rm_vision/assets/yolov5.xml
2025-12-15 02:33:20 +08:00

12796 lines
341 KiB
XML

<?xml version="1.0"?>
<net name="torch_jit" version="11">
<layers>
<layer id="0" name="images" type="Parameter" version="opset1">
<data shape="1,3,640,640" element_type="f32" />
<rt_info>
<attribute name="old_api_map_element_type" version="0" value="f16" />
</rt_info>
<output>
<port id="0" precision="FP32" names="images">
<dim>1</dim>
<dim>3</dim>
<dim>640</dim>
<dim>640</dim>
</port>
</output>
</layer>
<layer id="1" name="onnx::Conv_852_compressed" type="Const" version="opset1">
<data element_type="f16" shape="8, 3, 3, 3" offset="0" size="432" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_852">
<dim>8</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="2" name="onnx::Conv_852" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>8</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="3" name="/m/model.0/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>640</dim>
<dim>640</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>320</dim>
<dim>320</dim>
</port>
</output>
</layer>
<layer id="4" name="Reshape_172_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 8, 1, 1" offset="432" size="16" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="5" name="Reshape_172" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="6" name="/m/model.0/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>320</dim>
<dim>320</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.0/conv/Conv_output_0">
<dim>1</dim>
<dim>8</dim>
<dim>320</dim>
<dim>320</dim>
</port>
</output>
</layer>
<layer id="7" name="/m/model.0/act/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>320</dim>
<dim>320</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.0/act/Mul_output_0">
<dim>1</dim>
<dim>8</dim>
<dim>320</dim>
<dim>320</dim>
</port>
</output>
</layer>
<layer id="8" name="onnx::Conv_855_compressed" type="Const" version="opset1">
<data element_type="f16" shape="16, 8, 1, 1" offset="448" size="256" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_855">
<dim>16</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="9" name="onnx::Conv_855" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>16</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="10" name="/m/model.1/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>320</dim>
<dim>320</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>320</dim>
<dim>320</dim>
</port>
</output>
</layer>
<layer id="11" name="Reshape_197_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 16, 1, 1" offset="704" size="32" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="12" name="Reshape_197" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="13" name="/m/model.1/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>320</dim>
<dim>320</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.1/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>320</dim>
<dim>320</dim>
</port>
</output>
</layer>
<layer id="14" name="/m/model.1/conv/conv.2/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>320</dim>
<dim>320</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.1/conv/conv.2/Relu_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>320</dim>
<dim>320</dim>
</port>
</output>
</layer>
<layer id="15" name="Reshape_209_compressed" type="Const" version="opset1">
<data element_type="f16" shape="16, 1, 1, 3, 3" offset="736" size="288" />
<output>
<port id="0" precision="FP16">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="16" name="Reshape_209" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="17" name="/m/model.1/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="2, 2" pads_begin="1, 1" pads_end="1, 1" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>320</dim>
<dim>320</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>160</dim>
<dim>160</dim>
</port>
</output>
</layer>
<layer id="18" name="Reshape_261_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 16, 1, 1" offset="1024" size="32" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="19" name="Reshape_261" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="20" name="/m/model.1/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>160</dim>
<dim>160</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.1/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>160</dim>
<dim>160</dim>
</port>
</output>
</layer>
<layer id="21" name="Range_271" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="1056" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="22" name="/m/model.1/conv/conv.5/avg_pool/GlobalAveragePool" type="ReduceMean" version="opset1">
<data keep_dims="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>160</dim>
<dim>160</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.1/conv/conv.5/avg_pool/GlobalAveragePool_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="23" name="/m/model.1/conv/conv.5/Constant" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="1072" size="16" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.1/conv/conv.5/Constant_output_0">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="24" name="/m/model.1/conv/conv.5/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.1/conv/conv.5/Reshape_output_0">
<dim>1</dim>
<dim>16</dim>
</port>
</output>
</layer>
<layer id="25" name="m.model.1.conv.5.fc.0.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="4, 16" offset="1088" size="128" />
<output>
<port id="0" precision="FP16" names="m.model.1.conv.5.fc.0.weight">
<dim>4</dim>
<dim>16</dim>
</port>
</output>
</layer>
<layer id="26" name="m.model.1.conv.5.fc.0.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>4</dim>
<dim>16</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>4</dim>
<dim>16</dim>
</port>
</output>
</layer>
<layer id="27" name="/m/model.1/conv/conv.5/fc/fc.0/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
<dim>16</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="28" name="Constant_5245_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 4" offset="1216" size="8" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="29" name="Constant_5245" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>4</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="30" name="/m/model.1/conv/conv.5/fc/fc.0/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>4</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.1/conv/conv.5/fc/fc.0/Gemm_output_0">
<dim>1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="31" name="/m/model.1/conv/conv.5/fc/fc.1/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>4</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.1/conv/conv.5/fc/fc.1/Relu_output_0">
<dim>1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="32" name="m.model.1.conv.5.fc.2.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="16, 4" offset="1224" size="128" />
<output>
<port id="0" precision="FP16" names="m.model.1.conv.5.fc.2.weight">
<dim>16</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="33" name="m.model.1.conv.5.fc.2.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>16</dim>
<dim>4</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="34" name="/m/model.1/conv/conv.5/fc/fc.2/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>4</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
</port>
</output>
</layer>
<layer id="35" name="Constant_5246_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 16" offset="1352" size="32" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>16</dim>
</port>
</output>
</layer>
<layer id="36" name="Constant_5246" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>16</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
</port>
</output>
</layer>
<layer id="37" name="/m/model.1/conv/conv.5/fc/fc.2/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.1/conv/conv.5/fc/fc.2/Gemm_output_0">
<dim>1</dim>
<dim>16</dim>
</port>
</output>
</layer>
<layer id="38" name="/m/model.1/conv/conv.5/fc/fc.3/Div" type="HSigmoid" version="opset5">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.1/conv/conv.5/fc/fc.3/Div_output_0">
<dim>1</dim>
<dim>16</dim>
</port>
</output>
</layer>
<layer id="39" name="/m/model.1/conv/conv.5/Constant_1" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="1384" size="32" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.1/conv/conv.5/Constant_1_output_0">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="40" name="/m/model.1/conv/conv.5/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.1/conv/conv.5/Reshape_1_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="41" name="/m/model.1/conv/conv.5/Mul" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>160</dim>
<dim>160</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.1/conv/conv.5/Mul_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>160</dim>
