" name="/model.28/cv3.1/cv3.1.1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.28/cv3.1/cv3.1.1/act/Mul_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1261" name="/model.28/cv3.1/cv3.1.1/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2527416" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1262" name="/model.28/cv3.1/cv3.1.1/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2527420" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1263" name="/model.28/cv3.1/cv3.1.1/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2527416" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1264" name="/model.28/cv3.1/cv3.1.1/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2527420" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1265" name="/model.28/cv3.1/cv3.1.1/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1266" name="Constant_515347" type="Const" version="opset1">
<data element_type="i8" shape="2, 64, 1, 1" offset="2527424" size="128" />
<output>
<port id="0" precision="I8">
<dim>2</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1267" name="Convert_515348" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>2</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>2</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1268" name="Constant_515349" type="Const" version="opset1">
<data element_type="f32" shape="2, 1, 1, 1" offset="2527552" size="8" />
<output>
<port id="0" precision="FP32">
<dim>2</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1269" name="/model.28/cv3.1/cv3.1.2/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>2</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>2</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>2</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1270" name="/model.28/cv3.1/cv3.1.2/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>2</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1271" name="Reshape_2770" type="Const" version="opset1">
<data element_type="f32" shape="1, 2, 1, 1" offset="2527560" size="8" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1272" name="/model.28/cv3.1/cv3.1.2/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv3.1/cv3.1.2/Conv_output_0">
<dim>1</dim>
<dim>2</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1273" name="/model.28/Concat_2" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/Concat_2_output_0">
<dim>1</dim>
<dim>66</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1274" name="/model.28/Reshape_4" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/Reshape_4_output_0">
<dim>1</dim>
<dim>66</dim>
<dim>676</dim>
</port>
</output>
</layer>
<layer id="1275" name="Constant_515351" type="Const" version="opset1">
<data element_type="i8" shape="128, 128, 3, 3" offset="2527568" size="147456" />
<output>
<port id="0" precision="I8">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1276" name="Convert_515352" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1277" name="Constant_515353" type="Const" version="opset1">
<data element_type="f32" shape="128, 1, 1, 1" offset="2675024" size="512" />
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1278" name="/model.25/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1279" name="/model.25/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1280" name="Reshape_2323" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="2675536" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1281" name="/model.25/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.25/conv/Conv_output_0">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1282" name="/model.25/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.25/act/Mul_output_0">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1283" name="/model.25/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1834868" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1284" name="/model.25/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1834872" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1285" name="/model.25/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1834868" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1286" name="/model.25/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1834872" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1287" name="/model.25/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1288" name="/model.26/Concat" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>40</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.26/Concat_output_0">
<dim>1</dim>
<dim>168</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1289" name="Constant_515355" type="Const" version="opset1">
<data element_type="i8" shape="256, 168, 1, 1" offset="2676048" size="43008" />
<output>
<port id="0" precision="I8">
<dim>256</dim>
<dim>168</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1290" name="Convert_515356" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>256</dim>
<dim>168</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>168</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1291" name="Constant_515357" type="Const" version="opset1">
<data element_type="f32" shape="256, 1, 1, 1" offset="2719056" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1292" name="/model.27/cv1/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>168</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>256</dim>
<dim>168</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1293" name="/model.27/cv1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>168</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>168</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1294" name="Reshape_2342" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="2720080" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1295" name="/model.27/cv1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.27/cv1/conv/Conv_output_0">
<dim>1</dim>
<dim>256</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1296" name="/model.27/cv1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.27/cv1/act/Mul_output_0">
<dim>1</dim>
<dim>256</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1297" name="/model.27/cv1/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2721104" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1298" name="/model.27/cv1/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2721108" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1299" name="/model.27/cv1/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2721104" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1300" name="/model.27/cv1/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2721108" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1301" name="/model.27/cv1/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1302" name="Constant_2348" type="Const" version="opset1">
<data element_type="i64" shape="" offset="1846164" size="8" />
<output>
<port id="0" precision="I64" />
</output>
</layer>
<layer id="1303" name="onnx::Split_978" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="2721112" size="16" />
<output>
<port id="0" precision="I64" names="onnx::Split_978">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="1304" name="/model.27/Split" type="VariadicSplit" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="I64" />
<port id="2" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="/model.27/Split_output_0">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="4" precision="FP32" names="/model.27/Split_output_1">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1305" name="Constant_515359" type="Const" version="opset1">
<data element_type="i8" shape="128, 128, 3, 3" offset="2721128" size="147456" />
<output>
<port id="0" precision="I8">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1306" name="Convert_515360" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1307" name="Constant_515361" type="Const" version="opset1">
<data element_type="f32" shape="128, 1, 1, 1" offset="2868584" size="512" />
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1308" name="/model.27/m.0/cv1/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1309" name="/model.27/m.0/cv1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1310" name="Reshape_2362" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="2869096" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1311" name="/model.27/m.0/cv1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.27/m.0/cv1/conv/Conv_output_0">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1312" name="/model.27/m.0/cv1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.27/m.0/cv1/act/Mul_output_0">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1313" name="/model.27/m.0/cv1/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2869608" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1314" name="/model.27/m.0/cv1/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2869612" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1315" name="/model.27/m.0/cv1/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2869608" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1316" name="/model.27/m.0/cv1/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2869612" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1317" name="/model.27/m.0/cv1/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1318" name="Constant_515363" type="Const" version="opset1">
<data element_type="i8" shape="128, 128, 3, 3" offset="2869616" size="147456" />
<output>
<port id="0" precision="I8">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1319" name="Convert_515364" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1320" name="Constant_515365" type="Const" version="opset1">
<data element_type="f32" shape="128, 1, 1, 1" offset="3017072" size="512" />
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1321" name="/model.27/m.0/cv2/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1322" name="/model.27/m.0/cv2/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1323" name="Reshape_2380" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="3017584" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1324" name="/model.27/m.0/cv2/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.27/m.0/cv2/conv/Conv_output_0">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1325" name="/model.27/m.0/cv2/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.27/m.0/cv2/act/Mul_output_0">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1326" name="/model.27/m.0/cv2/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2721104" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1327" name="/model.27/m.0/cv2/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2721108" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1328" name="/model.27/m.0/cv2/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2721104" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1329" name="/model.27/m.0/cv2/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="2721108" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1330" name="/model.27/m.0/cv2/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1331" name="/model.27/Concat" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="/model.27/Concat_output_0">
<dim>1</dim>
<dim>384</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1332" name="Constant_515367" type="Const" version="opset1">
<data element_type="i8" shape="256, 384, 1, 1" offset="3018096" size="98304" />
<output>
<port id="0" precision="I8">
<dim>256</dim>
<dim>384</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1333" name="Convert_515368" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>256</dim>
<dim>384</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>384</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1334" name="Constant_515369" type="Const" version="opset1">
<data element_type="f32" shape="256, 1, 1, 1" offset="3116400" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1335" name="/model.27/cv2/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>384</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>256</dim>
<dim>384</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1336" name="/model.27/cv2/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>384</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>384</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1337" name="Reshape_2399" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="3117424" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1338" name="/model.27/cv2/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.27/cv2/conv/Conv_output_0">
<dim>1</dim>
<dim>256</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1339" name="/model.27/cv2/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.27/cv2/act/Mul_output_0">
<dim>1</dim>
<dim>256</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1340" name="/model.27/cv2/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1341" name="/model.27/cv2/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3118448" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1342" name="/model.27/cv2/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1846156" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1343" name="/model.27/cv2/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3118448" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1344" name="/model.27/cv2/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1345" name="Constant_515371" type="Const" version="opset1">
<data element_type="i8" shape="64, 256, 3, 3" offset="3118452" size="147456" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1346" name="Convert_515372" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1347" name="Constant_515373" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="3265908" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1348" name="/model.28/cv2.2/cv2.2.0/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1349" name="/model.28/cv2.2/cv2.2.0/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1350" name="Reshape_2787" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="3266164" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1351" name="/model.28/cv2.2/cv2.2.0/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv2.2/cv2.2.0/conv/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1352" name="/model.28/cv2.2/cv2.2.0/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.28/cv2.2/cv2.2.0/act/Mul_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1353" name="/model.28/cv2.2/cv2.2.0/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3266420" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1354" name="/model.28/cv2.2/cv2.2.0/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3266424" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1355" name="/model.28/cv2.2/cv2.2.0/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3266420" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1356" name="/model.28/cv2.2/cv2.2.0/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3266424" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1357" name="/model.28/cv2.2/cv2.2.0/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1358" name="Constant_515375" type="Const" version="opset1">
<data element_type="i8" shape="64, 64, 3, 3" offset="3266428" size="36864" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1359" name="Convert_515376" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1360" name="Constant_515377" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="3303292" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1361" name="/model.28/cv2.2/cv2.2.1/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1362" name="/model.28/cv2.2/cv2.2.1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1363" name="Reshape_2805" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="3303548" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1364" name="/model.28/cv2.2/cv2.2.1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv2.2/cv2.2.1/conv/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1365" name="/model.28/cv2.2/cv2.2.1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.28/cv2.2/cv2.2.1/act/Mul_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1366" name="/model.28/cv2.2/cv2.2.1/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3303804" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1367" name="/model.28/cv2.2/cv2.2.1/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3303808" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1368" name="/model.28/cv2.2/cv2.2.1/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3303804" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1369" name="/model.28/cv2.2/cv2.2.1/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3303808" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1370" name="/model.28/cv2.2/cv2.2.1/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1371" name="Constant_515379" type="Const" version="opset1">
<data element_type="i8" shape="64, 64, 1, 1" offset="3303812" size="4096" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1372" name="Convert_515380" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1373" name="Constant_515381" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="3307908" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1374" name="/model.28/cv2.2/cv2.2.2/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1375" name="/model.28/cv2.2/cv2.2.2/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1376" name="Reshape_2823" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="3308164" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1377" name="/model.28/cv2.2/cv2.2.2/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv2.2/cv2.2.2/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1378" name="Constant_515383" type="Const" version="opset1">
<data element_type="i8" shape="64, 256, 3, 3" offset="3308420" size="147456" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1379" name="Convert_515384" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1380" name="Constant_515385" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="3455876" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1381" name="/model.28/cv3.2/cv3.2.0/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1382" name="/model.28/cv3.2/cv3.2.0/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1383" name="Reshape_2839" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="3456132" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1384" name="/model.28/cv3.2/cv3.2.0/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv3.2/cv3.2.0/conv/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1385" name="/model.28/cv3.2/cv3.2.0/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.28/cv3.2/cv3.2.0/act/Mul_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1386" name="/model.28/cv3.2/cv3.2.0/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3456388" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1387" name="/model.28/cv3.2/cv3.2.0/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3456392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1388" name="/model.28/cv3.2/cv3.2.0/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3456388" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1389" name="/model.28/cv3.2/cv3.2.0/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3456392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1390" name="/model.28/cv3.2/cv3.2.0/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1391" name="Constant_515387" type="Const" version="opset1">
<data element_type="i8" shape="64, 64, 3, 3" offset="3456396" size="36864" />
<output>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1392" name="Convert_515388" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1393" name="Constant_515389" type="Const" version="opset1">
<data element_type="f32" shape="64, 1, 1, 1" offset="3493260" size="256" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1394" name="/model.28/cv3.2/cv3.2.1/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1395" name="/model.28/cv3.2/cv3.2.1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1396" name="Reshape_2857" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="3493516" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1397" name="/model.28/cv3.2/cv3.2.1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv3.2/cv3.2.1/conv/Conv_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1398" name="/model.28/cv3.2/cv3.2.1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.28/cv3.2/cv3.2.1/act/Mul_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1399" name="/model.28/cv3.2/cv3.2.1/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3493772" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1400" name="/model.28/cv3.2/cv3.2.1/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3493776" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1401" name="/model.28/cv3.2/cv3.2.1/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3493772" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1402" name="/model.28/cv3.2/cv3.2.1/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3493776" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1403" name="/model.28/cv3.2/cv3.2.1/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1404" name="Constant_515391" type="Const" version="opset1">
<data element_type="i8" shape="2, 64, 1, 1" offset="3493780" size="128" />
<output>
<port id="0" precision="I8">
<dim>2</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1405" name="Convert_515392" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>2</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>2</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1406" name="Constant_515393" type="Const" version="opset1">
<data element_type="f32" shape="2, 1, 1, 1" offset="3493908" size="8" />
<output>
<port id="0" precision="FP32">
<dim>2</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1407" name="/model.28/cv3.2/cv3.2.2/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>2</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>2</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>2</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1408" name="/model.28/cv3.2/cv3.2.2/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>2</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1409" name="Reshape_2875" type="Const" version="opset1">
<data element_type="f32" shape="1, 2, 1, 1" offset="3493916" size="8" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1410" name="/model.28/cv3.2/cv3.2.2/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv3.2/cv3.2.2/Conv_output_0">
<dim>1</dim>
<dim>2</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1411" name="/model.28/Concat_3" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/Concat_3_output_0">
<dim>1</dim>
<dim>66</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1412" name="/model.28/Reshape_5" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/Reshape_5_output_0">
<dim>1</dim>
<dim>66</dim>
<dim>169</dim>
</port>
</output>
</layer>
<layer id="1413" name="/model.28/Concat_4" type="Concat" version="opset1">
<data axis="2" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>2704</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>676</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>169</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="/model.28/Concat_4_output_0">
<dim>1</dim>
<dim>66</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1414" name="Constant_2884" type="Const" version="opset1">
<data element_type="i64" shape="" offset="1846164" size="8" />
<output>
<port id="0" precision="I64" />
</output>
</layer>
<layer id="1415" name="onnx::Split_1120" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="3493924" size="16" />
<output>
<port id="0" precision="I64" names="onnx::Split_1120">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="1416" name="/model.28/Split" type="VariadicSplit" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>3549</dim>
</port>
<port id="1" precision="I64" />
<port id="2" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="/model.28/Split_output_0">
<dim>1</dim>
<dim>64</dim>
<dim>3549</dim>
</port>
<port id="4" precision="FP32" names="/model.28/Split_output_1">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1417" name="/model.28/dfl/Constant_output_0" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="3493940" size="32" />
<output>
<port id="0" precision="I64" names="/model.28/dfl/Constant_output_0">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="1418" name="/model.28/dfl/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>3549</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/dfl/Reshape_output_0">
<dim>1</dim>
<dim>4</dim>
<dim>16</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1419" name="Constant_2887" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="3493972" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="1420" name="/model.28/dfl/Transpose" type="Transpose" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>16</dim>
<dim>3549</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/dfl/Transpose_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>4</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1421" name="/model.28/dfl/Softmax" type="SoftMax" version="opset8">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>4</dim>
<dim>3549</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.28/dfl/Softmax_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>4</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1422" name="/model.28/dfl/Softmax/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1423" name="/model.28/dfl/Softmax/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3494004" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1424" name="/model.28/dfl/Softmax/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1425" name="/model.28/dfl/Softmax/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3494004" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1426" name="/model.28/dfl/Softmax/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>4</dim>
<dim>3549</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>4</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1427" name="Constant_515395" type="Const" version="opset1">
<data element_type="i8" shape="1, 16, 1, 1" offset="3494008" size="16" />
<output>
<port id="0" precision="I8">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1428" name="Convert_515396" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1429" name="Constant_515397" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 1, 1" offset="3494024" size="4" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1430" name="/model.28/dfl/conv/Conv/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1431" name="/model.28/dfl/conv/Conv" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>4</dim>
<dim>3549</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/dfl/conv/Conv_output_0">
<dim>1</dim>
<dim>1</dim>
<dim>4</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1432" name="/model.28/dfl/Constant_1_output_0" type="Const" version="opset1">
<data element_type="i64" shape="3" offset="3494028" size="24" />
<output>
<port id="0" precision="I64" names="/model.28/dfl/Constant_1_output_0">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1433" name="/model.28/dfl/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>4</dim>
<dim>3549</dim>
</port>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/dfl/Reshape_1_output_0">
<dim>1</dim>
<dim>4</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1434" name="Constant_6562" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="3494052" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="1435" name="Constant_6565" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="3494068" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="1436" name="Constant_6568" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="3494084" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="1437" name="/model.28/Slice" type="StridedSlice" version="opset1">
<data begin_mask="1, 0" end_mask="1, 0" new_axis_mask="" shrink_axis_mask="" ellipsis_mask="" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>3549</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
<port id="2" precision="I64">
<dim>2</dim>
</port>
<port id="3" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="4" precision="FP32" names="/model.28/Slice_output_0">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1438" name="/model.28/Sub" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/Sub_output_0">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1439" name="/model.28/Add_2/fq_input_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3494100" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1440" name="/model.28/Add_2/fq_input_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3494104" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1441" name="/model.28/Add_2/fq_input_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3494100" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1442" name="/model.28/Add_2/fq_input_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3494104" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1443" name="/model.28/Add_2/fq_input_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1444" name="/model.28/Slice_1/fq_input_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1445" name="/model.28/Slice_1/fq_input_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3494108" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1446" name="/model.28/Slice_1/fq_input_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1447" name="/model.28/Slice_1/fq_input_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3494108" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1448" name="/model.28/Slice_1/fq_input_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>3549</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1449" name="Constant_6574" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="3494068" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="1450" name="Constant_6577" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="3494112" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="1451" name="Constant_6580" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="3494084" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="1452" name="/model.28/Slice_1" type="StridedSlice" version="opset1">
<data begin_mask="1, 0" end_mask="1, 0" new_axis_mask="" shrink_axis_mask="" ellipsis_mask="" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>3549</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
<port id="2" precision="I64">
<dim>2</dim>
</port>
<port id="3" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="4" precision="FP32" names="/model.28/Slice_1_output_0">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1453" name="/model.28/Add_1" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/Add_1_output_0">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1454" name="/model.28/Add_2/fq_input_1/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1455" name="/model.28/Add_2/fq_input_1/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3494128" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1456" name="/model.28/Add_2/fq_input_1/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="28392" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1457" name="/model.28/Add_2/fq_input_1/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3494128" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1458" name="/model.28/Add_2/fq_input_1" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1459" name="/model.28/Add_2" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/Add_2_output_0">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1460" name="Constant_7136" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 1" offset="3494132" size="4" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1461" name="/model.28/Div_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/Div_1_output_0">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1462" name="/model.28/Sub_1" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/Sub_1_output_0">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1463" name="/model.28/Concat_5" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/Concat_5_output_0">
<dim>1</dim>
<dim>4</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1464" name="Constant_7137" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 3549" offset="3494136" size="14196" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1465" name="/model.28/Mul_2" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>3549</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>3549</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/Mul_2_output_0">
<dim>1</dim>
<dim>4</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1466" name="/model.28/Sigmoid" type="Sigmoid" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.28/Sigmoid_output_0">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1467" name="Constant_515399" type="Const" version="opset1">
<data element_type="i8" shape="16, 64, 3, 3" offset="3508332" size="9216" />
<output>
<port id="0" precision="I8">
<dim>16</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1468" name="Convert_515400" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>16</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1469" name="Constant_515401" type="Const" version="opset1">
<data element_type="f32" shape="16, 1, 1, 1" offset="3517548" size="64" />
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1470" name="/model.28/cv4.0/cv4.0.0/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>16</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1471" name="/model.28/cv4.0/cv4.0.0/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1472" name="Reshape_2417" type="Const" version="opset1">
<data element_type="f32" shape="1, 16, 1, 1" offset="3517612" size="64" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1473" name="/model.28/cv4.0/cv4.0.0/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv4.0/cv4.0.0/conv/Conv_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1474" name="/model.28/cv4.0/cv4.0.0/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.28/cv4.0/cv4.0.0/act/Mul_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1475" name="/model.28/cv4.0/cv4.0.0/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3517676" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1476" name="/model.28/cv4.0/cv4.0.0/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3517680" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1477" name="/model.28/cv4.0/cv4.0.0/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3517676" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1478" name="/model.28/cv4.0/cv4.0.0/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3517680" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1479" name="/model.28/cv4.0/cv4.0.0/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1480" name="Constant_515403" type="Const" version="opset1">
<data element_type="i8" shape="16, 16, 3, 3" offset="3517684" size="2304" />
<output>
<port id="0" precision="I8">
<dim>16</dim>
<dim>16</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1481" name="Convert_515404" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>16</dim>
<dim>16</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>16</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1482" name="Constant_515405" type="Const" version="opset1">
<data element_type="f32" shape="16, 1, 1, 1" offset="3519988" size="64" />
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1483" name="/model.28/cv4.0/cv4.0.1/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>16</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>16</dim>
<dim>16</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1484" name="/model.28/cv4.0/cv4.0.1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>16</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1485" name="Reshape_2435" type="Const" version="opset1">
<data element_type="f32" shape="1, 16, 1, 1" offset="3520052" size="64" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1486" name="/model.28/cv4.0/cv4.0.1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv4.0/cv4.0.1/conv/Conv_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1487" name="/model.28/cv4.0/cv4.0.1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.28/cv4.0/cv4.0.1/act/Mul_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1488" name="/model.28/cv4.0/cv4.0.1/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3520116" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1489" name="/model.28/cv4.0/cv4.0.1/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3520120" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1490" name="/model.28/cv4.0/cv4.0.1/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3520116" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1491" name="/model.28/cv4.0/cv4.0.1/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3520120" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1492" name="/model.28/cv4.0/cv4.0.1/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1493" name="Constant_515407" type="Const" version="opset1">
<data element_type="i8" shape="8, 16, 1, 1" offset="3520124" size="128" />
<output>
<port id="0" precision="I8">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1494" name="Convert_515408" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1495" name="Constant_515409" type="Const" version="opset1">
<data element_type="f32" shape="8, 1, 1, 1" offset="3520252" size="32" />
<output>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1496" name="/model.28/cv4.0/cv4.0.2/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1497" name="/model.28/cv4.0/cv4.0.2/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1498" name="Reshape_2453" type="Const" version="opset1">
<data element_type="f32" shape="1, 8, 1, 1" offset="3520284" size="32" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1499" name="/model.28/cv4.0/cv4.0.2/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv4.0/cv4.0.2/Conv_output_0">
<dim>1</dim>
<dim>8</dim>
<dim>52</dim>
<dim>52</dim>
</port>
</output>
</layer>
<layer id="1500" name="/model.28/Constant_output_0" type="Const" version="opset1">
<data element_type="i64" shape="3" offset="3520316" size="24" />
<output>
<port id="0" precision="I64" names="/model.28/Constant_output_0">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1501" name="/model.28/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>52</dim>
<dim>52</dim>
</port>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/Reshape_output_0">
<dim>1</dim>
<dim>8</dim>
<dim>2704</dim>
</port>
</output>
</layer>
<layer id="1502" name="Constant_515411" type="Const" version="opset1">
<data element_type="i8" shape="16, 128, 3, 3" offset="3520340" size="18432" />
<output>
<port id="0" precision="I8">
<dim>16</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1503" name="Convert_515412" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>16</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1504" name="Constant_515413" type="Const" version="opset1">
<data element_type="f32" shape="16, 1, 1, 1" offset="3538772" size="64" />
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1505" name="/model.28/cv4.1/cv4.1.0/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>16</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1506" name="/model.28/cv4.1/cv4.1.0/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1507" name="Reshape_2470" type="Const" version="opset1">
<data element_type="f32" shape="1, 16, 1, 1" offset="3538836" size="64" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1508" name="/model.28/cv4.1/cv4.1.0/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv4.1/cv4.1.0/conv/Conv_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1509" name="/model.28/cv4.1/cv4.1.0/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.28/cv4.1/cv4.1.0/act/Mul_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1510" name="/model.28/cv4.1/cv4.1.0/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3493772" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1511" name="/model.28/cv4.1/cv4.1.0/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3538900" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1512" name="/model.28/cv4.1/cv4.1.0/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3493772" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1513" name="/model.28/cv4.1/cv4.1.0/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3538900" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1514" name="/model.28/cv4.1/cv4.1.0/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1515" name="Constant_515415" type="Const" version="opset1">
<data element_type="i8" shape="16, 16, 3, 3" offset="3538904" size="2304" />
<output>
<port id="0" precision="I8">
<dim>16</dim>
<dim>16</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1516" name="Convert_515416" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>16</dim>
<dim>16</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>16</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1517" name="Constant_515417" type="Const" version="opset1">