<dim>160</dim>
</port>
</output>
</layer>
<layer id="42" name="/m/model.1/conv/conv.6/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>160</dim>
<dim>160</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.1/conv/conv.6/Relu_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>160</dim>
<dim>160</dim>
</port>
</output>
</layer>
<layer id="43" name="onnx::Conv_861_compressed" type="Const" version="opset1">
<data element_type="f16" shape="8, 16, 1, 1" offset="1416" size="256" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_861">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="44" name="onnx::Conv_861" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="45" name="/m/model.1/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>160</dim>
<dim>160</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>160</dim>
</port>
</output>
</layer>
<layer id="46" name="Reshape_316_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 8, 1, 1" offset="1672" size="16" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="47" name="Reshape_316" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="48" name="/m/model.1/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>160</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.1/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>160</dim>
</port>
</output>
</layer>
<layer id="49" name="onnx::Conv_864_compressed" type="Const" version="opset1">
<data element_type="f16" shape="72, 8, 1, 1" offset="1688" size="1152" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_864">
<dim>72</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="50" name="onnx::Conv_864" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>72</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>72</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="51" name="/m/model.2/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>160</dim>
</port>
<port id="1" precision="FP32">
<dim>72</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>160</dim>
<dim>160</dim>
</port>
</output>
</layer>
<layer id="52" name="Reshape_332_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 72, 1, 1" offset="2840" size="144" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="53" name="Reshape_332" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="54" name="/m/model.2/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>160</dim>
<dim>160</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.2/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>72</dim>
<dim>160</dim>
<dim>160</dim>
</port>
</output>
</layer>
<layer id="55" name="/m/model.2/conv/conv.2/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>160</dim>
<dim>160</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.2/conv/conv.2/Relu_output_0">
<dim>1</dim>
<dim>72</dim>
<dim>160</dim>
<dim>160</dim>
</port>
</output>
</layer>
<layer id="56" name="Reshape_344_compressed" type="Const" version="opset1">
<data element_type="f16" shape="72, 1, 1, 3, 3" offset="2984" size="1296" />
<output>
<port id="0" precision="FP16">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="57" name="Reshape_344" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="58" name="/m/model.2/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="2, 2" pads_begin="1, 1" pads_end="1, 1" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>160</dim>
<dim>160</dim>
</port>
<port id="1" precision="FP32">
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="59" name="Reshape_396_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 72, 1, 1" offset="4280" size="144" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="60" name="Reshape_396" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="61" name="/m/model.2/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.2/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>72</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="62" name="/m/model.2/conv/conv.6/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.2/conv/conv.6/Relu_output_0">
<dim>1</dim>
<dim>72</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="63" name="onnx::Conv_870_compressed" type="Const" version="opset1">
<data element_type="f16" shape="16, 72, 1, 1" offset="4424" size="2304" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_870">
<dim>16</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="64" name="onnx::Conv_870" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>16</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="65" name="/m/model.2/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="66" name="Reshape_413_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 16, 1, 1" offset="6728" size="32" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="67" name="Reshape_413" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="68" name="/m/model.2/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.2/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="69" name="onnx::Conv_873_compressed" type="Const" version="opset1">
<data element_type="f16" shape="88, 16, 1, 1" offset="6760" size="2816" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_873">
<dim>88</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="70" name="onnx::Conv_873" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>88</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>88</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="71" name="/m/model.3/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>88</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>88</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="72" name="Reshape_429_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 88, 1, 1" offset="9576" size="176" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>88</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="73" name="Reshape_429" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>88</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>88</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="74" name="/m/model.3/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>88</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>88</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.3/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>88</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="75" name="/m/model.3/conv/conv.2/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>88</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.3/conv/conv.2/Relu_output_0">
<dim>1</dim>
<dim>88</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="76" name="Reshape_441_compressed" type="Const" version="opset1">
<data element_type="f16" shape="88, 1, 1, 3, 3" offset="9752" size="1584" />
<output>
<port id="0" precision="FP16">
<dim>88</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="77" name="Reshape_441" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>88</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>88</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="78" name="/m/model.3/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="1, 1" pads_begin="1, 1" pads_end="1, 1" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>88</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>88</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>88</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="79" name="Reshape_493_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 88, 1, 1" offset="11336" size="176" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>88</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="80" name="Reshape_493" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>88</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>88</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="81" name="/m/model.3/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>88</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>88</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.3/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>88</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="82" name="/m/model.3/conv/conv.6/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>88</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.3/conv/conv.6/Relu_output_0">
<dim>1</dim>
<dim>88</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="83" name="onnx::Conv_879_compressed" type="Const" version="opset1">
<data element_type="f16" shape="16, 88, 1, 1" offset="11512" size="2816" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_879">
<dim>16</dim>
<dim>88</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="84" name="onnx::Conv_879" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>16</dim>