<data element_type="f32" shape="16, 1, 1, 1" offset="3541208" size="64" />
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1518" name="/model.28/cv4.1/cv4.1.1/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>16</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>16</dim>
<dim>16</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1519" name="/model.28/cv4.1/cv4.1.1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>16</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1520" name="Reshape_2488" type="Const" version="opset1">
<data element_type="f32" shape="1, 16, 1, 1" offset="3541272" size="64" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1521" name="/model.28/cv4.1/cv4.1.1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv4.1/cv4.1.1/conv/Conv_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1522" name="/model.28/cv4.1/cv4.1.1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.28/cv4.1/cv4.1.1/act/Mul_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1523" name="/model.28/cv4.1/cv4.1.1/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3541336" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1524" name="/model.28/cv4.1/cv4.1.1/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3541340" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1525" name="/model.28/cv4.1/cv4.1.1/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3541336" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1526" name="/model.28/cv4.1/cv4.1.1/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3541340" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1527" name="/model.28/cv4.1/cv4.1.1/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1528" name="Constant_515419" type="Const" version="opset1">
<data element_type="i8" shape="8, 16, 1, 1" offset="3541344" size="128" />
<output>
<port id="0" precision="I8">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1529" name="Convert_515420" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1530" name="Constant_515421" type="Const" version="opset1">
<data element_type="f32" shape="8, 1, 1, 1" offset="3541472" size="32" />
<output>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1531" name="/model.28/cv4.1/cv4.1.2/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1532" name="/model.28/cv4.1/cv4.1.2/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1533" name="Reshape_2506" type="Const" version="opset1">
<data element_type="f32" shape="1, 8, 1, 1" offset="3541504" size="32" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1534" name="/model.28/cv4.1/cv4.1.2/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv4.1/cv4.1.2/Conv_output_0">
<dim>1</dim>
<dim>8</dim>
<dim>26</dim>
<dim>26</dim>
</port>
</output>
</layer>
<layer id="1535" name="/model.28/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>26</dim>
<dim>26</dim>
</port>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/Reshape_1_output_0">
<dim>1</dim>
<dim>8</dim>
<dim>676</dim>
</port>
</output>
</layer>
<layer id="1536" name="Constant_515423" type="Const" version="opset1">
<data element_type="i8" shape="16, 256, 3, 3" offset="3541536" size="36864" />
<output>
<port id="0" precision="I8">
<dim>16</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1537" name="Convert_515424" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>16</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1538" name="Constant_515425" type="Const" version="opset1">
<data element_type="f32" shape="16, 1, 1, 1" offset="3578400" size="64" />
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1539" name="/model.28/cv4.2/cv4.2.0/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>16</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1540" name="/model.28/cv4.2/cv4.2.0/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1541" name="Reshape_2523" type="Const" version="opset1">
<data element_type="f32" shape="1, 16, 1, 1" offset="3578464" size="64" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1542" name="/model.28/cv4.2/cv4.2.0/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv4.2/cv4.2.0/conv/Conv_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1543" name="/model.28/cv4.2/cv4.2.0/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.28/cv4.2/cv4.2.0/act/Mul_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1544" name="/model.28/cv4.2/cv4.2.0/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3578528" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1545" name="/model.28/cv4.2/cv4.2.0/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3578532" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1546" name="/model.28/cv4.2/cv4.2.0/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3578528" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1547" name="/model.28/cv4.2/cv4.2.0/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3578532" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1548" name="/model.28/cv4.2/cv4.2.0/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1549" name="Constant_515427" type="Const" version="opset1">
<data element_type="i8" shape="16, 16, 3, 3" offset="3578536" size="2304" />
<output>
<port id="0" precision="I8">
<dim>16</dim>
<dim>16</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1550" name="Convert_515428" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>16</dim>
<dim>16</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>16</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1551" name="Constant_515429" type="Const" version="opset1">
<data element_type="f32" shape="16, 1, 1, 1" offset="3580840" size="64" />
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1552" name="/model.28/cv4.2/cv4.2.1/conv/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>16</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>16</dim>
<dim>16</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1553" name="/model.28/cv4.2/cv4.2.1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>16</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1554" name="Reshape_2541" type="Const" version="opset1">
<data element_type="f32" shape="1, 16, 1, 1" offset="3580904" size="64" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1555" name="/model.28/cv4.2/cv4.2.1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv4.2/cv4.2.1/conv/Conv_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1556" name="/model.28/cv4.2/cv4.2.1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/model.28/cv4.2/cv4.2.1/act/Mul_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1557" name="/model.28/cv4.2/cv4.2.1/act/Mul/fq_output_0/input_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3580968" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1558" name="/model.28/cv4.2/cv4.2.1/act/Mul/fq_output_0/input_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3580972" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1559" name="/model.28/cv4.2/cv4.2.1/act/Mul/fq_output_0/output_low" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3580968" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1560" name="/model.28/cv4.2/cv4.2.1/act/Mul/fq_output_0/output_high" type="Const" version="opset1">
<data element_type="f32" shape="" offset="3580972" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="1561" name="/model.28/cv4.2/cv4.2.1/act/Mul/fq_output_0" type="FakeQuantize" version="opset1">
<data levels="256" auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32" />
<port id="2" precision="FP32" />
<port id="3" precision="FP32" />
<port id="4" precision="FP32" />
</input>
<output>
<port id="5" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1562" name="Constant_515431" type="Const" version="opset1">
<data element_type="i8" shape="8, 16, 1, 1" offset="3580976" size="128" />
<output>
<port id="0" precision="I8">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1563" name="Convert_515432" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I8">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1564" name="Constant_515433" type="Const" version="opset1">
<data element_type="f32" shape="8, 1, 1, 1" offset="3581104" size="32" />
<output>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1565" name="/model.28/cv4.2/cv4.2.2/Conv/WithoutBiases/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1566" name="/model.28/cv4.2/cv4.2.2/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1567" name="Reshape_2559" type="Const" version="opset1">
<data element_type="f32" shape="1, 8, 1, 1" offset="3581136" size="32" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="1568" name="/model.28/cv4.2/cv4.2.2/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/cv4.2/cv4.2.2/Conv_output_0">
<dim>1</dim>
<dim>8</dim>
<dim>13</dim>
<dim>13</dim>
</port>
</output>
</layer>
<layer id="1569" name="/model.28/Reshape_2" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>13</dim>
<dim>13</dim>
</port>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/Reshape_2_output_0">
<dim>1</dim>
<dim>8</dim>
<dim>169</dim>
</port>
</output>
</layer>
<layer id="1570" name="/model.28/Concat" type="Concat" version="opset1">
<data axis="-1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>2704</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>676</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>169</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="/model.28/Concat_output_0">
<dim>1</dim>
<dim>8</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1571" name="/model.28/Constant_17_output_0" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="3581168" size="32" />
<output>
<port id="0" precision="I64" names="/model.28/Constant_17_output_0">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="1572" name="/model.28/Reshape_6" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>3549</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/Reshape_6_output_0">
<dim>1</dim>
<dim>4</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1573" name="Constant_6586" type="Const" version="opset1">
<data element_type="i64" shape="3" offset="3581200" size="24" />
<output>
<port id="0" precision="I64">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1574" name="Constant_6589" type="Const" version="opset1">
<data element_type="i64" shape="3" offset="3581224" size="24" />
<output>
<port id="0" precision="I64">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1575" name="Constant_6592" type="Const" version="opset1">
<data element_type="i64" shape="3" offset="3581248" size="24" />
<output>
<port id="0" precision="I64">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="1576" name="/model.28/Slice_2" type="StridedSlice" version="opset1">
<data begin_mask="1, 1, 0" end_mask="1, 1, 0" new_axis_mask="" shrink_axis_mask="" ellipsis_mask="" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
<port id="1" precision="I64">
<dim>3</dim>
</port>
<port id="2" precision="I64">
<dim>3</dim>
</port>
<port id="3" precision="I64">
<dim>3</dim>
</port>
</input>
<output>
<port id="4" precision="FP32" names="/model.28/Slice_2_output_0">
<dim>1</dim>
<dim>4</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1577" name="Constant_7138" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 1, 3549" offset="3581272" size="14196" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1578" name="Multiply_7064" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3549</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1579" name="Constant_7139" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 2, 3549" offset="3595468" size="28392" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1580" name="/model.28/Mul_4" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/Mul_4_output_0">
<dim>1</dim>
<dim>4</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1581" name="/model.28/Reshape_7" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/model.28/Reshape_7_output_0">
<dim>1</dim>
<dim>8</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1582" name="output0" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>3549</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>3549</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>3549</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="output0">
<dim>1</dim>
<dim>14</dim>
<dim>3549</dim>
</port>
</output>
</layer>
<layer id="1583" name="output0/sink_port_0" type="Result" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>14</dim>
<dim>3549</dim>
</port>
</input>
</layer>
</layers>
<edges>
<edge from-layer="0" from-port="0" to-layer="6" to-port="0" />
<edge from-layer="1" from-port="0" to-layer="1453" to-port="0" />
<edge from-layer="1" from-port="0" to-layer="1438" to-port="0" />
<edge from-layer="2" from-port="0" to-layer="6" to-port="1" />
<edge from-layer="3" from-port="0" to-layer="6" to-port="2" />
<edge from-layer="4" from-port="0" to-layer="6" to-port="3" />
<edge from-layer="5" from-port="0" to-layer="6" to-port="4" />
<edge from-layer="6" from-port="5" to-layer="11" to-port="0" />
<edge from-layer="7" from-port="0" to-layer="8" to-port="0" />
<edge from-layer="8" from-port="1" to-layer="10" to-port="0" />
<edge from-layer="9" from-port="0" to-layer="10" to-port="1" />
<edge from-layer="10" from-port="2" to-layer="11" to-port="1" />
<edge from-layer="11" from-port="2" to-layer="13" to-port="0" />
<edge from-layer="12" from-port="0" to-layer="13" to-port="1" />
<edge from-layer="13" from-port="2" to-layer="14" to-port="0" />
<edge from-layer="14" from-port="1" to-layer="19" to-port="0" />
<edge from-layer="15" from-port="0" to-layer="19" to-port="1" />
<edge from-layer="16" from-port="0" to-layer="19" to-port="2" />
<edge from-layer="17" from-port="0" to-layer="19" to-port="3" />
<edge from-layer="18" from-port="0" to-layer="19" to-port="4" />
<edge from-layer="19" from-port="5" to-layer="24" to-port="0" />
<edge from-layer="19" from-port="5" to-layer="58" to-port="0" />
<edge from-layer="20" from-port="0" to-layer="21" to-port="0" />
<edge from-layer="21" from-port="1" to-layer="23" to-port="0" />
<edge from-layer="22" from-port="0" to-layer="23" to-port="1" />
<edge from-layer="23" from-port="2" to-layer="24" to-port="1" />
<edge from-layer="24" from-port="2" to-layer="26" to-port="0" />
<edge from-layer="25" from-port="0" to-layer="26" to-port="1" />
<edge from-layer="26" from-port="2" to-layer="27" to-port="0" />
<edge from-layer="27" from-port="1" to-layer="32" to-port="0" />
<edge from-layer="28" from-port="0" to-layer="32" to-port="1" />
<edge from-layer="29" from-port="0" to-layer="32" to-port="2" />
<edge from-layer="30" from-port="0" to-layer="32" to-port="3" />
<edge from-layer="31" from-port="0" to-layer="32" to-port="4" />
<edge from-layer="32" from-port="5" to-layer="37" to-port="0" />
<edge from-layer="33" from-port="0" to-layer="34" to-port="0" />
<edge from-layer="34" from-port="1" to-layer="36" to-port="0" />
<edge from-layer="35" from-port="0" to-layer="36" to-port="1" />
<edge from-layer="36" from-port="2" to-layer="37" to-port="1" />
<edge from-layer="37" from-port="2" to-layer="39" to-port="0" />
<edge from-layer="38" from-port="0" to-layer="39" to-port="1" />
<edge from-layer="39" from-port="2" to-layer="40" to-port="0" />
<edge from-layer="40" from-port="1" to-layer="45" to-port="0" />
<edge from-layer="41" from-port="0" to-layer="45" to-port="1" />
<edge from-layer="42" from-port="0" to-layer="45" to-port="2" />
<edge from-layer="43" from-port="0" to-layer="45" to-port="3" />
<edge from-layer="44" from-port="0" to-layer="45" to-port="4" />
<edge from-layer="45" from-port="5" to-layer="50" to-port="0" />
<edge from-layer="46" from-port="0" to-layer="47" to-port="0" />
<edge from-layer="47" from-port="1" to-layer="49" to-port="0" />
<edge from-layer="48" from-port="0" to-layer="49" to-port="1" />
<edge from-layer="49" from-port="2" to-layer="50" to-port="1" />
<edge from-layer="50" from-port="2" to-layer="52" to-port="0" />
<edge from-layer="51" from-port="0" to-layer="52" to-port="1" />
<edge from-layer="52" from-port="2" to-layer="57" to-port="0" />
<edge from-layer="53" from-port="0" to-layer="57" to-port="1" />
<edge from-layer="54" from-port="0" to-layer="57" to-port="2" />
<edge from-layer="55" from-port="0" to-layer="57" to-port="3" />
<edge from-layer="56" from-port="0" to-layer="57" to-port="4" />
<edge from-layer="57" from-port="5" to-layer="58" to-port="1" />
<edge from-layer="58" from-port="2" to-layer="63" to-port="0" />
<edge from-layer="59" from-port="0" to-layer="63" to-port="1" />
<edge from-layer="60" from-port="0" to-layer="63" to-port="2" />
<edge from-layer="61" from-port="0" to-layer="63" to-port="3" />
<edge from-layer="62" from-port="0" to-layer="63" to-port="4" />
<edge from-layer="63" from-port="5" to-layer="68" to-port="0" />
<edge from-layer="64" from-port="0" to-layer="65" to-port="0" />
<edge from-layer="65" from-port="1" to-layer="67" to-port="0" />
<edge from-layer="66" from-port="0" to-layer="67" to-port="1" />
<edge from-layer="67" from-port="2" to-layer="68" to-port="1" />
<edge from-layer="68" from-port="2" to-layer="70" to-port="0" />
<edge from-layer="69" from-port="0" to-layer="70" to-port="1" />
<edge from-layer="70" from-port="2" to-layer="71" to-port="0" />
<edge from-layer="71" from-port="1" to-layer="76" to-port="0" />
<edge from-layer="72" from-port="0" to-layer="76" to-port="1" />
<edge from-layer="73" from-port="0" to-layer="76" to-port="2" />
<edge from-layer="74" from-port="0" to-layer="76" to-port="3" />
<edge from-layer="75" from-port="0" to-layer="76" to-port="4" />
<edge from-layer="76" from-port="5" to-layer="81" to-port="0" />
<edge from-layer="77" from-port="0" to-layer="78" to-port="0" />
<edge from-layer="78" from-port="1" to-layer="80" to-port="0" />
<edge from-layer="79" from-port="0" to-layer="80" to-port="1" />
<edge from-layer="80" from-port="2" to-layer="81" to-port="1" />
<edge from-layer="81" from-port="2" to-layer="83" to-port="0" />
<edge from-layer="82" from-port="0" to-layer="83" to-port="1" />
<edge from-layer="83" from-port="2" to-layer="84" to-port="0" />
<edge from-layer="84" from-port="1" to-layer="89" to-port="0" />
<edge from-layer="85" from-port="0" to-layer="89" to-port="1" />
<edge from-layer="86" from-port="0" to-layer="89" to-port="2" />
<edge from-layer="87" from-port="0" to-layer="89" to-port="3" />
<edge from-layer="88" from-port="0" to-layer="89" to-port="4" />
<edge from-layer="89" from-port="5" to-layer="94" to-port="0" />
<edge from-layer="90" from-port="0" to-layer="91" to-port="0" />
<edge from-layer="91" from-port="1" to-layer="93" to-port="0" />
<edge from-layer="92" from-port="0" to-layer="93" to-port="1" />
<edge from-layer="93" from-port="2" to-layer="94" to-port="1" />
<edge from-layer="94" from-port="2" to-layer="96" to-port="0" />
<edge from-layer="95" from-port="0" to-layer="96" to-port="1" />
<edge from-layer="96" from-port="2" to-layer="101" to-port="0" />
<edge from-layer="97" from-port="0" to-layer="101" to-port="1" />
<edge from-layer="98" from-port="0" to-layer="101" to-port="2" />
<edge from-layer="99" from-port="0" to-layer="101" to-port="3" />
<edge from-layer="100" from-port="0" to-layer="101" to-port="4" />
<edge from-layer="101" from-port="5" to-layer="140" to-port="0" />
<edge from-layer="101" from-port="5" to-layer="106" to-port="0" />
<edge from-layer="102" from-port="0" to-layer="103" to-port="0" />
<edge from-layer="103" from-port="1" to-layer="105" to-port="0" />
<edge from-layer="104" from-port="0" to-layer="105" to-port="1" />
<edge from-layer="105" from-port="2" to-layer="106" to-port="1" />
<edge from-layer="106" from-port="2" to-layer="108" to-port="0" />
<edge from-layer="107" from-port="0" to-layer="108" to-port="1" />
<edge from-layer="108" from-port="2" to-layer="109" to-port="0" />
<edge from-layer="109" from-port="1" to-layer="114" to-port="0" />
<edge from-layer="110" from-port="0" to-layer="114" to-port="1" />
<edge from-layer="111" from-port="0" to-layer="114" to-port="2" />
<edge from-layer="112" from-port="0" to-layer="114" to-port="3" />
<edge from-layer="113" from-port="0" to-layer="114" to-port="4" />
<edge from-layer="114" from-port="5" to-layer="119" to-port="0" />
<edge from-layer="115" from-port="0" to-layer="116" to-port="0" />
<edge from-layer="116" from-port="1" to-layer="118" to-port="0" />
<edge from-layer="117" from-port="0" to-layer="118" to-port="1" />
<edge from-layer="118" from-port="2" to-layer="119" to-port="1" />
<edge from-layer="119" from-port="2" to-layer="121" to-port="0" />
<edge from-layer="120" from-port="0" to-layer="121" to-port="1" />
<edge from-layer="121" from-port="2" to-layer="122" to-port="0" />
<edge from-layer="122" from-port="1" to-layer="127" to-port="0" />
<edge from-layer="123" from-port="0" to-layer="127" to-port="1" />
<edge from-layer="124" from-port="0" to-layer="127" to-port="2" />
<edge from-layer="125" from-port="0" to-layer="127" to-port="3" />
<edge from-layer="126" from-port="0" to-layer="127" to-port="4" />
<edge from-layer="127" from-port="5" to-layer="132" to-port="0" />
<edge from-layer="128" from-port="0" to-layer="129" to-port="0" />
<edge from-layer="129" from-port="1" to-layer="131" to-port="0" />
<edge from-layer="130" from-port="0" to-layer="131" to-port="1" />
<edge from-layer="131" from-port="2" to-layer="132" to-port="1" />
<edge from-layer="132" from-port="2" to-layer="134" to-port="0" />
<edge from-layer="133" from-port="0" to-layer="134" to-port="1" />
<edge from-layer="134" from-port="2" to-layer="139" to-port="0" />
<edge from-layer="135" from-port="0" to-layer="139" to-port="1" />
<edge from-layer="136" from-port="0" to-layer="139" to-port="2" />
<edge from-layer="137" from-port="0" to-layer="139" to-port="3" />
<edge from-layer="138" from-port="0" to-layer="139" to-port="4" />
<edge from-layer="139" from-port="5" to-layer="140" to-port="1" />
<edge from-layer="140" from-port="2" to-layer="145" to-port="0" />
<edge from-layer="141" from-port="0" to-layer="145" to-port="1" />
<edge from-layer="142" from-port="0" to-layer="145" to-port="2" />
<edge from-layer="143" from-port="0" to-layer="145" to-port="3" />
<edge from-layer="144" from-port="0" to-layer="145" to-port="4" />
<edge from-layer="145" from-port="5" to-layer="150" to-port="0" />
<edge from-layer="146" from-port="0" to-layer="147" to-port="0" />
<edge from-layer="147" from-port="1" to-layer="149" to-port="0" />
<edge from-layer="148" from-port="0" to-layer="149" to-port="1" />
<edge from-layer="149" from-port="2" to-layer="150" to-port="1" />
<edge from-layer="150" from-port="2" to-layer="152" to-port="0" />
<edge from-layer="151" from-port="0" to-layer="152" to-port="1" />
<edge from-layer="152" from-port="2" to-layer="153" to-port="0" />
<edge from-layer="153" from-port="1" to-layer="158" to-port="0" />
<edge from-layer="154" from-port="0" to-layer="158" to-port="1" />
<edge from-layer="155" from-port="0" to-layer="158" to-port="2" />
<edge from-layer="156" from-port="0" to-layer="158" to-port="3" />
<edge from-layer="157" from-port="0" to-layer="158" to-port="4" />
<edge from-layer="158" from-port="5" to-layer="163" to-port="0" />
<edge from-layer="159" from-port="0" to-layer="160" to-port="0" />
<edge from-layer="160" from-port="1" to-layer="162" to-port="0" />
<edge from-layer="161" from-port="0" to-layer="162" to-port="1" />
<edge from-layer="162" from-port="2" to-layer="163" to-port="1" />
<edge from-layer="163" from-port="2" to-layer="165" to-port="0" />
<edge from-layer="164" from-port="0" to-layer="165" to-port="1" />
<edge from-layer="165" from-port="2" to-layer="170" to-port="0" />
<edge from-layer="165" from-port="2" to-layer="203" to-port="0" />
<edge from-layer="166" from-port="0" to-layer="170" to-port="1" />
<edge from-layer="167" from-port="0" to-layer="170" to-port="2" />
<edge from-layer="168" from-port="0" to-layer="170" to-port="3" />
<edge from-layer="169" from-port="0" to-layer="170" to-port="4" />
<edge from-layer="170" from-port="5" to-layer="172" to-port="0" />
<edge from-layer="171" from-port="0" to-layer="172" to-port="1" />
<edge from-layer="172" from-port="2" to-layer="177" to-port="0" />
<edge from-layer="173" from-port="0" to-layer="177" to-port="1" />
<edge from-layer="174" from-port="0" to-layer="177" to-port="2" />
<edge from-layer="175" from-port="0" to-layer="177" to-port="3" />
<edge from-layer="176" from-port="0" to-layer="177" to-port="4" />
<edge from-layer="177" from-port="5" to-layer="179" to-port="0" />
<edge from-layer="178" from-port="0" to-layer="179" to-port="1" />
<edge from-layer="179" from-port="2" to-layer="184" to-port="0" />
<edge from-layer="180" from-port="0" to-layer="181" to-port="0" />
<edge from-layer="181" from-port="1" to-layer="183" to-port="0" />
<edge from-layer="182" from-port="0" to-layer="183" to-port="1" />
<edge from-layer="183" from-port="2" to-layer="184" to-port="1" />
<edge from-layer="184" from-port="2" to-layer="186" to-port="0" />
<edge from-layer="185" from-port="0" to-layer="186" to-port="1" />
<edge from-layer="186" from-port="2" to-layer="187" to-port="0" />
<edge from-layer="187" from-port="1" to-layer="192" to-port="0" />
<edge from-layer="188" from-port="0" to-layer="192" to-port="1" />
<edge from-layer="189" from-port="0" to-layer="192" to-port="2" />
<edge from-layer="190" from-port="0" to-layer="192" to-port="3" />
<edge from-layer="191" from-port="0" to-layer="192" to-port="4" />
<edge from-layer="192" from-port="5" to-layer="197" to-port="0" />
<edge from-layer="193" from-port="0" to-layer="194" to-port="0" />
<edge from-layer="194" from-port="1" to-layer="196" to-port="0" />
<edge from-layer="195" from-port="0" to-layer="196" to-port="1" />
<edge from-layer="196" from-port="2" to-layer="197" to-port="1" />
<edge from-layer="197" from-port="2" to-layer="199" to-port="0" />
<edge from-layer="198" from-port="0" to-layer="199" to-port="1" />
<edge from-layer="199" from-port="2" to-layer="200" to-port="0" />
<edge from-layer="200" from-port="1" to-layer="202" to-port="0" />
<edge from-layer="201" from-port="0" to-layer="202" to-port="1" />
<edge from-layer="202" from-port="2" to-layer="203" to-port="1" />
<edge from-layer="203" from-port="2" to-layer="204" to-port="0" />
<edge from-layer="204" from-port="1" to-layer="209" to-port="0" />
<edge from-layer="205" from-port="0" to-layer="209" to-port="1" />
<edge from-layer="206" from-port="0" to-layer="209" to-port="2" />
<edge from-layer="207" from-port="0" to-layer="209" to-port="3" />
<edge from-layer="208" from-port="0" to-layer="209" to-port="4" />
<edge from-layer="209" from-port="5" to-layer="214" to-port="0" />
<edge from-layer="210" from-port="0" to-layer="211" to-port="0" />
<edge from-layer="211" from-port="1" to-layer="213" to-port="0" />
<edge from-layer="212" from-port="0" to-layer="213" to-port="1" />
<edge from-layer="213" from-port="2" to-layer="214" to-port="1" />
<edge from-layer="214" from-port="2" to-layer="216" to-port="0" />
<edge from-layer="215" from-port="0" to-layer="216" to-port="1" />
<edge from-layer="216" from-port="2" to-layer="221" to-port="0" />
<edge from-layer="217" from-port="0" to-layer="221" to-port="1" />
<edge from-layer="218" from-port="0" to-layer="221" to-port="2" />
<edge from-layer="219" from-port="0" to-layer="221" to-port="3" />
<edge from-layer="220" from-port="0" to-layer="221" to-port="4" />
<edge from-layer="221" from-port="5" to-layer="226" to-port="0" />
<edge from-layer="221" from-port="5" to-layer="298" to-port="0" />
<edge from-layer="222" from-port="0" to-layer="223" to-port="0" />
<edge from-layer="223" from-port="1" to-layer="225" to-port="0" />
<edge from-layer="224" from-port="0" to-layer="225" to-port="1" />
<edge from-layer="225" from-port="2" to-layer="226" to-port="1" />
<edge from-layer="226" from-port="2" to-layer="228" to-port="0" />
<edge from-layer="227" from-port="0" to-layer="228" to-port="1" />
<edge from-layer="228" from-port="2" to-layer="229" to-port="0" />
<edge from-layer="229" from-port="1" to-layer="234" to-port="0" />
<edge from-layer="230" from-port="0" to-layer="234" to-port="1" />
<edge from-layer="231" from-port="0" to-layer="234" to-port="2" />
<edge from-layer="232" from-port="0" to-layer="234" to-port="3" />
<edge from-layer="233" from-port="0" to-layer="234" to-port="4" />
<edge from-layer="234" from-port="5" to-layer="239" to-port="0" />
<edge from-layer="235" from-port="0" to-layer="236" to-port="0" />
<edge from-layer="236" from-port="1" to-layer="238" to-port="0" />
<edge from-layer="237" from-port="0" to-layer="238" to-port="1" />
<edge from-layer="238" from-port="2" to-layer="239" to-port="1" />
<edge from-layer="239" from-port="2" to-layer="241" to-port="0" />
<edge from-layer="240" from-port="0" to-layer="241" to-port="1" />
<edge from-layer="241" from-port="2" to-layer="246" to-port="0" />
<edge from-layer="241" from-port="2" to-layer="279" to-port="0" />
<edge from-layer="242" from-port="0" to-layer="246" to-port="1" />
<edge from-layer="243" from-port="0" to-layer="246" to-port="2" />
<edge from-layer="244" from-port="0" to-layer="246" to-port="3" />
<edge from-layer="245" from-port="0" to-layer="246" to-port="4" />
<edge from-layer="246" from-port="5" to-layer="248" to-port="0" />
<edge from-layer="247" from-port="0" to-layer="248" to-port="1" />
<edge from-layer="248" from-port="2" to-layer="253" to-port="0" />
<edge from-layer="249" from-port="0" to-layer="253" to-port="1" />
<edge from-layer="250" from-port="0" to-layer="253" to-port="2" />
<edge from-layer="251" from-port="0" to-layer="253" to-port="3" />
<edge from-layer="252" from-port="0" to-layer="253" to-port="4" />
<edge from-layer="253" from-port="5" to-layer="255" to-port="0" />
<edge from-layer="254" from-port="0" to-layer="255" to-port="1" />
<edge from-layer="254" from-port="0" to-layer="336" to-port="1" />
<edge from-layer="255" from-port="2" to-layer="260" to-port="0" />
<edge from-layer="256" from-port="0" to-layer="257" to-port="0" />
<edge from-layer="257" from-port="1" to-layer="259" to-port="0" />
<edge from-layer="258" from-port="0" to-layer="259" to-port="1" />
<edge from-layer="259" from-port="2" to-layer="260" to-port="1" />
<edge from-layer="260" from-port="2" to-layer="262" to-port="0" />
<edge from-layer="261" from-port="0" to-layer="262" to-port="1" />
<edge from-layer="262" from-port="2" to-layer="263" to-port="0" />
<edge from-layer="263" from-port="1" to-layer="268" to-port="0" />
<edge from-layer="264" from-port="0" to-layer="268" to-port="1" />
<edge from-layer="265" from-port="0" to-layer="268" to-port="2" />
<edge from-layer="266" from-port="0" to-layer="268" to-port="3" />
<edge from-layer="267" from-port="0" to-layer="268" to-port="4" />
<edge from-layer="268" from-port="5" to-layer="273" to-port="0" />
<edge from-layer="269" from-port="0" to-layer="270" to-port="0" />
<edge from-layer="270" from-port="1" to-layer="272" to-port="0" />
<edge from-layer="271" from-port="0" to-layer="272" to-port="1" />
<edge from-layer="272" from-port="2" to-layer="273" to-port="1" />
<edge from-layer="273" from-port="2" to-layer="275" to-port="0" />
<edge from-layer="274" from-port="0" to-layer="275" to-port="1" />
<edge from-layer="275" from-port="2" to-layer="276" to-port="0" />
<edge from-layer="276" from-port="1" to-layer="278" to-port="0" />
<edge from-layer="277" from-port="0" to-layer="358" to-port="1" />
<edge from-layer="277" from-port="0" to-layer="278" to-port="1" />
<edge from-layer="278" from-port="2" to-layer="279" to-port="1" />
<edge from-layer="279" from-port="2" to-layer="280" to-port="0" />
<edge from-layer="280" from-port="1" to-layer="285" to-port="0" />
<edge from-layer="281" from-port="0" to-layer="285" to-port="1" />
<edge from-layer="282" from-port="0" to-layer="285" to-port="2" />
<edge from-layer="283" from-port="0" to-layer="285" to-port="3" />
<edge from-layer="284" from-port="0" to-layer="285" to-port="4" />
<edge from-layer="285" from-port="5" to-layer="290" to-port="0" />
<edge from-layer="286" from-port="0" to-layer="287" to-port="0" />
<edge from-layer="287" from-port="1" to-layer="289" to-port="0" />
<edge from-layer="288" from-port="0" to-layer="289" to-port="1" />
<edge from-layer="289" from-port="2" to-layer="290" to-port="1" />
<edge from-layer="290" from-port="2" to-layer="292" to-port="0" />
<edge from-layer="291" from-port="0" to-layer="292" to-port="1" />
<edge from-layer="292" from-port="2" to-layer="297" to-port="0" />
<edge from-layer="293" from-port="0" to-layer="297" to-port="1" />
<edge from-layer="294" from-port="0" to-layer="297" to-port="2" />
<edge from-layer="295" from-port="0" to-layer="297" to-port="3" />
<edge from-layer="296" from-port="0" to-layer="297" to-port="4" />
<edge from-layer="297" from-port="5" to-layer="298" to-port="1" />
<edge from-layer="298" from-port="2" to-layer="303" to-port="0" />
<edge from-layer="299" from-port="0" to-layer="303" to-port="1" />
<edge from-layer="300" from-port="0" to-layer="303" to-port="2" />
<edge from-layer="301" from-port="0" to-layer="303" to-port="3" />
<edge from-layer="302" from-port="0" to-layer="303" to-port="4" />
<edge from-layer="303" from-port="5" to-layer="308" to-port="0" />
<edge from-layer="303" from-port="5" to-layer="378" to-port="0" />
<edge from-layer="304" from-port="0" to-layer="305" to-port="0" />
<edge from-layer="305" from-port="1" to-layer="307" to-port="0" />
<edge from-layer="306" from-port="0" to-layer="307" to-port="1" />
<edge from-layer="307" from-port="2" to-layer="308" to-port="1" />
<edge from-layer="308" from-port="2" to-layer="310" to-port="0" />
<edge from-layer="309" from-port="0" to-layer="310" to-port="1" />
<edge from-layer="310" from-port="2" to-layer="311" to-port="0" />
<edge from-layer="311" from-port="1" to-layer="316" to-port="0" />
<edge from-layer="312" from-port="0" to-layer="316" to-port="1" />
<edge from-layer="313" from-port="0" to-layer="316" to-port="2" />
<edge from-layer="314" from-port="0" to-layer="316" to-port="3" />
<edge from-layer="315" from-port="0" to-layer="316" to-port="4" />
<edge from-layer="316" from-port="5" to-layer="321" to-port="0" />
<edge from-layer="317" from-port="0" to-layer="318" to-port="0" />
<edge from-layer="318" from-port="1" to-layer="320" to-port="0" />
<edge from-layer="319" from-port="0" to-layer="320" to-port="1" />
<edge from-layer="320" from-port="2" to-layer="321" to-port="1" />
<edge from-layer="321" from-port="2" to-layer="323" to-port="0" />
<edge from-layer="322" from-port="0" to-layer="323" to-port="1" />
<edge from-layer="323" from-port="2" to-layer="328" to-port="0" />
<edge from-layer="323" from-port="2" to-layer="359" to-port="0" />
<edge from-layer="324" from-port="0" to-layer="328" to-port="1" />
<edge from-layer="325" from-port="0" to-layer="328" to-port="2" />
<edge from-layer="326" from-port="0" to-layer="328" to-port="3" />
<edge from-layer="327" from-port="0" to-layer="328" to-port="4" />
<edge from-layer="328" from-port="5" to-layer="330" to-port="0" />
<edge from-layer="329" from-port="0" to-layer="330" to-port="1" />
<edge from-layer="330" from-port="2" to-layer="335" to-port="0" />
<edge from-layer="331" from-port="0" to-layer="335" to-port="1" />
<edge from-layer="332" from-port="0" to-layer="335" to-port="2" />
<edge from-layer="333" from-port="0" to-layer="335" to-port="3" />
<edge from-layer="334" from-port="0" to-layer="335" to-port="4" />
<edge from-layer="335" from-port="5" to-layer="336" to-port="0" />
<edge from-layer="336" from-port="2" to-layer="341" to-port="0" />
<edge from-layer="337" from-port="0" to-layer="338" to-port="0" />
<edge from-layer="338" from-port="1" to-layer="340" to-port="0" />
<edge from-layer="339" from-port="0" to-layer="340" to-port="1" />
<edge from-layer="340" from-port="2" to-layer="341" to-port="1" />
<edge from-layer="341" from-port="2" to-layer="343" to-port="0" />
<edge from-layer="342" from-port="0" to-layer="343" to-port="1" />
<edge from-layer="343" from-port="2" to-layer="344" to-port="0" />
<edge from-layer="344" from-port="1" to-layer="349" to-port="0" />
<edge from-layer="345" from-port="0" to-layer="349" to-port="1" />
<edge from-layer="346" from-port="0" to-layer="349" to-port="2" />
<edge from-layer="347" from-port="0" to-layer="349" to-port="3" />
<edge from-layer="348" from-port="0" to-layer="349" to-port="4" />
<edge from-layer="349" from-port="5" to-layer="354" to-port="0" />
<edge from-layer="350" from-port="0" to-layer="351" to-port="0" />
<edge from-layer="351" from-port="1" to-layer="353" to-port="0" />
<edge from-layer="352" from-port="0" to-layer="353" to-port="1" />
<edge from-layer="353" from-port="2" to-layer="354" to-port="1" />
<edge from-layer="354" from-port="2" to-layer="356" to-port="0" />
<edge from-layer="355" from-port="0" to-layer="356" to-port="1" />
<edge from-layer="356" from-port="2" to-layer="357" to-port="0" />
<edge from-layer="357" from-port="1" to-layer="358" to-port="0" />
<edge from-layer="358" from-port="2" to-layer="359" to-port="1" />
<edge from-layer="359" from-port="2" to-layer="360" to-port="0" />
<edge from-layer="360" from-port="1" to-layer="365" to-port="0" />
<edge from-layer="361" from-port="0" to-layer="365" to-port="1" />
<edge from-layer="362" from-port="0" to-layer="365" to-port="2" />
<edge from-layer="363" from-port="0" to-layer="365" to-port="3" />
<edge from-layer="364" from-port="0" to-layer="365" to-port="4" />
<edge from-layer="365" from-port="5" to-layer="370" to-port="0" />
<edge from-layer="366" from-port="0" to-layer="367" to-port="0" />
<edge from-layer="367" from-port="1" to-layer="369" to-port="0" />
<edge from-layer="368" from-port="0" to-layer="369" to-port="1" />
<edge from-layer="369" from-port="2" to-layer="370" to-port="1" />
<edge from-layer="370" from-port="2" to-layer="372" to-port="0" />
<edge from-layer="371" from-port="0" to-layer="372" to-port="1" />
<edge from-layer="372" from-port="2" to-layer="377" to-port="0" />
<edge from-layer="373" from-port="0" to-layer="377" to-port="1" />
<edge from-layer="374" from-port="0" to-layer="377" to-port="2" />
<edge from-layer="375" from-port="0" to-layer="377" to-port="3" />
<edge from-layer="376" from-port="0" to-layer="377" to-port="4" />
<edge from-layer="377" from-port="5" to-layer="378" to-port="1" />
<edge from-layer="378" from-port="2" to-layer="383" to-port="0" />
<edge from-layer="379" from-port="0" to-layer="383" to-port="1" />
<edge from-layer="380" from-port="0" to-layer="383" to-port="2" />
<edge from-layer="381" from-port="0" to-layer="383" to-port="3" />
<edge from-layer="382" from-port="0" to-layer="383" to-port="4" />
<edge from-layer="383" from-port="5" to-layer="388" to-port="0" />
<edge from-layer="383" from-port="5" to-layer="1012" to-port="1" />
<edge from-layer="384" from-port="0" to-layer="385" to-port="0" />
<edge from-layer="385" from-port="1" to-layer="387" to-port="0" />
<edge from-layer="386" from-port="0" to-layer="387" to-port="1" />
<edge from-layer="387" from-port="2" to-layer="388" to-port="1" />
<edge from-layer="388" from-port="2" to-layer="390" to-port="0" />
<edge from-layer="389" from-port="0" to-layer="390" to-port="1" />
<edge from-layer="390" from-port="2" to-layer="391" to-port="0" />
<edge from-layer="391" from-port="1" to-layer="396" to-port="0" />
<edge from-layer="392" from-port="0" to-layer="396" to-port="1" />
<edge from-layer="393" from-port="0" to-layer="396" to-port="2" />
<edge from-layer="394" from-port="0" to-layer="396" to-port="3" />
<edge from-layer="395" from-port="0" to-layer="396" to-port="4" />
<edge from-layer="396" from-port="5" to-layer="401" to-port="0" />
<edge from-layer="397" from-port="0" to-layer="398" to-port="0" />
<edge from-layer="398" from-port="1" to-layer="400" to-port="0" />
<edge from-layer="399" from-port="0" to-layer="400" to-port="1" />
<edge from-layer="400" from-port="2" to-layer="401" to-port="1" />
<edge from-layer="401" from-port="2" to-layer="403" to-port="0" />
<edge from-layer="402" from-port="0" to-layer="403" to-port="1" />
<edge from-layer="403" from-port="2" to-layer="404" to-port="0" />
<edge from-layer="404" from-port="1" to-layer="409" to-port="0" />
<edge from-layer="405" from-port="0" to-layer="409" to-port="1" />
<edge from-layer="406" from-port="0" to-layer="409" to-port="2" />
<edge from-layer="407" from-port="0" to-layer="409" to-port="3" />
<edge from-layer="408" from-port="0" to-layer="409" to-port="4" />
<edge from-layer="409" from-port="5" to-layer="414" to-port="0" />
<edge from-layer="410" from-port="0" to-layer="411" to-port="0" />
<edge from-layer="411" from-port="1" to-layer="413" to-port="0" />
<edge from-layer="412" from-port="0" to-layer="413" to-port="1" />
<edge from-layer="413" from-port="2" to-layer="414" to-port="1" />
<edge from-layer="414" from-port="2" to-layer="416" to-port="0" />
<edge from-layer="415" from-port="0" to-layer="416" to-port="1" />
<edge from-layer="416" from-port="2" to-layer="421" to-port="0" />
<edge from-layer="417" from-port="0" to-layer="421" to-port="1" />
<edge from-layer="418" from-port="0" to-layer="421" to-port="2" />
<edge from-layer="419" from-port="0" to-layer="421" to-port="3" />
<edge from-layer="420" from-port="0" to-layer="421" to-port="4" />
<edge from-layer="421" from-port="5" to-layer="460" to-port="0" />
<edge from-layer="421" from-port="5" to-layer="426" to-port="0" />
<edge from-layer="422" from-port="0" to-layer="423" to-port="0" />
<edge from-layer="423" from-port="1" to-layer="425" to-port="0" />
<edge from-layer="424" from-port="0" to-layer="425" to-port="1" />