<dim>88</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>88</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="85" name="/m/model.3/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>88</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>88</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="86" name="Reshape_510_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 16, 1, 1" offset="14328" size="32" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="87" name="Reshape_510" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="88" name="/m/model.3/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.3/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="89" name="/m/model.3/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.3/Add_output_0">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="90" name="onnx::Conv_882_compressed" type="Const" version="opset1">
<data element_type="f16" shape="96, 16, 1, 1" offset="14360" size="3072" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_882">
<dim>96</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="91" name="onnx::Conv_882" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>96</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>96</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="92" name="/m/model.4/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>96</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>96</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="93" name="Reshape_527_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 96, 1, 1" offset="17432" size="192" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="94" name="Reshape_527" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="95" name="/m/model.4/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>96</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.4/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>96</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="96" name="/m/model.4/conv/conv.2/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>96</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.4/conv/conv.2/Mul_output_0">
<dim>1</dim>
<dim>96</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="97" name="Reshape_547_compressed" type="Const" version="opset1">
<data element_type="f16" shape="96, 1, 1, 5, 5" offset="17624" size="4800" />
<output>
<port id="0" precision="FP16">
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="98" name="Reshape_547" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="99" name="/m/model.4/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="2, 2" pads_begin="2, 2" pads_end="2, 2" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>96</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>96</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="100" name="Reshape_599_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 96, 1, 1" offset="22424" size="192" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="101" name="Reshape_599" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="102" name="/m/model.4/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>96</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.4/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>96</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="103" name="Range_609" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="1056" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="104" name="/m/model.4/conv/conv.5/avg_pool/GlobalAveragePool" type="ReduceMean" version="opset1">
<data keep_dims="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>96</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.4/conv/conv.5/avg_pool/GlobalAveragePool_output_0">
<dim>1</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="105" name="/m/model.4/conv/conv.5/Constant" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="22616" size="16" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.4/conv/conv.5/Constant_output_0">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="106" name="/m/model.4/conv/conv.5/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.4/conv/conv.5/Reshape_output_0">
<dim>1</dim>
<dim>96</dim>
</port>
</output>
</layer>
<layer id="107" name="m.model.4.conv.5.fc.0.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="24, 96" offset="22632" size="4608" />
<output>
<port id="0" precision="FP16" names="m.model.4.conv.5.fc.0.weight">
<dim>24</dim>
<dim>96</dim>
</port>
</output>
</layer>
<layer id="108" name="m.model.4.conv.5.fc.0.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>24</dim>
<dim>96</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>96</dim>
</port>
</output>
</layer>
<layer id="109" name="/m/model.4/conv/conv.5/fc/fc.0/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>96</dim>
</port>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>96</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>24</dim>
</port>
</output>
</layer>
<layer id="110" name="Constant_5247_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 24" offset="27240" size="48" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>24</dim>
</port>
</output>
</layer>
<layer id="111" name="Constant_5247" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>24</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
</port>
</output>
</layer>
<layer id="112" name="/m/model.4/conv/conv.5/fc/fc.0/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.4/conv/conv.5/fc/fc.0/Gemm_output_0">
<dim>1</dim>
<dim>24</dim>
</port>
</output>
</layer>
<layer id="113" name="/m/model.4/conv/conv.5/fc/fc.1/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.4/conv/conv.5/fc/fc.1/Relu_output_0">
<dim>1</dim>
<dim>24</dim>
</port>
</output>
</layer>
<layer id="114" name="m.model.4.conv.5.fc.2.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="96, 24" offset="27288" size="4608" />
<output>
<port id="0" precision="FP16" names="m.model.4.conv.5.fc.2.weight">
<dim>96</dim>
<dim>24</dim>
</port>
</output>
</layer>
<layer id="115" name="m.model.4.conv.5.fc.2.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>96</dim>
<dim>24</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>96</dim>
<dim>24</dim>
</port>
</output>
</layer>
<layer id="116" name="/m/model.4/conv/conv.5/fc/fc.2/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
</port>
<port id="1" precision="FP32">
<dim>96</dim>
<dim>24</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>96</dim>
</port>
</output>
</layer>
<layer id="117" name="Constant_5248_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 96" offset="31896" size="192" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>96</dim>
</port>
</output>
</layer>
<layer id="118" name="Constant_5248" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>96</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>96</dim>
</port>
</output>
</layer>
<layer id="119" name="/m/model.4/conv/conv.5/fc/fc.2/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>96</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>96</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.4/conv/conv.5/fc/fc.2/Gemm_output_0">
<dim>1</dim>
<dim>96</dim>
</port>
</output>
</layer>
<layer id="120" name="/m/model.4/conv/conv.5/fc/fc.3/Div" type="HSigmoid" version="opset5">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>96</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.4/conv/conv.5/fc/fc.3/Div_output_0">
<dim>1</dim>
<dim>96</dim>
</port>
</output>
</layer>
<layer id="121" name="/m/model.4/conv/conv.5/Constant_1" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="32088" size="32" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.4/conv/conv.5/Constant_1_output_0">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="122" name="/m/model.4/conv/conv.5/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>96</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.4/conv/conv.5/Reshape_1_output_0">
<dim>1</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="123" name="/m/model.4/conv/conv.5/Mul" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>96</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.4/conv/conv.5/Mul_output_0">
<dim>1</dim>
<dim>96</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="124" name="/m/model.4/conv/conv.6/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>96</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.4/conv/conv.6/Mul_output_0">
<dim>1</dim>
<dim>96</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="125" name="onnx::Conv_888_compressed" type="Const" version="opset1">
<data element_type="f16" shape="24, 96, 1, 1" offset="32120" size="4608" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_888">