<edge from-layer="425" from-port="2" to-layer="426" to-port="1" />
<edge from-layer="426" from-port="2" to-layer="428" to-port="0" />
<edge from-layer="427" from-port="0" to-layer="428" to-port="1" />
<edge from-layer="428" from-port="2" to-layer="429" to-port="0" />
<edge from-layer="429" from-port="1" to-layer="434" to-port="0" />
<edge from-layer="430" from-port="0" to-layer="434" to-port="1" />
<edge from-layer="431" from-port="0" to-layer="434" to-port="2" />
<edge from-layer="432" from-port="0" to-layer="434" to-port="3" />
<edge from-layer="433" from-port="0" to-layer="434" to-port="4" />
<edge from-layer="434" from-port="5" to-layer="439" to-port="0" />
<edge from-layer="435" from-port="0" to-layer="436" to-port="0" />
<edge from-layer="436" from-port="1" to-layer="438" to-port="0" />
<edge from-layer="437" from-port="0" to-layer="438" to-port="1" />
<edge from-layer="438" from-port="2" to-layer="439" to-port="1" />
<edge from-layer="439" from-port="2" to-layer="441" to-port="0" />
<edge from-layer="440" from-port="0" to-layer="441" to-port="1" />
<edge from-layer="441" from-port="2" to-layer="442" to-port="0" />
<edge from-layer="442" from-port="1" to-layer="447" to-port="0" />
<edge from-layer="443" from-port="0" to-layer="447" to-port="1" />
<edge from-layer="444" from-port="0" to-layer="447" to-port="2" />
<edge from-layer="445" from-port="0" to-layer="447" to-port="3" />
<edge from-layer="446" from-port="0" to-layer="447" to-port="4" />
<edge from-layer="447" from-port="5" to-layer="452" to-port="0" />
<edge from-layer="448" from-port="0" to-layer="449" to-port="0" />
<edge from-layer="449" from-port="1" to-layer="451" to-port="0" />
<edge from-layer="450" from-port="0" to-layer="451" to-port="1" />
<edge from-layer="451" from-port="2" to-layer="452" to-port="1" />
<edge from-layer="452" from-port="2" to-layer="454" to-port="0" />
<edge from-layer="453" from-port="0" to-layer="454" to-port="1" />
<edge from-layer="454" from-port="2" to-layer="459" to-port="0" />
<edge from-layer="455" from-port="0" to-layer="459" to-port="1" />
<edge from-layer="456" from-port="0" to-layer="459" to-port="2" />
<edge from-layer="457" from-port="0" to-layer="459" to-port="3" />
<edge from-layer="458" from-port="0" to-layer="459" to-port="4" />
<edge from-layer="459" from-port="5" to-layer="460" to-port="1" />
<edge from-layer="460" from-port="2" to-layer="465" to-port="0" />
<edge from-layer="461" from-port="0" to-layer="465" to-port="1" />
<edge from-layer="462" from-port="0" to-layer="465" to-port="2" />
<edge from-layer="463" from-port="0" to-layer="465" to-port="3" />
<edge from-layer="464" from-port="0" to-layer="465" to-port="4" />
<edge from-layer="465" from-port="5" to-layer="470" to-port="0" />
<edge from-layer="465" from-port="5" to-layer="504" to-port="0" />
<edge from-layer="466" from-port="0" to-layer="467" to-port="0" />
<edge from-layer="467" from-port="1" to-layer="469" to-port="0" />
<edge from-layer="468" from-port="0" to-layer="469" to-port="1" />
<edge from-layer="469" from-port="2" to-layer="470" to-port="1" />
<edge from-layer="470" from-port="2" to-layer="472" to-port="0" />
<edge from-layer="471" from-port="0" to-layer="472" to-port="1" />
<edge from-layer="472" from-port="2" to-layer="473" to-port="0" />
<edge from-layer="473" from-port="1" to-layer="478" to-port="0" />
<edge from-layer="474" from-port="0" to-layer="478" to-port="1" />
<edge from-layer="475" from-port="0" to-layer="478" to-port="2" />
<edge from-layer="476" from-port="0" to-layer="478" to-port="3" />
<edge from-layer="477" from-port="0" to-layer="478" to-port="4" />
<edge from-layer="478" from-port="5" to-layer="483" to-port="0" />
<edge from-layer="479" from-port="0" to-layer="480" to-port="0" />
<edge from-layer="480" from-port="1" to-layer="482" to-port="0" />
<edge from-layer="481" from-port="0" to-layer="482" to-port="1" />
<edge from-layer="482" from-port="2" to-layer="483" to-port="1" />
<edge from-layer="483" from-port="2" to-layer="485" to-port="0" />
<edge from-layer="484" from-port="0" to-layer="485" to-port="1" />
<edge from-layer="485" from-port="2" to-layer="486" to-port="0" />
<edge from-layer="486" from-port="1" to-layer="491" to-port="0" />
<edge from-layer="487" from-port="0" to-layer="491" to-port="1" />
<edge from-layer="488" from-port="0" to-layer="491" to-port="2" />
<edge from-layer="489" from-port="0" to-layer="491" to-port="3" />
<edge from-layer="490" from-port="0" to-layer="491" to-port="4" />
<edge from-layer="491" from-port="5" to-layer="496" to-port="0" />
<edge from-layer="492" from-port="0" to-layer="493" to-port="0" />
<edge from-layer="493" from-port="1" to-layer="495" to-port="0" />
<edge from-layer="494" from-port="0" to-layer="495" to-port="1" />
<edge from-layer="495" from-port="2" to-layer="496" to-port="1" />
<edge from-layer="496" from-port="2" to-layer="498" to-port="0" />
<edge from-layer="497" from-port="0" to-layer="498" to-port="1" />
<edge from-layer="498" from-port="2" to-layer="503" to-port="0" />
<edge from-layer="499" from-port="0" to-layer="503" to-port="1" />
<edge from-layer="500" from-port="0" to-layer="503" to-port="2" />
<edge from-layer="501" from-port="0" to-layer="503" to-port="3" />
<edge from-layer="502" from-port="0" to-layer="503" to-port="4" />
<edge from-layer="503" from-port="5" to-layer="504" to-port="1" />
<edge from-layer="504" from-port="2" to-layer="509" to-port="0" />
<edge from-layer="505" from-port="0" to-layer="509" to-port="1" />
<edge from-layer="506" from-port="0" to-layer="509" to-port="2" />
<edge from-layer="507" from-port="0" to-layer="509" to-port="3" />
<edge from-layer="508" from-port="0" to-layer="509" to-port="4" />
<edge from-layer="509" from-port="5" to-layer="514" to-port="0" />
<edge from-layer="509" from-port="5" to-layer="548" to-port="0" />
<edge from-layer="510" from-port="0" to-layer="511" to-port="0" />
<edge from-layer="511" from-port="1" to-layer="513" to-port="0" />
<edge from-layer="512" from-port="0" to-layer="513" to-port="1" />
<edge from-layer="513" from-port="2" to-layer="514" to-port="1" />
<edge from-layer="514" from-port="2" to-layer="516" to-port="0" />
<edge from-layer="515" from-port="0" to-layer="516" to-port="1" />
<edge from-layer="516" from-port="2" to-layer="517" to-port="0" />
<edge from-layer="517" from-port="1" to-layer="522" to-port="0" />
<edge from-layer="518" from-port="0" to-layer="522" to-port="1" />
<edge from-layer="519" from-port="0" to-layer="522" to-port="2" />
<edge from-layer="520" from-port="0" to-layer="522" to-port="3" />
<edge from-layer="521" from-port="0" to-layer="522" to-port="4" />
<edge from-layer="522" from-port="5" to-layer="527" to-port="0" />
<edge from-layer="523" from-port="0" to-layer="524" to-port="0" />
<edge from-layer="524" from-port="1" to-layer="526" to-port="0" />
<edge from-layer="525" from-port="0" to-layer="526" to-port="1" />
<edge from-layer="526" from-port="2" to-layer="527" to-port="1" />
<edge from-layer="527" from-port="2" to-layer="529" to-port="0" />
<edge from-layer="528" from-port="0" to-layer="529" to-port="1" />
<edge from-layer="529" from-port="2" to-layer="530" to-port="0" />
<edge from-layer="530" from-port="1" to-layer="535" to-port="0" />
<edge from-layer="531" from-port="0" to-layer="535" to-port="1" />
<edge from-layer="532" from-port="0" to-layer="535" to-port="2" />
<edge from-layer="533" from-port="0" to-layer="535" to-port="3" />
<edge from-layer="534" from-port="0" to-layer="535" to-port="4" />
<edge from-layer="535" from-port="5" to-layer="540" to-port="0" />
<edge from-layer="536" from-port="0" to-layer="537" to-port="0" />
<edge from-layer="537" from-port="1" to-layer="539" to-port="0" />
<edge from-layer="538" from-port="0" to-layer="539" to-port="1" />
<edge from-layer="539" from-port="2" to-layer="540" to-port="1" />
<edge from-layer="540" from-port="2" to-layer="542" to-port="0" />
<edge from-layer="541" from-port="0" to-layer="542" to-port="1" />
<edge from-layer="542" from-port="2" to-layer="547" to-port="0" />
<edge from-layer="543" from-port="0" to-layer="547" to-port="1" />
<edge from-layer="544" from-port="0" to-layer="547" to-port="2" />
<edge from-layer="545" from-port="0" to-layer="547" to-port="3" />
<edge from-layer="546" from-port="0" to-layer="547" to-port="4" />
<edge from-layer="547" from-port="5" to-layer="548" to-port="1" />
<edge from-layer="548" from-port="2" to-layer="553" to-port="0" />
<edge from-layer="549" from-port="0" to-layer="553" to-port="1" />
<edge from-layer="550" from-port="0" to-layer="553" to-port="2" />
<edge from-layer="551" from-port="0" to-layer="553" to-port="3" />
<edge from-layer="552" from-port="0" to-layer="553" to-port="4" />
<edge from-layer="553" from-port="5" to-layer="558" to-port="0" />
<edge from-layer="554" from-port="0" to-layer="555" to-port="0" />
<edge from-layer="555" from-port="1" to-layer="557" to-port="0" />
<edge from-layer="556" from-port="0" to-layer="557" to-port="1" />
<edge from-layer="557" from-port="2" to-layer="558" to-port="1" />
<edge from-layer="558" from-port="2" to-layer="560" to-port="0" />
<edge from-layer="559" from-port="0" to-layer="560" to-port="1" />
<edge from-layer="560" from-port="2" to-layer="561" to-port="0" />
<edge from-layer="561" from-port="1" to-layer="566" to-port="0" />
<edge from-layer="562" from-port="0" to-layer="566" to-port="1" />
<edge from-layer="563" from-port="0" to-layer="566" to-port="2" />
<edge from-layer="564" from-port="0" to-layer="566" to-port="3" />
<edge from-layer="565" from-port="0" to-layer="566" to-port="4" />
<edge from-layer="566" from-port="5" to-layer="571" to-port="0" />
<edge from-layer="567" from-port="0" to-layer="568" to-port="0" />
<edge from-layer="568" from-port="1" to-layer="570" to-port="0" />
<edge from-layer="569" from-port="0" to-layer="570" to-port="1" />
<edge from-layer="570" from-port="2" to-layer="571" to-port="1" />
<edge from-layer="571" from-port="2" to-layer="573" to-port="0" />
<edge from-layer="572" from-port="0" to-layer="573" to-port="1" />
<edge from-layer="573" from-port="2" to-layer="578" to-port="0" />
<edge from-layer="573" from-port="2" to-layer="611" to-port="0" />
<edge from-layer="574" from-port="0" to-layer="578" to-port="1" />
<edge from-layer="575" from-port="0" to-layer="578" to-port="2" />
<edge from-layer="576" from-port="0" to-layer="578" to-port="3" />
<edge from-layer="577" from-port="0" to-layer="578" to-port="4" />
<edge from-layer="578" from-port="5" to-layer="580" to-port="0" />
<edge from-layer="579" from-port="0" to-layer="580" to-port="1" />
<edge from-layer="580" from-port="2" to-layer="585" to-port="0" />
<edge from-layer="581" from-port="0" to-layer="585" to-port="1" />
<edge from-layer="582" from-port="0" to-layer="585" to-port="2" />
<edge from-layer="583" from-port="0" to-layer="585" to-port="3" />
<edge from-layer="584" from-port="0" to-layer="585" to-port="4" />
<edge from-layer="585" from-port="5" to-layer="587" to-port="0" />
<edge from-layer="586" from-port="0" to-layer="587" to-port="1" />
<edge from-layer="587" from-port="2" to-layer="592" to-port="0" />
<edge from-layer="588" from-port="0" to-layer="589" to-port="0" />
<edge from-layer="589" from-port="1" to-layer="591" to-port="0" />
<edge from-layer="590" from-port="0" to-layer="591" to-port="1" />
<edge from-layer="591" from-port="2" to-layer="592" to-port="1" />
<edge from-layer="592" from-port="2" to-layer="594" to-port="0" />
<edge from-layer="593" from-port="0" to-layer="594" to-port="1" />
<edge from-layer="594" from-port="2" to-layer="595" to-port="0" />
<edge from-layer="595" from-port="1" to-layer="600" to-port="0" />
<edge from-layer="596" from-port="0" to-layer="600" to-port="1" />
<edge from-layer="597" from-port="0" to-layer="600" to-port="2" />
<edge from-layer="598" from-port="0" to-layer="600" to-port="3" />
<edge from-layer="599" from-port="0" to-layer="600" to-port="4" />
<edge from-layer="600" from-port="5" to-layer="605" to-port="0" />
<edge from-layer="601" from-port="0" to-layer="602" to-port="0" />
<edge from-layer="602" from-port="1" to-layer="604" to-port="0" />
<edge from-layer="603" from-port="0" to-layer="604" to-port="1" />
<edge from-layer="604" from-port="2" to-layer="605" to-port="1" />
<edge from-layer="605" from-port="2" to-layer="607" to-port="0" />
<edge from-layer="606" from-port="0" to-layer="607" to-port="1" />
<edge from-layer="607" from-port="2" to-layer="608" to-port="0" />
<edge from-layer="608" from-port="1" to-layer="610" to-port="0" />
<edge from-layer="609" from-port="0" to-layer="610" to-port="1" />
<edge from-layer="610" from-port="2" to-layer="611" to-port="1" />
<edge from-layer="611" from-port="2" to-layer="612" to-port="0" />
<edge from-layer="612" from-port="1" to-layer="617" to-port="0" />
<edge from-layer="613" from-port="0" to-layer="617" to-port="1" />
<edge from-layer="614" from-port="0" to-layer="617" to-port="2" />
<edge from-layer="615" from-port="0" to-layer="617" to-port="3" />
<edge from-layer="616" from-port="0" to-layer="617" to-port="4" />
<edge from-layer="617" from-port="5" to-layer="622" to-port="0" />
<edge from-layer="618" from-port="0" to-layer="619" to-port="0" />
<edge from-layer="619" from-port="1" to-layer="621" to-port="0" />
<edge from-layer="620" from-port="0" to-layer="621" to-port="1" />
<edge from-layer="621" from-port="2" to-layer="622" to-port="1" />
<edge from-layer="622" from-port="2" to-layer="624" to-port="0" />
<edge from-layer="623" from-port="0" to-layer="624" to-port="1" />
<edge from-layer="624" from-port="2" to-layer="629" to-port="0" />
<edge from-layer="625" from-port="0" to-layer="629" to-port="1" />
<edge from-layer="626" from-port="0" to-layer="629" to-port="2" />
<edge from-layer="627" from-port="0" to-layer="629" to-port="3" />
<edge from-layer="628" from-port="0" to-layer="629" to-port="4" />
<edge from-layer="629" from-port="5" to-layer="634" to-port="0" />
<edge from-layer="629" from-port="5" to-layer="706" to-port="0" />
<edge from-layer="630" from-port="0" to-layer="631" to-port="0" />
<edge from-layer="631" from-port="1" to-layer="633" to-port="0" />
<edge from-layer="632" from-port="0" to-layer="633" to-port="1" />
<edge from-layer="633" from-port="2" to-layer="634" to-port="1" />
<edge from-layer="634" from-port="2" to-layer="636" to-port="0" />
<edge from-layer="635" from-port="0" to-layer="636" to-port="1" />
<edge from-layer="636" from-port="2" to-layer="637" to-port="0" />
<edge from-layer="637" from-port="1" to-layer="642" to-port="0" />
<edge from-layer="638" from-port="0" to-layer="642" to-port="1" />
<edge from-layer="639" from-port="0" to-layer="642" to-port="2" />
<edge from-layer="640" from-port="0" to-layer="642" to-port="3" />
<edge from-layer="641" from-port="0" to-layer="642" to-port="4" />
<edge from-layer="642" from-port="5" to-layer="647" to-port="0" />
<edge from-layer="643" from-port="0" to-layer="644" to-port="0" />
<edge from-layer="644" from-port="1" to-layer="646" to-port="0" />
<edge from-layer="645" from-port="0" to-layer="646" to-port="1" />
<edge from-layer="646" from-port="2" to-layer="647" to-port="1" />
<edge from-layer="647" from-port="2" to-layer="649" to-port="0" />
<edge from-layer="648" from-port="0" to-layer="649" to-port="1" />
<edge from-layer="649" from-port="2" to-layer="654" to-port="0" />
<edge from-layer="649" from-port="2" to-layer="687" to-port="0" />
<edge from-layer="650" from-port="0" to-layer="654" to-port="1" />
<edge from-layer="651" from-port="0" to-layer="654" to-port="2" />
<edge from-layer="652" from-port="0" to-layer="654" to-port="3" />
<edge from-layer="653" from-port="0" to-layer="654" to-port="4" />
<edge from-layer="654" from-port="5" to-layer="656" to-port="0" />
<edge from-layer="655" from-port="0" to-layer="656" to-port="1" />
<edge from-layer="656" from-port="2" to-layer="661" to-port="0" />
<edge from-layer="657" from-port="0" to-layer="661" to-port="1" />
<edge from-layer="658" from-port="0" to-layer="661" to-port="2" />
<edge from-layer="659" from-port="0" to-layer="661" to-port="3" />
<edge from-layer="660" from-port="0" to-layer="661" to-port="4" />
<edge from-layer="661" from-port="5" to-layer="663" to-port="0" />
<edge from-layer="662" from-port="0" to-layer="663" to-port="1" />
<edge from-layer="662" from-port="0" to-layer="744" to-port="1" />
<edge from-layer="662" from-port="0" to-layer="818" to-port="1" />
<edge from-layer="663" from-port="2" to-layer="668" to-port="0" />
<edge from-layer="664" from-port="0" to-layer="665" to-port="0" />
<edge from-layer="665" from-port="1" to-layer="667" to-port="0" />
<edge from-layer="666" from-port="0" to-layer="667" to-port="1" />
<edge from-layer="667" from-port="2" to-layer="668" to-port="1" />
<edge from-layer="668" from-port="2" to-layer="670" to-port="0" />
<edge from-layer="669" from-port="0" to-layer="670" to-port="1" />
<edge from-layer="670" from-port="2" to-layer="671" to-port="0" />
<edge from-layer="671" from-port="1" to-layer="676" to-port="0" />
<edge from-layer="672" from-port="0" to-layer="676" to-port="1" />
<edge from-layer="673" from-port="0" to-layer="676" to-port="2" />
<edge from-layer="674" from-port="0" to-layer="676" to-port="3" />
<edge from-layer="675" from-port="0" to-layer="676" to-port="4" />
<edge from-layer="676" from-port="5" to-layer="681" to-port="0" />
<edge from-layer="677" from-port="0" to-layer="678" to-port="0" />
<edge from-layer="678" from-port="1" to-layer="680" to-port="0" />
<edge from-layer="679" from-port="0" to-layer="680" to-port="1" />
<edge from-layer="680" from-port="2" to-layer="681" to-port="1" />
<edge from-layer="681" from-port="2" to-layer="683" to-port="0" />
<edge from-layer="682" from-port="0" to-layer="683" to-port="1" />
<edge from-layer="683" from-port="2" to-layer="684" to-port="0" />
<edge from-layer="684" from-port="1" to-layer="686" to-port="0" />
<edge from-layer="685" from-port="0" to-layer="686" to-port="1" />
<edge from-layer="685" from-port="0" to-layer="766" to-port="1" />
<edge from-layer="685" from-port="0" to-layer="840" to-port="1" />
<edge from-layer="686" from-port="2" to-layer="687" to-port="1" />
<edge from-layer="687" from-port="2" to-layer="688" to-port="0" />
<edge from-layer="688" from-port="1" to-layer="693" to-port="0" />
<edge from-layer="689" from-port="0" to-layer="693" to-port="1" />
<edge from-layer="690" from-port="0" to-layer="693" to-port="2" />
<edge from-layer="691" from-port="0" to-layer="693" to-port="3" />
<edge from-layer="692" from-port="0" to-layer="693" to-port="4" />
<edge from-layer="693" from-port="5" to-layer="698" to-port="0" />
<edge from-layer="694" from-port="0" to-layer="695" to-port="0" />
<edge from-layer="695" from-port="1" to-layer="697" to-port="0" />
<edge from-layer="696" from-port="0" to-layer="697" to-port="1" />
<edge from-layer="697" from-port="2" to-layer="698" to-port="1" />
<edge from-layer="698" from-port="2" to-layer="700" to-port="0" />
<edge from-layer="699" from-port="0" to-layer="700" to-port="1" />
<edge from-layer="700" from-port="2" to-layer="705" to-port="0" />
<edge from-layer="701" from-port="0" to-layer="705" to-port="1" />
<edge from-layer="702" from-port="0" to-layer="705" to-port="2" />
<edge from-layer="703" from-port="0" to-layer="705" to-port="3" />
<edge from-layer="704" from-port="0" to-layer="705" to-port="4" />
<edge from-layer="705" from-port="5" to-layer="706" to-port="1" />
<edge from-layer="706" from-port="2" to-layer="711" to-port="0" />
<edge from-layer="707" from-port="0" to-layer="711" to-port="1" />
<edge from-layer="708" from-port="0" to-layer="711" to-port="2" />
<edge from-layer="709" from-port="0" to-layer="711" to-port="3" />
<edge from-layer="710" from-port="0" to-layer="711" to-port="4" />
<edge from-layer="711" from-port="5" to-layer="716" to-port="0" />
<edge from-layer="712" from-port="0" to-layer="713" to-port="0" />
<edge from-layer="713" from-port="1" to-layer="715" to-port="0" />
<edge from-layer="714" from-port="0" to-layer="715" to-port="1" />
<edge from-layer="715" from-port="2" to-layer="716" to-port="1" />
<edge from-layer="716" from-port="2" to-layer="718" to-port="0" />
<edge from-layer="717" from-port="0" to-layer="718" to-port="1" />
<edge from-layer="718" from-port="2" to-layer="719" to-port="0" />
<edge from-layer="719" from-port="1" to-layer="724" to-port="0" />
<edge from-layer="720" from-port="0" to-layer="724" to-port="1" />
<edge from-layer="721" from-port="0" to-layer="724" to-port="2" />
<edge from-layer="722" from-port="0" to-layer="724" to-port="3" />
<edge from-layer="723" from-port="0" to-layer="724" to-port="4" />
<edge from-layer="724" from-port="5" to-layer="729" to-port="0" />
<edge from-layer="725" from-port="0" to-layer="726" to-port="0" />
<edge from-layer="726" from-port="1" to-layer="728" to-port="0" />
<edge from-layer="727" from-port="0" to-layer="728" to-port="1" />
<edge from-layer="728" from-port="2" to-layer="729" to-port="1" />
<edge from-layer="729" from-port="2" to-layer="731" to-port="0" />
<edge from-layer="730" from-port="0" to-layer="731" to-port="1" />
<edge from-layer="731" from-port="2" to-layer="736" to-port="0" />
<edge from-layer="731" from-port="2" to-layer="767" to-port="0" />
<edge from-layer="732" from-port="0" to-layer="736" to-port="1" />
<edge from-layer="733" from-port="0" to-layer="736" to-port="2" />
<edge from-layer="734" from-port="0" to-layer="736" to-port="3" />
<edge from-layer="735" from-port="0" to-layer="736" to-port="4" />
<edge from-layer="736" from-port="5" to-layer="738" to-port="0" />
<edge from-layer="737" from-port="0" to-layer="738" to-port="1" />
<edge from-layer="738" from-port="2" to-layer="743" to-port="0" />
<edge from-layer="739" from-port="0" to-layer="743" to-port="1" />
<edge from-layer="740" from-port="0" to-layer="743" to-port="2" />
<edge from-layer="741" from-port="0" to-layer="743" to-port="3" />
<edge from-layer="742" from-port="0" to-layer="743" to-port="4" />
<edge from-layer="743" from-port="5" to-layer="744" to-port="0" />
<edge from-layer="744" from-port="2" to-layer="749" to-port="0" />
<edge from-layer="745" from-port="0" to-layer="746" to-port="0" />
<edge from-layer="746" from-port="1" to-layer="748" to-port="0" />
<edge from-layer="747" from-port="0" to-layer="748" to-port="1" />
<edge from-layer="748" from-port="2" to-layer="749" to-port="1" />
<edge from-layer="749" from-port="2" to-layer="751" to-port="0" />
<edge from-layer="750" from-port="0" to-layer="751" to-port="1" />
<edge from-layer="751" from-port="2" to-layer="752" to-port="0" />
<edge from-layer="752" from-port="1" to-layer="757" to-port="0" />
<edge from-layer="753" from-port="0" to-layer="757" to-port="1" />
<edge from-layer="754" from-port="0" to-layer="757" to-port="2" />
<edge from-layer="755" from-port="0" to-layer="757" to-port="3" />
<edge from-layer="756" from-port="0" to-layer="757" to-port="4" />
<edge from-layer="757" from-port="5" to-layer="762" to-port="0" />
<edge from-layer="758" from-port="0" to-layer="759" to-port="0" />
<edge from-layer="759" from-port="1" to-layer="761" to-port="0" />
<edge from-layer="760" from-port="0" to-layer="761" to-port="1" />
<edge from-layer="761" from-port="2" to-layer="762" to-port="1" />
<edge from-layer="762" from-port="2" to-layer="764" to-port="0" />
<edge from-layer="763" from-port="0" to-layer="764" to-port="1" />
<edge from-layer="764" from-port="2" to-layer="765" to-port="0" />
<edge from-layer="765" from-port="1" to-layer="766" to-port="0" />
<edge from-layer="766" from-port="2" to-layer="767" to-port="1" />
<edge from-layer="767" from-port="2" to-layer="768" to-port="0" />
<edge from-layer="768" from-port="1" to-layer="773" to-port="0" />
<edge from-layer="769" from-port="0" to-layer="773" to-port="1" />
<edge from-layer="770" from-port="0" to-layer="773" to-port="2" />
<edge from-layer="771" from-port="0" to-layer="773" to-port="3" />
<edge from-layer="772" from-port="0" to-layer="773" to-port="4" />
<edge from-layer="773" from-port="5" to-layer="778" to-port="0" />
<edge from-layer="774" from-port="0" to-layer="775" to-port="0" />
<edge from-layer="775" from-port="1" to-layer="777" to-port="0" />
<edge from-layer="776" from-port="0" to-layer="777" to-port="1" />
<edge from-layer="777" from-port="2" to-layer="778" to-port="1" />
<edge from-layer="778" from-port="2" to-layer="780" to-port="0" />
<edge from-layer="779" from-port="0" to-layer="780" to-port="1" />
<edge from-layer="780" from-port="2" to-layer="785" to-port="0" />
<edge from-layer="781" from-port="0" to-layer="785" to-port="1" />
<edge from-layer="782" from-port="0" to-layer="785" to-port="2" />
<edge from-layer="783" from-port="0" to-layer="785" to-port="3" />
<edge from-layer="784" from-port="0" to-layer="785" to-port="4" />
<edge from-layer="785" from-port="5" to-layer="790" to-port="0" />
<edge from-layer="785" from-port="5" to-layer="949" to-port="1" />
<edge from-layer="786" from-port="0" to-layer="787" to-port="0" />
<edge from-layer="787" from-port="1" to-layer="789" to-port="0" />
<edge from-layer="788" from-port="0" to-layer="789" to-port="1" />
<edge from-layer="789" from-port="2" to-layer="790" to-port="1" />
<edge from-layer="790" from-port="2" to-layer="792" to-port="0" />
<edge from-layer="791" from-port="0" to-layer="792" to-port="1" />
<edge from-layer="792" from-port="2" to-layer="793" to-port="0" />
<edge from-layer="793" from-port="1" to-layer="798" to-port="0" />
<edge from-layer="794" from-port="0" to-layer="798" to-port="1" />
<edge from-layer="795" from-port="0" to-layer="798" to-port="2" />
<edge from-layer="796" from-port="0" to-layer="798" to-port="3" />
<edge from-layer="797" from-port="0" to-layer="798" to-port="4" />
<edge from-layer="798" from-port="5" to-layer="803" to-port="0" />
<edge from-layer="799" from-port="0" to-layer="800" to-port="0" />
<edge from-layer="800" from-port="1" to-layer="802" to-port="0" />
<edge from-layer="801" from-port="0" to-layer="802" to-port="1" />
<edge from-layer="802" from-port="2" to-layer="803" to-port="1" />
<edge from-layer="803" from-port="2" to-layer="805" to-port="0" />
<edge from-layer="804" from-port="0" to-layer="805" to-port="1" />
<edge from-layer="805" from-port="2" to-layer="841" to-port="0" />
<edge from-layer="805" from-port="2" to-layer="810" to-port="0" />
<edge from-layer="806" from-port="0" to-layer="810" to-port="1" />
<edge from-layer="807" from-port="0" to-layer="810" to-port="2" />
<edge from-layer="808" from-port="0" to-layer="810" to-port="3" />
<edge from-layer="809" from-port="0" to-layer="810" to-port="4" />
<edge from-layer="810" from-port="5" to-layer="812" to-port="0" />
<edge from-layer="811" from-port="0" to-layer="812" to-port="1" />
<edge from-layer="812" from-port="2" to-layer="817" to-port="0" />
<edge from-layer="813" from-port="0" to-layer="817" to-port="1" />
<edge from-layer="814" from-port="0" to-layer="817" to-port="2" />
<edge from-layer="815" from-port="0" to-layer="817" to-port="3" />
<edge from-layer="816" from-port="0" to-layer="817" to-port="4" />
<edge from-layer="817" from-port="5" to-layer="818" to-port="0" />
<edge from-layer="818" from-port="2" to-layer="823" to-port="0" />
<edge from-layer="819" from-port="0" to-layer="820" to-port="0" />
<edge from-layer="820" from-port="1" to-layer="822" to-port="0" />
<edge from-layer="821" from-port="0" to-layer="822" to-port="1" />
<edge from-layer="822" from-port="2" to-layer="823" to-port="1" />
<edge from-layer="823" from-port="2" to-layer="825" to-port="0" />
<edge from-layer="824" from-port="0" to-layer="825" to-port="1" />
<edge from-layer="825" from-port="2" to-layer="826" to-port="0" />
<edge from-layer="826" from-port="1" to-layer="831" to-port="0" />
<edge from-layer="827" from-port="0" to-layer="831" to-port="1" />
<edge from-layer="828" from-port="0" to-layer="831" to-port="2" />
<edge from-layer="829" from-port="0" to-layer="831" to-port="3" />
<edge from-layer="830" from-port="0" to-layer="831" to-port="4" />
<edge from-layer="831" from-port="5" to-layer="836" to-port="0" />
<edge from-layer="832" from-port="0" to-layer="833" to-port="0" />
<edge from-layer="833" from-port="1" to-layer="835" to-port="0" />
<edge from-layer="834" from-port="0" to-layer="835" to-port="1" />
<edge from-layer="835" from-port="2" to-layer="836" to-port="1" />
<edge from-layer="836" from-port="2" to-layer="838" to-port="0" />
<edge from-layer="837" from-port="0" to-layer="838" to-port="1" />
<edge from-layer="838" from-port="2" to-layer="839" to-port="0" />
<edge from-layer="839" from-port="1" to-layer="840" to-port="0" />
<edge from-layer="840" from-port="2" to-layer="841" to-port="1" />
<edge from-layer="841" from-port="2" to-layer="842" to-port="0" />
<edge from-layer="842" from-port="1" to-layer="847" to-port="0" />
<edge from-layer="843" from-port="0" to-layer="847" to-port="1" />
<edge from-layer="844" from-port="0" to-layer="847" to-port="2" />
<edge from-layer="845" from-port="0" to-layer="847" to-port="3" />
<edge from-layer="846" from-port="0" to-layer="847" to-port="4" />
<edge from-layer="847" from-port="5" to-layer="852" to-port="0" />
<edge from-layer="848" from-port="0" to-layer="849" to-port="0" />
<edge from-layer="849" from-port="1" to-layer="851" to-port="0" />
<edge from-layer="850" from-port="0" to-layer="851" to-port="1" />
<edge from-layer="851" from-port="2" to-layer="852" to-port="1" />
<edge from-layer="852" from-port="2" to-layer="854" to-port="0" />
<edge from-layer="853" from-port="0" to-layer="854" to-port="1" />
<edge from-layer="854" from-port="2" to-layer="859" to-port="0" />
<edge from-layer="855" from-port="0" to-layer="859" to-port="1" />
<edge from-layer="856" from-port="0" to-layer="859" to-port="2" />
<edge from-layer="857" from-port="0" to-layer="859" to-port="3" />
<edge from-layer="858" from-port="0" to-layer="859" to-port="4" />
<edge from-layer="859" from-port="5" to-layer="936" to-port="0" />
<edge from-layer="859" from-port="5" to-layer="864" to-port="0" />
<edge from-layer="860" from-port="0" to-layer="861" to-port="0" />
<edge from-layer="861" from-port="1" to-layer="863" to-port="0" />
<edge from-layer="862" from-port="0" to-layer="863" to-port="1" />
<edge from-layer="863" from-port="2" to-layer="864" to-port="1" />
<edge from-layer="864" from-port="2" to-layer="866" to-port="0" />
<edge from-layer="865" from-port="0" to-layer="866" to-port="1" />
<edge from-layer="866" from-port="2" to-layer="867" to-port="0" />
<edge from-layer="867" from-port="1" to-layer="872" to-port="0" />
<edge from-layer="868" from-port="0" to-layer="872" to-port="1" />
<edge from-layer="869" from-port="0" to-layer="872" to-port="2" />
<edge from-layer="870" from-port="0" to-layer="872" to-port="3" />
<edge from-layer="871" from-port="0" to-layer="872" to-port="4" />
<edge from-layer="872" from-port="5" to-layer="877" to-port="0" />
<edge from-layer="873" from-port="0" to-layer="874" to-port="0" />
<edge from-layer="874" from-port="1" to-layer="876" to-port="0" />
<edge from-layer="875" from-port="0" to-layer="876" to-port="1" />
<edge from-layer="876" from-port="2" to-layer="877" to-port="1" />
<edge from-layer="877" from-port="2" to-layer="879" to-port="0" />
<edge from-layer="878" from-port="0" to-layer="879" to-port="1" />
<edge from-layer="879" from-port="2" to-layer="884" to-port="0" />
<edge from-layer="879" from-port="2" to-layer="917" to-port="0" />
<edge from-layer="880" from-port="0" to-layer="884" to-port="1" />
<edge from-layer="881" from-port="0" to-layer="884" to-port="2" />
<edge from-layer="882" from-port="0" to-layer="884" to-port="3" />
<edge from-layer="883" from-port="0" to-layer="884" to-port="4" />
<edge from-layer="884" from-port="5" to-layer="886" to-port="0" />
<edge from-layer="885" from-port="0" to-layer="886" to-port="1" />
<edge from-layer="886" from-port="2" to-layer="891" to-port="0" />
<edge from-layer="887" from-port="0" to-layer="891" to-port="1" />
<edge from-layer="888" from-port="0" to-layer="891" to-port="2" />
<edge from-layer="889" from-port="0" to-layer="891" to-port="3" />
<edge from-layer="890" from-port="0" to-layer="891" to-port="4" />
<edge from-layer="891" from-port="5" to-layer="893" to-port="0" />
<edge from-layer="892" from-port="0" to-layer="893" to-port="1" />
<edge from-layer="893" from-port="2" to-layer="898" to-port="0" />
<edge from-layer="894" from-port="0" to-layer="895" to-port="0" />
<edge from-layer="895" from-port="1" to-layer="897" to-port="0" />
<edge from-layer="896" from-port="0" to-layer="897" to-port="1" />
<edge from-layer="897" from-port="2" to-layer="898" to-port="1" />
<edge from-layer="898" from-port="2" to-layer="900" to-port="0" />
<edge from-layer="899" from-port="0" to-layer="900" to-port="1" />
<edge from-layer="900" from-port="2" to-layer="901" to-port="0" />
<edge from-layer="901" from-port="1" to-layer="906" to-port="0" />
<edge from-layer="902" from-port="0" to-layer="906" to-port="1" />
<edge from-layer="903" from-port="0" to-layer="906" to-port="2" />
<edge from-layer="904" from-port="0" to-layer="906" to-port="3" />
<edge from-layer="905" from-port="0" to-layer="906" to-port="4" />
<edge from-layer="906" from-port="5" to-layer="911" to-port="0" />
<edge from-layer="907" from-port="0" to-layer="908" to-port="0" />
<edge from-layer="908" from-port="1" to-layer="910" to-port="0" />
<edge from-layer="909" from-port="0" to-layer="910" to-port="1" />
<edge from-layer="910" from-port="2" to-layer="911" to-port="1" />
<edge from-layer="911" from-port="2" to-layer="913" to-port="0" />
<edge from-layer="912" from-port="0" to-layer="913" to-port="1" />
<edge from-layer="913" from-port="2" to-layer="914" to-port="0" />
<edge from-layer="914" from-port="1" to-layer="916" to-port="0" />
<edge from-layer="915" from-port="0" to-layer="916" to-port="1" />
<edge from-layer="916" from-port="2" to-layer="917" to-port="1" />
<edge from-layer="917" from-port="2" to-layer="918" to-port="0" />
<edge from-layer="918" from-port="1" to-layer="923" to-port="0" />
<edge from-layer="919" from-port="0" to-layer="923" to-port="1" />
<edge from-layer="920" from-port="0" to-layer="923" to-port="2" />
<edge from-layer="921" from-port="0" to-layer="923" to-port="3" />
<edge from-layer="922" from-port="0" to-layer="923" to-port="4" />
<edge from-layer="923" from-port="5" to-layer="928" to-port="0" />
<edge from-layer="924" from-port="0" to-layer="925" to-port="0" />
<edge from-layer="925" from-port="1" to-layer="927" to-port="0" />
<edge from-layer="926" from-port="0" to-layer="927" to-port="1" />
<edge from-layer="927" from-port="2" to-layer="928" to-port="1" />
<edge from-layer="928" from-port="2" to-layer="930" to-port="0" />
<edge from-layer="929" from-port="0" to-layer="930" to-port="1" />
<edge from-layer="930" from-port="2" to-layer="935" to-port="0" />
<edge from-layer="931" from-port="0" to-layer="935" to-port="1" />
<edge from-layer="932" from-port="0" to-layer="935" to-port="2" />
<edge from-layer="933" from-port="0" to-layer="935" to-port="3" />
<edge from-layer="934" from-port="0" to-layer="935" to-port="4" />
<edge from-layer="935" from-port="5" to-layer="936" to-port="1" />
<edge from-layer="936" from-port="2" to-layer="941" to-port="0" />
<edge from-layer="937" from-port="0" to-layer="941" to-port="1" />
<edge from-layer="938" from-port="0" to-layer="941" to-port="2" />
<edge from-layer="939" from-port="0" to-layer="941" to-port="3" />
<edge from-layer="940" from-port="0" to-layer="941" to-port="4" />
<edge from-layer="941" from-port="5" to-layer="943" to-port="0" />
<edge from-layer="941" from-port="5" to-layer="1288" to-port="1" />
<edge from-layer="942" from-port="0" to-layer="943" to-port="1" />
<edge from-layer="942" from-port="0" to-layer="1006" to-port="1" />
<edge from-layer="943" from-port="2" to-layer="948" to-port="0" />
<edge from-layer="944" from-port="0" to-layer="948" to-port="1" />
<edge from-layer="945" from-port="0" to-layer="948" to-port="2" />
<edge from-layer="946" from-port="0" to-layer="948" to-port="3" />
<edge from-layer="947" from-port="0" to-layer="948" to-port="4" />
<edge from-layer="948" from-port="5" to-layer="949" to-port="0" />
<edge from-layer="949" from-port="2" to-layer="954" to-port="0" />
<edge from-layer="950" from-port="0" to-layer="951" to-port="0" />
<edge from-layer="951" from-port="1" to-layer="953" to-port="0" />
<edge from-layer="952" from-port="0" to-layer="953" to-port="1" />
<edge from-layer="953" from-port="2" to-layer="954" to-port="1" />
<edge from-layer="954" from-port="2" to-layer="956" to-port="0" />
<edge from-layer="955" from-port="0" to-layer="956" to-port="1" />
<edge from-layer="956" from-port="2" to-layer="957" to-port="0" />
<edge from-layer="957" from-port="1" to-layer="962" to-port="0" />
<edge from-layer="958" from-port="0" to-layer="962" to-port="1" />
<edge from-layer="959" from-port="0" to-layer="962" to-port="2" />
<edge from-layer="960" from-port="0" to-layer="962" to-port="3" />
<edge from-layer="961" from-port="0" to-layer="962" to-port="4" />
<edge from-layer="962" from-port="5" to-layer="965" to-port="0" />
<edge from-layer="963" from-port="0" to-layer="965" to-port="1" />
<edge from-layer="964" from-port="0" to-layer="965" to-port="2" />
<edge from-layer="964" from-port="0" to-layer="1166" to-port="2" />
<edge from-layer="965" from-port="4" to-layer="970" to-port="0" />
<edge from-layer="965" from-port="3" to-layer="992" to-port="0" />
<edge from-layer="965" from-port="4" to-layer="992" to-port="1" />
<edge from-layer="966" from-port="0" to-layer="967" to-port="0" />
<edge from-layer="967" from-port="1" to-layer="969" to-port="0" />
<edge from-layer="968" from-port="0" to-layer="969" to-port="1" />
<edge from-layer="969" from-port="2" to-layer="970" to-port="1" />
<edge from-layer="970" from-port="2" to-layer="972" to-port="0" />
<edge from-layer="971" from-port="0" to-layer="972" to-port="1" />
<edge from-layer="972" from-port="2" to-layer="973" to-port="0" />
<edge from-layer="973" from-port="1" to-layer="978" to-port="0" />
<edge from-layer="974" from-port="0" to-layer="978" to-port="1" />
<edge from-layer="975" from-port="0" to-layer="978" to-port="2" />
<edge from-layer="976" from-port="0" to-layer="978" to-port="3" />
<edge from-layer="977" from-port="0" to-layer="978" to-port="4" />
<edge from-layer="978" from-port="5" to-layer="983" to-port="0" />
<edge from-layer="979" from-port="0" to-layer="980" to-port="0" />
<edge from-layer="980" from-port="1" to-layer="982" to-port="0" />
<edge from-layer="981" from-port="0" to-layer="982" to-port="1" />
<edge from-layer="982" from-port="2" to-layer="983" to-port="1" />
<edge from-layer="983" from-port="2" to-layer="985" to-port="0" />
<edge from-layer="984" from-port="0" to-layer="985" to-port="1" />
<edge from-layer="985" from-port="2" to-layer="986" to-port="0" />
<edge from-layer="986" from-port="1" to-layer="991" to-port="0" />
<edge from-layer="987" from-port="0" to-layer="991" to-port="1" />
<edge from-layer="988" from-port="0" to-layer="991" to-port="2" />
<edge from-layer="989" from-port="0" to-layer="991" to-port="3" />
<edge from-layer="990" from-port="0" to-layer="991" to-port="4" />
<edge from-layer="991" from-port="5" to-layer="992" to-port="2" />
<edge from-layer="992" from-port="3" to-layer="997" to-port="0" />
<edge from-layer="993" from-port="0" to-layer="994" to-port="0" />
<edge from-layer="994" from-port="1" to-layer="996" to-port="0" />
<edge from-layer="995" from-port="0" to-layer="996" to-port="1" />
<edge from-layer="996" from-port="2" to-layer="997" to-port="1" />
<edge from-layer="997" from-port="2" to-layer="999" to-port="0" />
<edge from-layer="998" from-port="0" to-layer="999" to-port="1" />
<edge from-layer="999" from-port="2" to-layer="1000" to-port="0" />
<edge from-layer="1000" from-port="1" to-layer="1005" to-port="0" />
<edge from-layer="1001" from-port="0" to-layer="1005" to-port="1" />
<edge from-layer="1002" from-port="0" to-layer="1005" to-port="2" />
<edge from-layer="1003" from-port="0" to-layer="1005" to-port="3" />
<edge from-layer="1004" from-port="0" to-layer="1005" to-port="4" />
<edge from-layer="1005" from-port="5" to-layer="1006" to-port="0" />
<edge from-layer="1005" from-port="5" to-layer="1151" to-port="1" />
<edge from-layer="1006" from-port="2" to-layer="1011" to-port="0" />
<edge from-layer="1007" from-port="0" to-layer="1011" to-port="1" />
<edge from-layer="1008" from-port="0" to-layer="1011" to-port="2" />
<edge from-layer="1009" from-port="0" to-layer="1011" to-port="3" />
<edge from-layer="1010" from-port="0" to-layer="1011" to-port="4" />
<edge from-layer="1011" from-port="5" to-layer="1012" to-port="0" />
<edge from-layer="1012" from-port="2" to-layer="1017" to-port="0" />
<edge from-layer="1013" from-port="0" to-layer="1014" to-port="0" />
<edge from-layer="1014" from-port="1" to-layer="1016" to-port="0" />
<edge from-layer="1015" from-port="0" to-layer="1016" to-port="1" />
<edge from-layer="1016" from-port="2" to-layer="1017" to-port="1" />
<edge from-layer="1017" from-port="2" to-layer="1019" to-port="0" />
<edge from-layer="1018" from-port="0" to-layer="1019" to-port="1" />
<edge from-layer="1019" from-port="2" to-layer="1020" to-port="0" />
<edge from-layer="1020" from-port="1" to-layer="1025" to-port="0" />
<edge from-layer="1021" from-port="0" to-layer="1025" to-port="1" />
<edge from-layer="1022" from-port="0" to-layer="1025" to-port="2" />
<edge from-layer="1023" from-port="0" to-layer="1025" to-port="3" />
<edge from-layer="1024" from-port="0" to-layer="1025" to-port="4" />
<edge from-layer="1025" from-port="5" to-layer="1028" to-port="0" />