<dim>24</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="126" name="onnx::Conv_888" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>24</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="127" name="/m/model.4/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>96</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>96</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="128" name="Reshape_662_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 24, 1, 1" offset="36728" size="48" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="129" name="Reshape_662" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="130" name="/m/model.4/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.4/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="131" name="onnx::Conv_891_compressed" type="Const" version="opset1">
<data element_type="f16" shape="240, 24, 1, 1" offset="36776" size="11520" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_891">
<dim>240</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="132" name="onnx::Conv_891" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>240</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>240</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="133" name="/m/model.5/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>240</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="134" name="Reshape_678_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 240, 1, 1" offset="48296" size="480" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="135" name="Reshape_678" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="136" name="/m/model.5/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.5/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="137" name="/m/model.5/conv/conv.2/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.5/conv/conv.2/Mul_output_0">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="138" name="Reshape_698_compressed" type="Const" version="opset1">
<data element_type="f16" shape="240, 1, 1, 5, 5" offset="48776" size="12000" />
<output>
<port id="0" precision="FP16">
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="139" name="Reshape_698" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="140" name="/m/model.5/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="1, 1" pads_begin="2, 2" pads_end="2, 2" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="141" name="Reshape_750_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 240, 1, 1" offset="60776" size="480" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="142" name="Reshape_750" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="143" name="/m/model.5/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.5/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="144" name="Range_760" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="1056" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="145" name="/m/model.5/conv/conv.5/avg_pool/GlobalAveragePool" type="ReduceMean" version="opset1">
<data keep_dims="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.5/conv/conv.5/avg_pool/GlobalAveragePool_output_0">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="146" name="/m/model.5/conv/conv.5/Constant" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="61256" size="16" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.5/conv/conv.5/Constant_output_0">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="147" name="/m/model.5/conv/conv.5/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.5/conv/conv.5/Reshape_output_0">
<dim>1</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="148" name="m.model.5.conv.5.fc.0.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="60, 240" offset="61272" size="28800" />
<output>
<port id="0" precision="FP16" names="m.model.5.conv.5.fc.0.weight">
<dim>60</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="149" name="m.model.5.conv.5.fc.0.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>60</dim>
<dim>240</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>60</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="150" name="/m/model.5/conv/conv.5/fc/fc.0/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
<port id="1" precision="FP32">
<dim>60</dim>
<dim>240</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="151" name="Constant_5249_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 60" offset="90072" size="120" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="152" name="Constant_5249" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>60</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="153" name="/m/model.5/conv/conv.5/fc/fc.0/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>60</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>60</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.5/conv/conv.5/fc/fc.0/Gemm_output_0">
<dim>1</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="154" name="/m/model.5/conv/conv.5/fc/fc.1/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>60</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.5/conv/conv.5/fc/fc.1/Relu_output_0">
<dim>1</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="155" name="m.model.5.conv.5.fc.2.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="240, 60" offset="90192" size="28800" />
<output>
<port id="0" precision="FP16" names="m.model.5.conv.5.fc.2.weight">
<dim>240</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="156" name="m.model.5.conv.5.fc.2.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>240</dim>
<dim>60</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>240</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="157" name="/m/model.5/conv/conv.5/fc/fc.2/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>60</dim>
</port>
<port id="1" precision="FP32">
<dim>240</dim>
<dim>60</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="158" name="Constant_5250_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 240" offset="118992" size="480" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="159" name="Constant_5250" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>240</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="160" name="/m/model.5/conv/conv.5/fc/fc.2/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.5/conv/conv.5/fc/fc.2/Gemm_output_0">
<dim>1</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="161" name="/m/model.5/conv/conv.5/fc/fc.3/Div" type="HSigmoid" version="opset5">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.5/conv/conv.5/fc/fc.3/Div_output_0">
<dim>1</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="162" name="/m/model.5/conv/conv.5/Constant_1" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="119472" size="32" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.5/conv/conv.5/Constant_1_output_0">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="163" name="/m/model.5/conv/conv.5/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.5/conv/conv.5/Reshape_1_output_0">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="164" name="/m/model.5/conv/conv.5/Mul" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.5/conv/conv.5/Mul_output_0">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="165" name="/m/model.5/conv/conv.6/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.5/conv/conv.6/Mul_output_0">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="166" name="onnx::Conv_897_compressed" type="Const" version="opset1">
<data element_type="f16" shape="24, 240, 1, 1" offset="119504" size="11520" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_897">
<dim>24</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="167" name="onnx::Conv_897" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>24</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="168" name="/m/model.5/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="169" name="Reshape_813_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 24, 1, 1" offset="131024" size="48" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="170" name="Reshape_813" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="171" name="/m/model.5/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.5/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="172" name="/m/model.5/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.5/Add_output_0">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="173" name="onnx::Conv_900_compressed" type="Const" version="opset1">
<data element_type="f16" shape="240, 24, 1, 1" offset="131072" size="11520" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_900">
<dim>240</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="174" name="onnx::Conv_900" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>240</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>240</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="175" name="/m/model.6/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>240</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="176" name="Reshape_830_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 240, 1, 1" offset="142592" size="480" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="177" name="Reshape_830" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="178" name="/m/model.6/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.6/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="179" name="/m/model.6/conv/conv.2/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.6/conv/conv.2/Mul_output_0">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="180" name="Reshape_850_compressed" type="Const" version="opset1">
<data element_type="f16" shape="240, 1, 1, 5, 5" offset="143072" size="12000" />
<output>
<port id="0" precision="FP16">
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="181" name="Reshape_850" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="182" name="/m/model.6/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="1, 1" pads_begin="2, 2" pads_end="2, 2" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="183" name="Reshape_902_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 240, 1, 1" offset="155072" size="480" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="184" name="Reshape_902" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="185" name="/m/model.6/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.6/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="186" name="Range_912" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="1056" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="187" name="/m/model.6/conv/conv.5/avg_pool/GlobalAveragePool" type="ReduceMean" version="opset1">
<data keep_dims="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.6/conv/conv.5/avg_pool/GlobalAveragePool_output_0">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="188" name="/m/model.6/conv/conv.5/Constant" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="61256" size="16" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.6/conv/conv.5/Constant_output_0">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="189" name="/m/model.6/conv/conv.5/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.6/conv/conv.5/Reshape_output_0">
<dim>1</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="190" name="m.model.6.conv.5.fc.0.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="60, 240" offset="155552" size="28800" />
<output>
<port id="0" precision="FP16" names="m.model.6.conv.5.fc.0.weight">
<dim>60</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="191" name="m.model.6.conv.5.fc.0.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>60</dim>
<dim>240</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>60</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="192" name="/m/model.6/conv/conv.5/fc/fc.0/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
<port id="1" precision="FP32">
<dim>60</dim>
<dim>240</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="193" name="Constant_5251_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 60" offset="184352" size="120" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="194" name="Constant_5251" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>60</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="195" name="/m/model.6/conv/conv.5/fc/fc.0/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>60</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>60</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.6/conv/conv.5/fc/fc.0/Gemm_output_0">
<dim>1</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="196" name="/m/model.6/conv/conv.5/fc/fc.1/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>60</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.6/conv/conv.5/fc/fc.1/Relu_output_0">
<dim>1</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="197" name="m.model.6.conv.5.fc.2.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="240, 60" offset="184472" size="28800" />
<output>
<port id="0" precision="FP16" names="m.model.6.conv.5.fc.2.weight">
<dim>240</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="198" name="m.model.6.conv.5.fc.2.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>240</dim>
<dim>60</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>240</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="199" name="/m/model.6/conv/conv.5/fc/fc.2/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>60</dim>
</port>
<port id="1" precision="FP32">
<dim>240</dim>
<dim>60</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="200" name="Constant_5252_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 240" offset="213272" size="480" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="201" name="Constant_5252" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>240</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="202" name="/m/model.6/conv/conv.5/fc/fc.2/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.6/conv/conv.5/fc/fc.2/Gemm_output_0">
<dim>1</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="203" name="/m/model.6/conv/conv.5/fc/fc.3/Div" type="HSigmoid" version="opset5">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.6/conv/conv.5/fc/fc.3/Div_output_0">
<dim>1</dim>
<dim>240</dim>
</port>
</output>
</layer>
<layer id="204" name="/m/model.6/conv/conv.5/Constant_1" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="119472" size="32" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.6/conv/conv.5/Constant_1_output_0">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="205" name="/m/model.6/conv/conv.5/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.6/conv/conv.5/Reshape_1_output_0">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="206" name="/m/model.6/conv/conv.5/Mul" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.6/conv/conv.5/Mul_output_0">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="207" name="/m/model.6/conv/conv.6/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.6/conv/conv.6/Mul_output_0">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="208" name="onnx::Conv_906_compressed" type="Const" version="opset1">
<data element_type="f16" shape="24, 240, 1, 1" offset="213752" size="11520" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_906">
<dim>24</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="209" name="onnx::Conv_906" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>24</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="210" name="/m/model.6/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>240</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>240</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="211" name="Reshape_965_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 24, 1, 1" offset="225272" size="48" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="212" name="Reshape_965" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="213" name="/m/model.6/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.6/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="214" name="/m/model.6/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.6/Add_output_0">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="215" name="onnx::Conv_909_compressed" type="Const" version="opset1">
<data element_type="f16" shape="120, 24, 1, 1" offset="225320" size="5760" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_909">
<dim>120</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="216" name="onnx::Conv_909" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>120</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="217" name="/m/model.7/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="218" name="Reshape_982_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 120, 1, 1" offset="231080" size="240" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="219" name="Reshape_982" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="220" name="/m/model.7/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.7/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>120</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="221" name="/m/model.7/conv/conv.2/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.7/conv/conv.2/Mul_output_0">
<dim>1</dim>
<dim>120</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="222" name="Reshape_1002_compressed" type="Const" version="opset1">
<data element_type="f16" shape="120, 1, 1, 5, 5" offset="231320" size="6000" />
<output>