<edge from-layer="1026" from-port="0" to-layer="1028" to-port="1" />
<edge from-layer="1027" from-port="0" to-layer="1028" to-port="2" />
<edge from-layer="1028" from-port="4" to-layer="1033" to-port="0" />
<edge from-layer="1028" from-port="3" to-layer="1055" to-port="0" />
<edge from-layer="1028" from-port="4" to-layer="1055" to-port="1" />
<edge from-layer="1029" from-port="0" to-layer="1030" to-port="0" />
<edge from-layer="1030" from-port="1" to-layer="1032" to-port="0" />
<edge from-layer="1031" from-port="0" to-layer="1032" to-port="1" />
<edge from-layer="1032" from-port="2" to-layer="1033" to-port="1" />
<edge from-layer="1033" from-port="2" to-layer="1035" to-port="0" />
<edge from-layer="1034" from-port="0" to-layer="1035" to-port="1" />
<edge from-layer="1035" from-port="2" to-layer="1036" to-port="0" />
<edge from-layer="1036" from-port="1" to-layer="1041" to-port="0" />
<edge from-layer="1037" from-port="0" to-layer="1041" to-port="1" />
<edge from-layer="1038" from-port="0" to-layer="1041" to-port="2" />
<edge from-layer="1039" from-port="0" to-layer="1041" to-port="3" />
<edge from-layer="1040" from-port="0" to-layer="1041" to-port="4" />
<edge from-layer="1041" from-port="5" to-layer="1046" to-port="0" />
<edge from-layer="1042" from-port="0" to-layer="1043" to-port="0" />
<edge from-layer="1043" from-port="1" to-layer="1045" to-port="0" />
<edge from-layer="1044" from-port="0" to-layer="1045" to-port="1" />
<edge from-layer="1045" from-port="2" to-layer="1046" to-port="1" />
<edge from-layer="1046" from-port="2" to-layer="1048" to-port="0" />
<edge from-layer="1047" from-port="0" to-layer="1048" to-port="1" />
<edge from-layer="1048" from-port="2" to-layer="1049" to-port="0" />
<edge from-layer="1049" from-port="1" to-layer="1054" to-port="0" />
<edge from-layer="1050" from-port="0" to-layer="1054" to-port="1" />
<edge from-layer="1051" from-port="0" to-layer="1054" to-port="2" />
<edge from-layer="1052" from-port="0" to-layer="1054" to-port="3" />
<edge from-layer="1053" from-port="0" to-layer="1054" to-port="4" />
<edge from-layer="1054" from-port="5" to-layer="1055" to-port="2" />
<edge from-layer="1055" from-port="3" to-layer="1060" to-port="0" />
<edge from-layer="1056" from-port="0" to-layer="1057" to-port="0" />
<edge from-layer="1057" from-port="1" to-layer="1059" to-port="0" />
<edge from-layer="1058" from-port="0" to-layer="1059" to-port="1" />
<edge from-layer="1059" from-port="2" to-layer="1060" to-port="1" />
<edge from-layer="1060" from-port="2" to-layer="1062" to-port="0" />
<edge from-layer="1061" from-port="0" to-layer="1062" to-port="1" />
<edge from-layer="1062" from-port="2" to-layer="1063" to-port="0" />
<edge from-layer="1063" from-port="1" to-layer="1068" to-port="0" />
<edge from-layer="1064" from-port="0" to-layer="1068" to-port="1" />
<edge from-layer="1065" from-port="0" to-layer="1068" to-port="2" />
<edge from-layer="1066" from-port="0" to-layer="1068" to-port="3" />
<edge from-layer="1067" from-port="0" to-layer="1068" to-port="4" />
<edge from-layer="1068" from-port="5" to-layer="1073" to-port="0" />
<edge from-layer="1068" from-port="5" to-layer="1142" to-port="0" />
<edge from-layer="1068" from-port="5" to-layer="1106" to-port="0" />
<edge from-layer="1068" from-port="5" to-layer="1471" to-port="0" />
<edge from-layer="1069" from-port="0" to-layer="1070" to-port="0" />
<edge from-layer="1070" from-port="1" to-layer="1072" to-port="0" />
<edge from-layer="1071" from-port="0" to-layer="1072" to-port="1" />
<edge from-layer="1072" from-port="2" to-layer="1073" to-port="1" />
<edge from-layer="1073" from-port="2" to-layer="1075" to-port="0" />
<edge from-layer="1074" from-port="0" to-layer="1075" to-port="1" />
<edge from-layer="1075" from-port="2" to-layer="1076" to-port="0" />
<edge from-layer="1076" from-port="1" to-layer="1081" to-port="0" />
<edge from-layer="1077" from-port="0" to-layer="1081" to-port="1" />
<edge from-layer="1078" from-port="0" to-layer="1081" to-port="2" />
<edge from-layer="1079" from-port="0" to-layer="1081" to-port="3" />
<edge from-layer="1080" from-port="0" to-layer="1081" to-port="4" />
<edge from-layer="1081" from-port="5" to-layer="1086" to-port="0" />
<edge from-layer="1082" from-port="0" to-layer="1083" to-port="0" />
<edge from-layer="1083" from-port="1" to-layer="1085" to-port="0" />
<edge from-layer="1084" from-port="0" to-layer="1085" to-port="1" />
<edge from-layer="1085" from-port="2" to-layer="1086" to-port="1" />
<edge from-layer="1086" from-port="2" to-layer="1088" to-port="0" />
<edge from-layer="1087" from-port="0" to-layer="1088" to-port="1" />
<edge from-layer="1088" from-port="2" to-layer="1089" to-port="0" />
<edge from-layer="1089" from-port="1" to-layer="1094" to-port="0" />
<edge from-layer="1090" from-port="0" to-layer="1094" to-port="1" />
<edge from-layer="1091" from-port="0" to-layer="1094" to-port="2" />
<edge from-layer="1092" from-port="0" to-layer="1094" to-port="3" />
<edge from-layer="1093" from-port="0" to-layer="1094" to-port="4" />
<edge from-layer="1094" from-port="5" to-layer="1099" to-port="0" />
<edge from-layer="1095" from-port="0" to-layer="1096" to-port="0" />
<edge from-layer="1096" from-port="1" to-layer="1098" to-port="0" />
<edge from-layer="1097" from-port="0" to-layer="1098" to-port="1" />
<edge from-layer="1098" from-port="2" to-layer="1099" to-port="1" />
<edge from-layer="1099" from-port="2" to-layer="1101" to-port="0" />
<edge from-layer="1100" from-port="0" to-layer="1101" to-port="1" />
<edge from-layer="1101" from-port="2" to-layer="1135" to-port="0" />
<edge from-layer="1102" from-port="0" to-layer="1103" to-port="0" />
<edge from-layer="1103" from-port="1" to-layer="1105" to-port="0" />
<edge from-layer="1104" from-port="0" to-layer="1105" to-port="1" />
<edge from-layer="1105" from-port="2" to-layer="1106" to-port="1" />
<edge from-layer="1106" from-port="2" to-layer="1108" to-port="0" />
<edge from-layer="1107" from-port="0" to-layer="1108" to-port="1" />
<edge from-layer="1108" from-port="2" to-layer="1109" to-port="0" />
<edge from-layer="1109" from-port="1" to-layer="1114" to-port="0" />
<edge from-layer="1110" from-port="0" to-layer="1114" to-port="1" />
<edge from-layer="1111" from-port="0" to-layer="1114" to-port="2" />
<edge from-layer="1112" from-port="0" to-layer="1114" to-port="3" />
<edge from-layer="1113" from-port="0" to-layer="1114" to-port="4" />
<edge from-layer="1114" from-port="5" to-layer="1119" to-port="0" />
<edge from-layer="1115" from-port="0" to-layer="1116" to-port="0" />
<edge from-layer="1116" from-port="1" to-layer="1118" to-port="0" />
<edge from-layer="1117" from-port="0" to-layer="1118" to-port="1" />
<edge from-layer="1118" from-port="2" to-layer="1119" to-port="1" />
<edge from-layer="1119" from-port="2" to-layer="1121" to-port="0" />
<edge from-layer="1120" from-port="0" to-layer="1121" to-port="1" />
<edge from-layer="1121" from-port="2" to-layer="1122" to-port="0" />
<edge from-layer="1122" from-port="1" to-layer="1127" to-port="0" />
<edge from-layer="1123" from-port="0" to-layer="1127" to-port="1" />
<edge from-layer="1124" from-port="0" to-layer="1127" to-port="2" />
<edge from-layer="1125" from-port="0" to-layer="1127" to-port="3" />
<edge from-layer="1126" from-port="0" to-layer="1127" to-port="4" />
<edge from-layer="1127" from-port="5" to-layer="1132" to-port="0" />
<edge from-layer="1128" from-port="0" to-layer="1129" to-port="0" />
<edge from-layer="1129" from-port="1" to-layer="1131" to-port="0" />
<edge from-layer="1130" from-port="0" to-layer="1131" to-port="1" />
<edge from-layer="1131" from-port="2" to-layer="1132" to-port="1" />
<edge from-layer="1132" from-port="2" to-layer="1134" to-port="0" />
<edge from-layer="1133" from-port="0" to-layer="1134" to-port="1" />
<edge from-layer="1134" from-port="2" to-layer="1135" to-port="1" />
<edge from-layer="1135" from-port="2" to-layer="1137" to-port="0" />
<edge from-layer="1136" from-port="0" to-layer="1137" to-port="1" />
<edge from-layer="1136" from-port="0" to-layer="1274" to-port="1" />
<edge from-layer="1136" from-port="0" to-layer="1412" to-port="1" />
<edge from-layer="1137" from-port="2" to-layer="1413" to-port="0" />
<edge from-layer="1138" from-port="0" to-layer="1139" to-port="0" />
<edge from-layer="1139" from-port="1" to-layer="1141" to-port="0" />
<edge from-layer="1140" from-port="0" to-layer="1141" to-port="1" />
<edge from-layer="1141" from-port="2" to-layer="1142" to-port="1" />
<edge from-layer="1142" from-port="2" to-layer="1144" to-port="0" />
<edge from-layer="1143" from-port="0" to-layer="1144" to-port="1" />
<edge from-layer="1144" from-port="2" to-layer="1145" to-port="0" />
<edge from-layer="1145" from-port="1" to-layer="1150" to-port="0" />
<edge from-layer="1146" from-port="0" to-layer="1150" to-port="1" />
<edge from-layer="1147" from-port="0" to-layer="1150" to-port="2" />
<edge from-layer="1148" from-port="0" to-layer="1150" to-port="3" />
<edge from-layer="1149" from-port="0" to-layer="1150" to-port="4" />
<edge from-layer="1150" from-port="5" to-layer="1151" to-port="0" />
<edge from-layer="1151" from-port="2" to-layer="1156" to-port="0" />
<edge from-layer="1152" from-port="0" to-layer="1153" to-port="0" />
<edge from-layer="1153" from-port="1" to-layer="1155" to-port="0" />
<edge from-layer="1154" from-port="0" to-layer="1155" to-port="1" />
<edge from-layer="1155" from-port="2" to-layer="1156" to-port="1" />
<edge from-layer="1156" from-port="2" to-layer="1158" to-port="0" />
<edge from-layer="1157" from-port="0" to-layer="1158" to-port="1" />
<edge from-layer="1158" from-port="2" to-layer="1159" to-port="0" />
<edge from-layer="1159" from-port="1" to-layer="1164" to-port="0" />
<edge from-layer="1160" from-port="0" to-layer="1164" to-port="1" />
<edge from-layer="1161" from-port="0" to-layer="1164" to-port="2" />
<edge from-layer="1162" from-port="0" to-layer="1164" to-port="3" />
<edge from-layer="1163" from-port="0" to-layer="1164" to-port="4" />
<edge from-layer="1164" from-port="5" to-layer="1166" to-port="0" />
<edge from-layer="1165" from-port="0" to-layer="1166" to-port="1" />
<edge from-layer="1166" from-port="3" to-layer="1193" to-port="0" />
<edge from-layer="1166" from-port="4" to-layer="1193" to-port="1" />
<edge from-layer="1166" from-port="4" to-layer="1171" to-port="0" />
<edge from-layer="1167" from-port="0" to-layer="1168" to-port="0" />
<edge from-layer="1168" from-port="1" to-layer="1170" to-port="0" />
<edge from-layer="1169" from-port="0" to-layer="1170" to-port="1" />
<edge from-layer="1170" from-port="2" to-layer="1171" to-port="1" />
<edge from-layer="1171" from-port="2" to-layer="1173" to-port="0" />
<edge from-layer="1172" from-port="0" to-layer="1173" to-port="1" />
<edge from-layer="1173" from-port="2" to-layer="1174" to-port="0" />
<edge from-layer="1174" from-port="1" to-layer="1179" to-port="0" />
<edge from-layer="1175" from-port="0" to-layer="1179" to-port="1" />
<edge from-layer="1176" from-port="0" to-layer="1179" to-port="2" />
<edge from-layer="1177" from-port="0" to-layer="1179" to-port="3" />
<edge from-layer="1178" from-port="0" to-layer="1179" to-port="4" />
<edge from-layer="1179" from-port="5" to-layer="1184" to-port="0" />
<edge from-layer="1180" from-port="0" to-layer="1181" to-port="0" />
<edge from-layer="1181" from-port="1" to-layer="1183" to-port="0" />
<edge from-layer="1182" from-port="0" to-layer="1183" to-port="1" />
<edge from-layer="1183" from-port="2" to-layer="1184" to-port="1" />
<edge from-layer="1184" from-port="2" to-layer="1186" to-port="0" />
<edge from-layer="1185" from-port="0" to-layer="1186" to-port="1" />
<edge from-layer="1186" from-port="2" to-layer="1187" to-port="0" />
<edge from-layer="1187" from-port="1" to-layer="1192" to-port="0" />
<edge from-layer="1188" from-port="0" to-layer="1192" to-port="1" />
<edge from-layer="1189" from-port="0" to-layer="1192" to-port="2" />
<edge from-layer="1190" from-port="0" to-layer="1192" to-port="3" />
<edge from-layer="1191" from-port="0" to-layer="1192" to-port="4" />
<edge from-layer="1192" from-port="5" to-layer="1193" to-port="2" />
<edge from-layer="1193" from-port="3" to-layer="1198" to-port="0" />
<edge from-layer="1194" from-port="0" to-layer="1195" to-port="0" />
<edge from-layer="1195" from-port="1" to-layer="1197" to-port="0" />
<edge from-layer="1196" from-port="0" to-layer="1197" to-port="1" />
<edge from-layer="1197" from-port="2" to-layer="1198" to-port="1" />
<edge from-layer="1198" from-port="2" to-layer="1200" to-port="0" />
<edge from-layer="1199" from-port="0" to-layer="1200" to-port="1" />
<edge from-layer="1200" from-port="2" to-layer="1201" to-port="0" />
<edge from-layer="1201" from-port="1" to-layer="1206" to-port="0" />
<edge from-layer="1202" from-port="0" to-layer="1206" to-port="1" />
<edge from-layer="1203" from-port="0" to-layer="1206" to-port="2" />
<edge from-layer="1204" from-port="0" to-layer="1206" to-port="3" />
<edge from-layer="1205" from-port="0" to-layer="1206" to-port="4" />
<edge from-layer="1206" from-port="5" to-layer="1211" to-port="0" />
<edge from-layer="1206" from-port="5" to-layer="1506" to-port="0" />
<edge from-layer="1206" from-port="5" to-layer="1279" to-port="0" />
<edge from-layer="1206" from-port="5" to-layer="1244" to-port="0" />
<edge from-layer="1207" from-port="0" to-layer="1208" to-port="0" />
<edge from-layer="1208" from-port="1" to-layer="1210" to-port="0" />
<edge from-layer="1209" from-port="0" to-layer="1210" to-port="1" />
<edge from-layer="1210" from-port="2" to-layer="1211" to-port="1" />
<edge from-layer="1211" from-port="2" to-layer="1213" to-port="0" />
<edge from-layer="1212" from-port="0" to-layer="1213" to-port="1" />
<edge from-layer="1213" from-port="2" to-layer="1214" to-port="0" />
<edge from-layer="1214" from-port="1" to-layer="1219" to-port="0" />
<edge from-layer="1215" from-port="0" to-layer="1219" to-port="1" />
<edge from-layer="1216" from-port="0" to-layer="1219" to-port="2" />
<edge from-layer="1217" from-port="0" to-layer="1219" to-port="3" />
<edge from-layer="1218" from-port="0" to-layer="1219" to-port="4" />
<edge from-layer="1219" from-port="5" to-layer="1224" to-port="0" />
<edge from-layer="1220" from-port="0" to-layer="1221" to-port="0" />
<edge from-layer="1221" from-port="1" to-layer="1223" to-port="0" />
<edge from-layer="1222" from-port="0" to-layer="1223" to-port="1" />
<edge from-layer="1223" from-port="2" to-layer="1224" to-port="1" />
<edge from-layer="1224" from-port="2" to-layer="1226" to-port="0" />
<edge from-layer="1225" from-port="0" to-layer="1226" to-port="1" />
<edge from-layer="1226" from-port="2" to-layer="1227" to-port="0" />
<edge from-layer="1227" from-port="1" to-layer="1232" to-port="0" />
<edge from-layer="1228" from-port="0" to-layer="1232" to-port="1" />
<edge from-layer="1229" from-port="0" to-layer="1232" to-port="2" />
<edge from-layer="1230" from-port="0" to-layer="1232" to-port="3" />
<edge from-layer="1231" from-port="0" to-layer="1232" to-port="4" />
<edge from-layer="1232" from-port="5" to-layer="1237" to-port="0" />
<edge from-layer="1233" from-port="0" to-layer="1234" to-port="0" />
<edge from-layer="1234" from-port="1" to-layer="1236" to-port="0" />
<edge from-layer="1235" from-port="0" to-layer="1236" to-port="1" />
<edge from-layer="1236" from-port="2" to-layer="1237" to-port="1" />
<edge from-layer="1237" from-port="2" to-layer="1239" to-port="0" />
<edge from-layer="1238" from-port="0" to-layer="1239" to-port="1" />
<edge from-layer="1239" from-port="2" to-layer="1273" to-port="0" />
<edge from-layer="1240" from-port="0" to-layer="1241" to-port="0" />
<edge from-layer="1241" from-port="1" to-layer="1243" to-port="0" />
<edge from-layer="1242" from-port="0" to-layer="1243" to-port="1" />
<edge from-layer="1243" from-port="2" to-layer="1244" to-port="1" />
<edge from-layer="1244" from-port="2" to-layer="1246" to-port="0" />
<edge from-layer="1245" from-port="0" to-layer="1246" to-port="1" />
<edge from-layer="1246" from-port="2" to-layer="1247" to-port="0" />
<edge from-layer="1247" from-port="1" to-layer="1252" to-port="0" />
<edge from-layer="1248" from-port="0" to-layer="1252" to-port="1" />
<edge from-layer="1249" from-port="0" to-layer="1252" to-port="2" />
<edge from-layer="1250" from-port="0" to-layer="1252" to-port="3" />
<edge from-layer="1251" from-port="0" to-layer="1252" to-port="4" />
<edge from-layer="1252" from-port="5" to-layer="1257" to-port="0" />
<edge from-layer="1253" from-port="0" to-layer="1254" to-port="0" />
<edge from-layer="1254" from-port="1" to-layer="1256" to-port="0" />
<edge from-layer="1255" from-port="0" to-layer="1256" to-port="1" />
<edge from-layer="1256" from-port="2" to-layer="1257" to-port="1" />
<edge from-layer="1257" from-port="2" to-layer="1259" to-port="0" />
<edge from-layer="1258" from-port="0" to-layer="1259" to-port="1" />
<edge from-layer="1259" from-port="2" to-layer="1260" to-port="0" />
<edge from-layer="1260" from-port="1" to-layer="1265" to-port="0" />
<edge from-layer="1261" from-port="0" to-layer="1265" to-port="1" />
<edge from-layer="1262" from-port="0" to-layer="1265" to-port="2" />
<edge from-layer="1263" from-port="0" to-layer="1265" to-port="3" />
<edge from-layer="1264" from-port="0" to-layer="1265" to-port="4" />
<edge from-layer="1265" from-port="5" to-layer="1270" to-port="0" />
<edge from-layer="1266" from-port="0" to-layer="1267" to-port="0" />
<edge from-layer="1267" from-port="1" to-layer="1269" to-port="0" />
<edge from-layer="1268" from-port="0" to-layer="1269" to-port="1" />
<edge from-layer="1269" from-port="2" to-layer="1270" to-port="1" />
<edge from-layer="1270" from-port="2" to-layer="1272" to-port="0" />
<edge from-layer="1271" from-port="0" to-layer="1272" to-port="1" />
<edge from-layer="1272" from-port="2" to-layer="1273" to-port="1" />
<edge from-layer="1273" from-port="2" to-layer="1274" to-port="0" />
<edge from-layer="1274" from-port="2" to-layer="1413" to-port="1" />
<edge from-layer="1275" from-port="0" to-layer="1276" to-port="0" />
<edge from-layer="1276" from-port="1" to-layer="1278" to-port="0" />
<edge from-layer="1277" from-port="0" to-layer="1278" to-port="1" />
<edge from-layer="1278" from-port="2" to-layer="1279" to-port="1" />
<edge from-layer="1279" from-port="2" to-layer="1281" to-port="0" />
<edge from-layer="1280" from-port="0" to-layer="1281" to-port="1" />
<edge from-layer="1281" from-port="2" to-layer="1282" to-port="0" />
<edge from-layer="1282" from-port="1" to-layer="1287" to-port="0" />
<edge from-layer="1283" from-port="0" to-layer="1287" to-port="1" />
<edge from-layer="1284" from-port="0" to-layer="1287" to-port="2" />
<edge from-layer="1285" from-port="0" to-layer="1287" to-port="3" />
<edge from-layer="1286" from-port="0" to-layer="1287" to-port="4" />
<edge from-layer="1287" from-port="5" to-layer="1288" to-port="0" />
<edge from-layer="1288" from-port="2" to-layer="1293" to-port="0" />
<edge from-layer="1289" from-port="0" to-layer="1290" to-port="0" />
<edge from-layer="1290" from-port="1" to-layer="1292" to-port="0" />
<edge from-layer="1291" from-port="0" to-layer="1292" to-port="1" />
<edge from-layer="1292" from-port="2" to-layer="1293" to-port="1" />
<edge from-layer="1293" from-port="2" to-layer="1295" to-port="0" />
<edge from-layer="1294" from-port="0" to-layer="1295" to-port="1" />
<edge from-layer="1295" from-port="2" to-layer="1296" to-port="0" />
<edge from-layer="1296" from-port="1" to-layer="1301" to-port="0" />
<edge from-layer="1297" from-port="0" to-layer="1301" to-port="1" />
<edge from-layer="1298" from-port="0" to-layer="1301" to-port="2" />
<edge from-layer="1299" from-port="0" to-layer="1301" to-port="3" />
<edge from-layer="1300" from-port="0" to-layer="1301" to-port="4" />
<edge from-layer="1301" from-port="5" to-layer="1304" to-port="0" />
<edge from-layer="1302" from-port="0" to-layer="1304" to-port="1" />
<edge from-layer="1303" from-port="0" to-layer="1304" to-port="2" />
<edge from-layer="1304" from-port="3" to-layer="1331" to-port="0" />
<edge from-layer="1304" from-port="4" to-layer="1331" to-port="1" />
<edge from-layer="1304" from-port="4" to-layer="1309" to-port="0" />
<edge from-layer="1305" from-port="0" to-layer="1306" to-port="0" />
<edge from-layer="1306" from-port="1" to-layer="1308" to-port="0" />
<edge from-layer="1307" from-port="0" to-layer="1308" to-port="1" />
<edge from-layer="1308" from-port="2" to-layer="1309" to-port="1" />
<edge from-layer="1309" from-port="2" to-layer="1311" to-port="0" />
<edge from-layer="1310" from-port="0" to-layer="1311" to-port="1" />
<edge from-layer="1311" from-port="2" to-layer="1312" to-port="0" />
<edge from-layer="1312" from-port="1" to-layer="1317" to-port="0" />
<edge from-layer="1313" from-port="0" to-layer="1317" to-port="1" />