<port id="0" precision="FP16">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="223" name="Reshape_1002" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="224" name="/m/model.7/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="1, 1" pads_begin="2, 2" pads_end="2, 2" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="225" name="Reshape_1054_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 120, 1, 1" offset="237320" size="240" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="226" name="Reshape_1054" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="227" name="/m/model.7/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.7/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>120</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="228" name="Range_1064" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="1056" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="229" name="/m/model.7/conv/conv.5/avg_pool/GlobalAveragePool" type="ReduceMean" version="opset1">
<data keep_dims="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.7/conv/conv.5/avg_pool/GlobalAveragePool_output_0">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="230" name="/m/model.7/conv/conv.5/Constant" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="237560" size="16" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.7/conv/conv.5/Constant_output_0">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="231" name="/m/model.7/conv/conv.5/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.7/conv/conv.5/Reshape_output_0">
<dim>1</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="232" name="m.model.7.conv.5.fc.0.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="30, 120" offset="237576" size="7200" />
<output>
<port id="0" precision="FP16" names="m.model.7.conv.5.fc.0.weight">
<dim>30</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="233" name="m.model.7.conv.5.fc.0.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>30</dim>
<dim>120</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>30</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="234" name="/m/model.7/conv/conv.5/fc/fc.0/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
<port id="1" precision="FP32">
<dim>30</dim>
<dim>120</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="235" name="Constant_5253_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 30" offset="244776" size="60" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="236" name="Constant_5253" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>30</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="237" name="/m/model.7/conv/conv.5/fc/fc.0/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.7/conv/conv.5/fc/fc.0/Gemm_output_0">
<dim>1</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="238" name="/m/model.7/conv/conv.5/fc/fc.1/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.7/conv/conv.5/fc/fc.1/Relu_output_0">
<dim>1</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="239" name="m.model.7.conv.5.fc.2.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="120, 30" offset="244836" size="7200" />
<output>
<port id="0" precision="FP16" names="m.model.7.conv.5.fc.2.weight">
<dim>120</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="240" name="m.model.7.conv.5.fc.2.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>120</dim>
<dim>30</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="241" name="/m/model.7/conv/conv.5/fc/fc.2/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>30</dim>
</port>
<port id="1" precision="FP32">
<dim>120</dim>
<dim>30</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="242" name="Constant_5254_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 120" offset="252036" size="240" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="243" name="Constant_5254" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>120</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="244" name="/m/model.7/conv/conv.5/fc/fc.2/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.7/conv/conv.5/fc/fc.2/Gemm_output_0">
<dim>1</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="245" name="/m/model.7/conv/conv.5/fc/fc.3/Div" type="HSigmoid" version="opset5">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.7/conv/conv.5/fc/fc.3/Div_output_0">
<dim>1</dim>
<dim>120</dim>
</port>
</output>
</layer>
<layer id="246" name="/m/model.7/conv/conv.5/Constant_1" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="252276" size="32" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.7/conv/conv.5/Constant_1_output_0">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="247" name="/m/model.7/conv/conv.5/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.7/conv/conv.5/Reshape_1_output_0">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="248" name="/m/model.7/conv/conv.5/Mul" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.7/conv/conv.5/Mul_output_0">
<dim>1</dim>
<dim>120</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="249" name="/m/model.7/conv/conv.6/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.7/conv/conv.6/Mul_output_0">
<dim>1</dim>
<dim>120</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="250" name="onnx::Conv_915_compressed" type="Const" version="opset1">
<data element_type="f16" shape="24, 120, 1, 1" offset="252308" size="5760" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_915">
<dim>24</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="251" name="onnx::Conv_915" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>24</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="252" name="/m/model.7/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>120</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>120</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="253" name="Reshape_1117_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 24, 1, 1" offset="258068" size="48" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="254" name="Reshape_1117" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="255" name="/m/model.7/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.7/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="256" name="/m/model.7/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.7/Add_output_0">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="257" name="onnx::Conv_918_compressed" type="Const" version="opset1">
<data element_type="f16" shape="144, 24, 1, 1" offset="258116" size="6912" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_918">
<dim>144</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="258" name="onnx::Conv_918" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>144</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>144</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="259" name="/m/model.8/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>144</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>144</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="260" name="Reshape_1134_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 144, 1, 1" offset="265028" size="288" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="261" name="Reshape_1134" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="262" name="/m/model.8/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>144</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.8/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>144</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="263" name="/m/model.8/conv/conv.2/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>144</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.8/conv/conv.2/Mul_output_0">
<dim>1</dim>
<dim>144</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="264" name="Reshape_1154_compressed" type="Const" version="opset1">
<data element_type="f16" shape="144, 1, 1, 5, 5" offset="265316" size="7200" />
<output>
<port id="0" precision="FP16">
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="265" name="Reshape_1154" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="266" name="/m/model.8/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="1, 1" pads_begin="2, 2" pads_end="2, 2" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>144</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>144</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="267" name="Reshape_1206_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 144, 1, 1" offset="272516" size="288" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="268" name="Reshape_1206" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="269" name="/m/model.8/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>144</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.8/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>144</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="270" name="Range_1216" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="1056" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="271" name="/m/model.8/conv/conv.5/avg_pool/GlobalAveragePool" type="ReduceMean" version="opset1">
<data keep_dims="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>144</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.8/conv/conv.5/avg_pool/GlobalAveragePool_output_0">
<dim>1</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="272" name="/m/model.8/conv/conv.5/Constant" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="272804" size="16" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.8/conv/conv.5/Constant_output_0">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="273" name="/m/model.8/conv/conv.5/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.8/conv/conv.5/Reshape_output_0">
<dim>1</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="274" name="m.model.8.conv.5.fc.0.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="36, 144" offset="272820" size="10368" />
<output>
<port id="0" precision="FP16" names="m.model.8.conv.5.fc.0.weight">
<dim>36</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="275" name="m.model.8.conv.5.fc.0.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>36</dim>
<dim>144</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>36</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="276" name="/m/model.8/conv/conv.5/fc/fc.0/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>144</dim>
</port>
<port id="1" precision="FP32">
<dim>36</dim>
<dim>144</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>36</dim>
</port>
</output>
</layer>
<layer id="277" name="Constant_5255_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 36" offset="283188" size="72" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>36</dim>
</port>
</output>
</layer>
<layer id="278" name="Constant_5255" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>36</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>36</dim>
</port>
</output>
</layer>
<layer id="279" name="/m/model.8/conv/conv.5/fc/fc.0/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>36</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>36</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.8/conv/conv.5/fc/fc.0/Gemm_output_0">
<dim>1</dim>
<dim>36</dim>
</port>
</output>
</layer>
<layer id="280" name="/m/model.8/conv/conv.5/fc/fc.1/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>36</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.8/conv/conv.5/fc/fc.1/Relu_output_0">
<dim>1</dim>
<dim>36</dim>
</port>
</output>
</layer>
<layer id="281" name="m.model.8.conv.5.fc.2.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="144, 36" offset="283260" size="10368" />
<output>
<port id="0" precision="FP16" names="m.model.8.conv.5.fc.2.weight">
<dim>144</dim>
<dim>36</dim>
</port>
</output>
</layer>
<layer id="282" name="m.model.8.conv.5.fc.2.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>144</dim>
<dim>36</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>144</dim>
<dim>36</dim>
</port>
</output>
</layer>
<layer id="283" name="/m/model.8/conv/conv.5/fc/fc.2/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>36</dim>
</port>
<port id="1" precision="FP32">
<dim>144</dim>
<dim>36</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="284" name="Constant_5256_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 144" offset="293628" size="288" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="285" name="Constant_5256" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>144</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="286" name="/m/model.8/conv/conv.5/fc/fc.2/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>144</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>144</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.8/conv/conv.5/fc/fc.2/Gemm_output_0">
<dim>1</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="287" name="/m/model.8/conv/conv.5/fc/fc.3/Div" type="HSigmoid" version="opset5">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>144</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.8/conv/conv.5/fc/fc.3/Div_output_0">
<dim>1</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="288" name="/m/model.8/conv/conv.5/Constant_1" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="293916" size="32" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.8/conv/conv.5/Constant_1_output_0">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="289" name="/m/model.8/conv/conv.5/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>144</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.8/conv/conv.5/Reshape_1_output_0">
<dim>1</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="290" name="/m/model.8/conv/conv.5/Mul" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>144</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.8/conv/conv.5/Mul_output_0">
<dim>1</dim>
<dim>144</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="291" name="/m/model.8/conv/conv.6/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>144</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.8/conv/conv.6/Mul_output_0">
<dim>1</dim>
<dim>144</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="292" name="onnx::Conv_924_compressed" type="Const" version="opset1">
<data element_type="f16" shape="24, 144, 1, 1" offset="293948" size="6912" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_924">
<dim>24</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="293" name="onnx::Conv_924" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>24</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="294" name="/m/model.8/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>144</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>144</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="295" name="Reshape_1269_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 24, 1, 1" offset="300860" size="48" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="296" name="Reshape_1269" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="297" name="/m/model.8/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.8/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="298" name="/m/model.8/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.8/Add_output_0">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="299" name="onnx::Conv_927_compressed" type="Const" version="opset1">
<data element_type="f16" shape="288, 24, 1, 1" offset="300908" size="13824" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_927">
<dim>288</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="300" name="onnx::Conv_927" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>288</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>288</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="301" name="/m/model.9/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>288</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>288</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="302" name="Reshape_1286_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 288, 1, 1" offset="314732" size="576" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>288</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="303" name="Reshape_1286" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>288</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>288</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="304" name="/m/model.9/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>288</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>288</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.9/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>288</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="305" name="/m/model.9/conv/conv.2/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>288</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.9/conv/conv.2/Mul_output_0">
<dim>1</dim>
<dim>288</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="306" name="Reshape_1306_compressed" type="Const" version="opset1">
<data element_type="f16" shape="288, 1, 1, 5, 5" offset="315308" size="14400" />
<output>
<port id="0" precision="FP16">