<edge from-layer="1314" from-port="0" to-layer="1317" to-port="2" />
<edge from-layer="1315" from-port="0" to-layer="1317" to-port="3" />
<edge from-layer="1316" from-port="0" to-layer="1317" to-port="4" />
<edge from-layer="1317" from-port="5" to-layer="1322" to-port="0" />
<edge from-layer="1318" from-port="0" to-layer="1319" to-port="0" />
<edge from-layer="1319" from-port="1" to-layer="1321" to-port="0" />
<edge from-layer="1320" from-port="0" to-layer="1321" to-port="1" />
<edge from-layer="1321" from-port="2" to-layer="1322" to-port="1" />
<edge from-layer="1322" from-port="2" to-layer="1324" to-port="0" />
<edge from-layer="1323" from-port="0" to-layer="1324" to-port="1" />
<edge from-layer="1324" from-port="2" to-layer="1325" to-port="0" />
<edge from-layer="1325" from-port="1" to-layer="1330" to-port="0" />
<edge from-layer="1326" from-port="0" to-layer="1330" to-port="1" />
<edge from-layer="1327" from-port="0" to-layer="1330" to-port="2" />
<edge from-layer="1328" from-port="0" to-layer="1330" to-port="3" />
<edge from-layer="1329" from-port="0" to-layer="1330" to-port="4" />
<edge from-layer="1330" from-port="5" to-layer="1331" to-port="2" />
<edge from-layer="1331" from-port="3" to-layer="1336" to-port="0" />
<edge from-layer="1332" from-port="0" to-layer="1333" to-port="0" />
<edge from-layer="1333" from-port="1" to-layer="1335" to-port="0" />
<edge from-layer="1334" from-port="0" to-layer="1335" to-port="1" />
<edge from-layer="1335" from-port="2" to-layer="1336" to-port="1" />
<edge from-layer="1336" from-port="2" to-layer="1338" to-port="0" />
<edge from-layer="1337" from-port="0" to-layer="1338" to-port="1" />
<edge from-layer="1338" from-port="2" to-layer="1339" to-port="0" />
<edge from-layer="1339" from-port="1" to-layer="1344" to-port="0" />
<edge from-layer="1340" from-port="0" to-layer="1344" to-port="1" />
<edge from-layer="1341" from-port="0" to-layer="1344" to-port="2" />
<edge from-layer="1342" from-port="0" to-layer="1344" to-port="3" />
<edge from-layer="1343" from-port="0" to-layer="1344" to-port="4" />
<edge from-layer="1344" from-port="5" to-layer="1349" to-port="0" />
<edge from-layer="1344" from-port="5" to-layer="1540" to-port="0" />
<edge from-layer="1344" from-port="5" to-layer="1382" to-port="0" />
<edge from-layer="1345" from-port="0" to-layer="1346" to-port="0" />
<edge from-layer="1346" from-port="1" to-layer="1348" to-port="0" />
<edge from-layer="1347" from-port="0" to-layer="1348" to-port="1" />
<edge from-layer="1348" from-port="2" to-layer="1349" to-port="1" />
<edge from-layer="1349" from-port="2" to-layer="1351" to-port="0" />
<edge from-layer="1350" from-port="0" to-layer="1351" to-port="1" />
<edge from-layer="1351" from-port="2" to-layer="1352" to-port="0" />
<edge from-layer="1352" from-port="1" to-layer="1357" to-port="0" />
<edge from-layer="1353" from-port="0" to-layer="1357" to-port="1" />
<edge from-layer="1354" from-port="0" to-layer="1357" to-port="2" />
<edge from-layer="1355" from-port="0" to-layer="1357" to-port="3" />
<edge from-layer="1356" from-port="0" to-layer="1357" to-port="4" />
<edge from-layer="1357" from-port="5" to-layer="1362" to-port="0" />
<edge from-layer="1358" from-port="0" to-layer="1359" to-port="0" />
<edge from-layer="1359" from-port="1" to-layer="1361" to-port="0" />
<edge from-layer="1360" from-port="0" to-layer="1361" to-port="1" />
<edge from-layer="1361" from-port="2" to-layer="1362" to-port="1" />
<edge from-layer="1362" from-port="2" to-layer="1364" to-port="0" />
<edge from-layer="1363" from-port="0" to-layer="1364" to-port="1" />
<edge from-layer="1364" from-port="2" to-layer="1365" to-port="0" />
<edge from-layer="1365" from-port="1" to-layer="1370" to-port="0" />
<edge from-layer="1366" from-port="0" to-layer="1370" to-port="1" />
<edge from-layer="1367" from-port="0" to-layer="1370" to-port="2" />
<edge from-layer="1368" from-port="0" to-layer="1370" to-port="3" />
<edge from-layer="1369" from-port="0" to-layer="1370" to-port="4" />
<edge from-layer="1370" from-port="5" to-layer="1375" to-port="0" />
<edge from-layer="1371" from-port="0" to-layer="1372" to-port="0" />
<edge from-layer="1372" from-port="1" to-layer="1374" to-port="0" />
<edge from-layer="1373" from-port="0" to-layer="1374" to-port="1" />
<edge from-layer="1374" from-port="2" to-layer="1375" to-port="1" />
<edge from-layer="1375" from-port="2" to-layer="1377" to-port="0" />
<edge from-layer="1376" from-port="0" to-layer="1377" to-port="1" />
<edge from-layer="1377" from-port="2" to-layer="1411" to-port="0" />
<edge from-layer="1378" from-port="0" to-layer="1379" to-port="0" />
<edge from-layer="1379" from-port="1" to-layer="1381" to-port="0" />
<edge from-layer="1380" from-port="0" to-layer="1381" to-port="1" />
<edge from-layer="1381" from-port="2" to-layer="1382" to-port="1" />
<edge from-layer="1382" from-port="2" to-layer="1384" to-port="0" />
<edge from-layer="1383" from-port="0" to-layer="1384" to-port="1" />
<edge from-layer="1384" from-port="2" to-layer="1385" to-port="0" />
<edge from-layer="1385" from-port="1" to-layer="1390" to-port="0" />
<edge from-layer="1386" from-port="0" to-layer="1390" to-port="1" />
<edge from-layer="1387" from-port="0" to-layer="1390" to-port="2" />
<edge from-layer="1388" from-port="0" to-layer="1390" to-port="3" />
<edge from-layer="1389" from-port="0" to-layer="1390" to-port="4" />
<edge from-layer="1390" from-port="5" to-layer="1395" to-port="0" />
<edge from-layer="1391" from-port="0" to-layer="1392" to-port="0" />
<edge from-layer="1392" from-port="1" to-layer="1394" to-port="0" />
<edge from-layer="1393" from-port="0" to-layer="1394" to-port="1" />
<edge from-layer="1394" from-port="2" to-layer="1395" to-port="1" />
<edge from-layer="1395" from-port="2" to-layer="1397" to-port="0" />
<edge from-layer="1396" from-port="0" to-layer="1397" to-port="1" />
<edge from-layer="1397" from-port="2" to-layer="1398" to-port="0" />
<edge from-layer="1398" from-port="1" to-layer="1403" to-port="0" />
<edge from-layer="1399" from-port="0" to-layer="1403" to-port="1" />
<edge from-layer="1400" from-port="0" to-layer="1403" to-port="2" />
<edge from-layer="1401" from-port="0" to-layer="1403" to-port="3" />
<edge from-layer="1402" from-port="0" to-layer="1403" to-port="4" />
<edge from-layer="1403" from-port="5" to-layer="1408" to-port="0" />
<edge from-layer="1404" from-port="0" to-layer="1405" to-port="0" />
<edge from-layer="1405" from-port="1" to-layer="1407" to-port="0" />
<edge from-layer="1406" from-port="0" to-layer="1407" to-port="1" />
<edge from-layer="1407" from-port="2" to-layer="1408" to-port="1" />
<edge from-layer="1408" from-port="2" to-layer="1410" to-port="0" />
<edge from-layer="1409" from-port="0" to-layer="1410" to-port="1" />
<edge from-layer="1410" from-port="2" to-layer="1411" to-port="1" />
<edge from-layer="1411" from-port="2" to-layer="1412" to-port="0" />
<edge from-layer="1412" from-port="2" to-layer="1413" to-port="2" />
<edge from-layer="1413" from-port="3" to-layer="1416" to-port="0" />
<edge from-layer="1414" from-port="0" to-layer="1416" to-port="1" />
<edge from-layer="1415" from-port="0" to-layer="1416" to-port="2" />
<edge from-layer="1416" from-port="3" to-layer="1418" to-port="0" />
<edge from-layer="1416" from-port="4" to-layer="1466" to-port="0" />
<edge from-layer="1417" from-port="0" to-layer="1418" to-port="1" />
<edge from-layer="1418" from-port="2" to-layer="1420" to-port="0" />
<edge from-layer="1419" from-port="0" to-layer="1420" to-port="1" />
<edge from-layer="1420" from-port="2" to-layer="1421" to-port="0" />
<edge from-layer="1421" from-port="1" to-layer="1426" to-port="0" />
<edge from-layer="1422" from-port="0" to-layer="1426" to-port="1" />
<edge from-layer="1423" from-port="0" to-layer="1426" to-port="2" />
<edge from-layer="1424" from-port="0" to-layer="1426" to-port="3" />
<edge from-layer="1425" from-port="0" to-layer="1426" to-port="4" />
<edge from-layer="1426" from-port="5" to-layer="1431" to-port="0" />
<edge from-layer="1427" from-port="0" to-layer="1428" to-port="0" />
<edge from-layer="1428" from-port="1" to-layer="1430" to-port="0" />
<edge from-layer="1429" from-port="0" to-layer="1430" to-port="1" />
<edge from-layer="1430" from-port="2" to-layer="1431" to-port="1" />
<edge from-layer="1431" from-port="2" to-layer="1433" to-port="0" />
<edge from-layer="1432" from-port="0" to-layer="1433" to-port="1" />
<edge from-layer="1433" from-port="2" to-layer="1448" to-port="0" />
<edge from-layer="1433" from-port="2" to-layer="1437" to-port="0" />
<edge from-layer="1434" from-port="0" to-layer="1437" to-port="1" />
<edge from-layer="1435" from-port="0" to-layer="1437" to-port="2" />
<edge from-layer="1436" from-port="0" to-layer="1437" to-port="3" />
<edge from-layer="1437" from-port="4" to-layer="1438" to-port="1" />
<edge from-layer="1438" from-port="2" to-layer="1443" to-port="0" />
<edge from-layer="1438" from-port="2" to-layer="1462" to-port="1" />
<edge from-layer="1439" from-port="0" to-layer="1443" to-port="1" />
<edge from-layer="1440" from-port="0" to-layer="1443" to-port="2" />
<edge from-layer="1441" from-port="0" to-layer="1443" to-port="3" />
<edge from-layer="1442" from-port="0" to-layer="1443" to-port="4" />
<edge from-layer="1443" from-port="5" to-layer="1459" to-port="0" />
<edge from-layer="1444" from-port="0" to-layer="1448" to-port="1" />
<edge from-layer="1445" from-port="0" to-layer="1448" to-port="2" />
<edge from-layer="1446" from-port="0" to-layer="1448" to-port="3" />
<edge from-layer="1447" from-port="0" to-layer="1448" to-port="4" />
<edge from-layer="1448" from-port="5" to-layer="1452" to-port="0" />
<edge from-layer="1449" from-port="0" to-layer="1452" to-port="1" />
<edge from-layer="1450" from-port="0" to-layer="1452" to-port="2" />
<edge from-layer="1451" from-port="0" to-layer="1452" to-port="3" />
<edge from-layer="1452" from-port="4" to-layer="1453" to-port="1" />
<edge from-layer="1453" from-port="2" to-layer="1458" to-port="0" />
<edge from-layer="1453" from-port="2" to-layer="1462" to-port="0" />
<edge from-layer="1454" from-port="0" to-layer="1458" to-port="1" />
<edge from-layer="1455" from-port="0" to-layer="1458" to-port="2" />
<edge from-layer="1456" from-port="0" to-layer="1458" to-port="3" />
<edge from-layer="1457" from-port="0" to-layer="1458" to-port="4" />
<edge from-layer="1458" from-port="5" to-layer="1459" to-port="1" />
<edge from-layer="1459" from-port="2" to-layer="1461" to-port="0" />
<edge from-layer="1460" from-port="0" to-layer="1461" to-port="1" />
<edge from-layer="1461" from-port="2" to-layer="1463" to-port="0" />
<edge from-layer="1462" from-port="2" to-layer="1463" to-port="1" />
<edge from-layer="1463" from-port="2" to-layer="1465" to-port="0" />
<edge from-layer="1464" from-port="0" to-layer="1465" to-port="1" />
<edge from-layer="1465" from-port="2" to-layer="1582" to-port="0" />
<edge from-layer="1466" from-port="1" to-layer="1582" to-port="1" />
<edge from-layer="1467" from-port="0" to-layer="1468" to-port="0" />
<edge from-layer="1468" from-port="1" to-layer="1470" to-port="0" />
<edge from-layer="1469" from-port="0" to-layer="1470" to-port="1" />
<edge from-layer="1470" from-port="2" to-layer="1471" to-port="1" />
<edge from-layer="1471" from-port="2" to-layer="1473" to-port="0" />
<edge from-layer="1472" from-port="0" to-layer="1473" to-port="1" />
<edge from-layer="1473" from-port="2" to-layer="1474" to-port="0" />
<edge from-layer="1474" from-port="1" to-layer="1479" to-port="0" />
<edge from-layer="1475" from-port="0" to-layer="1479" to-port="1" />
<edge from-layer="1476" from-port="0" to-layer="1479" to-port="2" />
<edge from-layer="1477" from-port="0" to-layer="1479" to-port="3" />
<edge from-layer="1478" from-port="0" to-layer="1479" to-port="4" />
<edge from-layer="1479" from-port="5" to-layer="1484" to-port="0" />
<edge from-layer="1480" from-port="0" to-layer="1481" to-port="0" />
<edge from-layer="1481" from-port="1" to-layer="1483" to-port="0" />
<edge from-layer="1482" from-port="0" to-layer="1483" to-port="1" />
<edge from-layer="1483" from-port="2" to-layer="1484" to-port="1" />
<edge from-layer="1484" from-port="2" to-layer="1486" to-port="0" />
<edge from-layer="1485" from-port="0" to-layer="1486" to-port="1" />
<edge from-layer="1486" from-port="2" to-layer="1487" to-port="0" />
<edge from-layer="1487" from-port="1" to-layer="1492" to-port="0" />
<edge from-layer="1488" from-port="0" to-layer="1492" to-port="1" />
<edge from-layer="1489" from-port="0" to-layer="1492" to-port="2" />
<edge from-layer="1490" from-port="0" to-layer="1492" to-port="3" />
<edge from-layer="1491" from-port="0" to-layer="1492" to-port="4" />
<edge from-layer="1492" from-port="5" to-layer="1497" to-port="0" />
<edge from-layer="1493" from-port="0" to-layer="1494" to-port="0" />
<edge from-layer="1494" from-port="1" to-layer="1496" to-port="0" />
<edge from-layer="1495" from-port="0" to-layer="1496" to-port="1" />
<edge from-layer="1496" from-port="2" to-layer="1497" to-port="1" />
<edge from-layer="1497" from-port="2" to-layer="1499" to-port="0" />
<edge from-layer="1498" from-port="0" to-layer="1499" to-port="1" />
<edge from-layer="1499" from-port="2" to-layer="1501" to-port="0" />
<edge from-layer="1500" from-port="0" to-layer="1501" to-port="1" />
<edge from-layer="1500" from-port="0" to-layer="1535" to-port="1" />
<edge from-layer="1500" from-port="0" to-layer="1569" to-port="1" />
<edge from-layer="1500" from-port="0" to-layer="1581" to-port="1" />
<edge from-layer="1501" from-port="2" to-layer="1570" to-port="0" />
<edge from-layer="1502" from-port="0" to-layer="1503" to-port="0" />
<edge from-layer="1503" from-port="1" to-layer="1505" to-port="0" />
<edge from-layer="1504" from-port="0" to-layer="1505" to-port="1" />
<edge from-layer="1505" from-port="2" to-layer="1506" to-port="1" />
<edge from-layer="1506" from-port="2" to-layer="1508" to-port="0" />
<edge from-layer="1507" from-port="0" to-layer="1508" to-port="1" />
<edge from-layer="1508" from-port="2" to-layer="1509" to-port="0" />
<edge from-layer="1509" from-port="1" to-layer="1514" to-port="0" />
<edge from-layer="1510" from-port="0" to-layer="1514" to-port="1" />
<edge from-layer="1511" from-port="0" to-layer="1514" to-port="2" />
<edge from-layer="1512" from-port="0" to-layer="1514" to-port="3" />
<edge from-layer="1513" from-port="0" to-layer="1514" to-port="4" />
<edge from-layer="1514" from-port="5" to-layer="1519" to-port="0" />
<edge from-layer="1515" from-port="0" to-layer="1516" to-port="0" />
<edge from-layer="1516" from-port="1" to-layer="1518" to-port="0" />
<edge from-layer="1517" from-port="0" to-layer="1518" to-port="1" />
<edge from-layer="1518" from-port="2" to-layer="1519" to-port="1" />
<edge from-layer="1519" from-port="2" to-layer="1521" to-port="0" />
<edge from-layer="1520" from-port="0" to-layer="1521" to-port="1" />
<edge from-layer="1521" from-port="2" to-layer="1522" to-port="0" />
<edge from-layer="1522" from-port="1" to-layer="1527" to-port="0" />
<edge from-layer="1523" from-port="0" to-layer="1527" to-port="1" />
<edge from-layer="1524" from-port="0" to-layer="1527" to-port="2" />
<edge from-layer="1525" from-port="0" to-layer="1527" to-port="3" />
<edge from-layer="1526" from-port="0" to-layer="1527" to-port="4" />
<edge from-layer="1527" from-port="5" to-layer="1532" to-port="0" />
<edge from-layer="1528" from-port="0" to-layer="1529" to-port="0" />
<edge from-layer="1529" from-port="1" to-layer="1531" to-port="0" />
<edge from-layer="1530" from-port="0" to-layer="1531" to-port="1" />
<edge from-layer="1531" from-port="2" to-layer="1532" to-port="1" />
<edge from-layer="1532" from-port="2" to-layer="1534" to-port="0" />
<edge from-layer="1533" from-port="0" to-layer="1534" to-port="1" />
<edge from-layer="1534" from-port="2" to-layer="1535" to-port="0" />
<edge from-layer="1535" from-port="2" to-layer="1570" to-port="1" />
<edge from-layer="1536" from-port="0" to-layer="1537" to-port="0" />
<edge from-layer="1537" from-port="1" to-layer="1539" to-port="0" />
<edge from-layer="1538" from-port="0" to-layer="1539" to-port="1" />
<edge from-layer="1539" from-port="2" to-layer="1540" to-port="1" />
<edge from-layer="1540" from-port="2" to-layer="1542" to-port="0" />
<edge from-layer="1541" from-port="0" to-layer="1542" to-port="1" />
<edge from-layer="1542" from-port="2" to-layer="1543" to-port="0" />
<edge from-layer="1543" from-port="1" to-layer="1548" to-port="0" />
<edge from-layer="1544" from-port="0" to-layer="1548" to-port="1" />
<edge from-layer="1545" from-port="0" to-layer="1548" to-port="2" />
<edge from-layer="1546" from-port="0" to-layer="1548" to-port="3" />
<edge from-layer="1547" from-port="0" to-layer="1548" to-port="4" />
<edge from-layer="1548" from-port="5" to-layer="1553" to-port="0" />
<edge from-layer="1549" from-port="0" to-layer="1550" to-port="0" />
<edge from-layer="1550" from-port="1" to-layer="1552" to-port="0" />
<edge from-layer="1551" from-port="0" to-layer="1552" to-port="1" />
<edge from-layer="1552" from-port="2" to-layer="1553" to-port="1" />
<edge from-layer="1553" from-port="2" to-layer="1555" to-port="0" />
<edge from-layer="1554" from-port="0" to-layer="1555" to-port="1" />
<edge from-layer="1555" from-port="2" to-layer="1556" to-port="0" />
<edge from-layer="1556" from-port="1" to-layer="1561" to-port="0" />
<edge from-layer="1557" from-port="0" to-layer="1561" to-port="1" />
<edge from-layer="1558" from-port="0" to-layer="1561" to-port="2" />
<edge from-layer="1559" from-port="0" to-layer="1561" to-port="3" />
<edge from-layer="1560" from-port="0" to-layer="1561" to-port="4" />
<edge from-layer="1561" from-port="5" to-layer="1566" to-port="0" />
<edge from-layer="1562" from-port="0" to-layer="1563" to-port="0" />
<edge from-layer="1563" from-port="1" to-layer="1565" to-port="0" />
<edge from-layer="1564" from-port="0" to-layer="1565" to-port="1" />
<edge from-layer="1565" from-port="2" to-layer="1566" to-port="1" />
<edge from-layer="1566" from-port="2" to-layer="1568" to-port="0" />
<edge from-layer="1567" from-port="0" to-layer="1568" to-port="1" />
<edge from-layer="1568" from-port="2" to-layer="1569" to-port="0" />
<edge from-layer="1569" from-port="2" to-layer="1570" to-port="2" />
<edge from-layer="1570" from-port="3" to-layer="1572" to-port="0" />
<edge from-layer="1571" from-port="0" to-layer="1572" to-port="1" />
<edge from-layer="1572" from-port="2" to-layer="1576" to-port="0" />
<edge from-layer="1573" from-port="0" to-layer="1576" to-port="1" />
<edge from-layer="1574" from-port="0" to-layer="1576" to-port="2" />
<edge from-layer="1575" from-port="0" to-layer="1576" to-port="3" />
<edge from-layer="1576" from-port="4" to-layer="1578" to-port="0" />
<edge from-layer="1577" from-port="0" to-layer="1578" to-port="1" />
<edge from-layer="1578" from-port="2" to-layer="1580" to-port="0" />
<edge from-layer="1579" from-port="0" to-layer="1580" to-port="1" />
<edge from-layer="1580" from-port="2" to-layer="1581" to-port="0" />
<edge from-layer="1581" from-port="2" to-layer="1582" to-port="2" />
<edge from-layer="1582" from-port="3" to-layer="1583" to-port="0" />
</edges>
<rt_info>
<MO_version value="2024.0.0-14509-34caeefd078-releases/2024/0" />
<Runtime_version value="2024.0.0-14509-34caeefd078-releases/2024/0" />
<conversion_parameters>
<framework value="onnx" />
<input_model value="DIR\last.onnx" />
<is_python_api_used value="True" />
<model_name value="YOLOv8_large_MobileNetV3-pose" />
</conversion_parameters>
<framework>
<author value="Ultralytics" />
<batch value="1" />
<date value="2024-05-16T18:55:36.552941" />
<description value="Ultralytics YOLOv8_large_MobileNetV3-pose model trained on C:\Users\ssq13\Desktop\yolov8_pose_mobilenetv3\ultralytics\ultralytics\cfg\datasets\coco8-pose.yaml" />
<imgsz value="[416, 416]" />
<kpt_shape value="[4, 2]" />
<license value="AGPL-3.0 https://ultralytics.com/license" />
<names value="{0: 'B', 1: 'R'}" />
<stride value="32" />
<task value="pose" />
<version value="8.1.5" />
</framework>
<legacy_frontend value="False" />
<model_info>
<iou_threshold value="0.7" />
<labels value="B R" />
<model_type value="YOLOv8" />
<pad_value value="114" />
<resize_type value="fit_to_window_letterbox" />
<reverse_input_channels value="YES" />
<scale_values value="255" />
</model_info>
<nncf>
<friendly_names_were_updated value="True" />
<quantization>
<advanced_parameters value="{}" />
<fast_bias_correction value="True" />
<ignored_scope>
<names value="[]" />
<patterns value="[]" />
<types value="['Multiply', 'Subtract', 'Sigmoid']" />
<validate value="True" />
</ignored_scope>
<model_type value="None" />
<preset value="QuantizationPreset.MIXED" />
<subset_size value="300" />
<target_device value="ANY" />
</quantization>
</nncf>
</rt_info>
</net>