<dim>288</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="307" name="Reshape_1306" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>288</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>288</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="308" name="/m/model.9/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="2, 2" pads_begin="2, 2" pads_end="2, 2" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>288</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>288</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>288</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="309" name="Reshape_1358_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 288, 1, 1" offset="329708" size="576" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>288</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="310" name="Reshape_1358" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>288</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>288</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="311" name="/m/model.9/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>288</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>288</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.9/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>288</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="312" name="Range_1368" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="1056" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="313" name="/m/model.9/conv/conv.5/avg_pool/GlobalAveragePool" type="ReduceMean" version="opset1">
<data keep_dims="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>288</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.9/conv/conv.5/avg_pool/GlobalAveragePool_output_0">
<dim>1</dim>
<dim>288</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="314" name="/m/model.9/conv/conv.5/Constant" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="330284" size="16" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.9/conv/conv.5/Constant_output_0">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="315" name="/m/model.9/conv/conv.5/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>288</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.9/conv/conv.5/Reshape_output_0">
<dim>1</dim>
<dim>288</dim>
</port>
</output>
</layer>
<layer id="316" name="m.model.9.conv.5.fc.0.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="72, 288" offset="330300" size="41472" />
<output>
<port id="0" precision="FP16" names="m.model.9.conv.5.fc.0.weight">
<dim>72</dim>
<dim>288</dim>
</port>
</output>
</layer>
<layer id="317" name="m.model.9.conv.5.fc.0.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>72</dim>
<dim>288</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>72</dim>
<dim>288</dim>
</port>
</output>
</layer>
<layer id="318" name="/m/model.9/conv/conv.5/fc/fc.0/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>288</dim>
</port>
<port id="1" precision="FP32">
<dim>72</dim>
<dim>288</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>72</dim>
</port>
</output>
</layer>
<layer id="319" name="Constant_5257_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 72" offset="371772" size="144" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>72</dim>
</port>
</output>
</layer>
<layer id="320" name="Constant_5257" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>72</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>72</dim>
</port>
</output>
</layer>
<layer id="321" name="/m/model.9/conv/conv.5/fc/fc.0/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>72</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.9/conv/conv.5/fc/fc.0/Gemm_output_0">
<dim>1</dim>
<dim>72</dim>
</port>
</output>
</layer>
<layer id="322" name="/m/model.9/conv/conv.5/fc/fc.1/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.9/conv/conv.5/fc/fc.1/Relu_output_0">
<dim>1</dim>
<dim>72</dim>
</port>
</output>
</layer>
<layer id="323" name="m.model.9.conv.5.fc.2.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="288, 72" offset="371916" size="41472" />
<output>
<port id="0" precision="FP16" names="m.model.9.conv.5.fc.2.weight">
<dim>288</dim>
<dim>72</dim>
</port>
</output>
</layer>
<layer id="324" name="m.model.9.conv.5.fc.2.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>288</dim>
<dim>72</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>288</dim>
<dim>72</dim>
</port>
</output>
</layer>
<layer id="325" name="/m/model.9/conv/conv.5/fc/fc.2/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
</port>
<port id="1" precision="FP32">
<dim>288</dim>
<dim>72</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>288</dim>
</port>
</output>
</layer>
<layer id="326" name="Constant_5258_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 288" offset="413388" size="576" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>288</dim>
</port>
</output>
</layer>
<layer id="327" name="Constant_5258" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>288</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>288</dim>
</port>
</output>
</layer>
<layer id="328" name="/m/model.9/conv/conv.5/fc/fc.2/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>288</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>288</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.9/conv/conv.5/fc/fc.2/Gemm_output_0">
<dim>1</dim>
<dim>288</dim>
</port>
</output>
</layer>
<layer id="329" name="/m/model.9/conv/conv.5/fc/fc.3/Div" type="HSigmoid" version="opset5">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>288</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.9/conv/conv.5/fc/fc.3/Div_output_0">
<dim>1</dim>
<dim>288</dim>
</port>
</output>
</layer>
<layer id="330" name="/m/model.9/conv/conv.5/Constant_1" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="413964" size="32" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.9/conv/conv.5/Constant_1_output_0">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="331" name="/m/model.9/conv/conv.5/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>288</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.9/conv/conv.5/Reshape_1_output_0">
<dim>1</dim>
<dim>288</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="332" name="/m/model.9/conv/conv.5/Mul" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>288</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>288</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.9/conv/conv.5/Mul_output_0">
<dim>1</dim>
<dim>288</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="333" name="/m/model.9/conv/conv.6/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>288</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.9/conv/conv.6/Mul_output_0">
<dim>1</dim>
<dim>288</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="334" name="onnx::Conv_933_compressed" type="Const" version="opset1">
<data element_type="f16" shape="48, 288, 1, 1" offset="413996" size="27648" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_933">
<dim>48</dim>
<dim>288</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="335" name="onnx::Conv_933" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>48</dim>
<dim>288</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>48</dim>
<dim>288</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="336" name="/m/model.9/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>288</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>48</dim>
<dim>288</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="337" name="Reshape_1421_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 48, 1, 1" offset="441644" size="96" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="338" name="Reshape_1421" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="339" name="/m/model.9/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.9/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="340" name="onnx::Conv_936_compressed" type="Const" version="opset1">
<data element_type="f16" shape="576, 48, 1, 1" offset="441740" size="55296" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_936">
<dim>576</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="341" name="onnx::Conv_936" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>576</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>576</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="342" name="/m/model.10/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>576</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="343" name="Reshape_1437_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 576, 1, 1" offset="497036" size="1152" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="344" name="Reshape_1437" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="345" name="/m/model.10/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.10/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="346" name="/m/model.10/conv/conv.2/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.10/conv/conv.2/Mul_output_0">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="347" name="Reshape_1457_compressed" type="Const" version="opset1">
<data element_type="f16" shape="576, 1, 1, 5, 5" offset="498188" size="28800" />
<output>
<port id="0" precision="FP16">
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="348" name="Reshape_1457" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="349" name="/m/model.10/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="1, 1" pads_begin="2, 2" pads_end="2, 2" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="350" name="Reshape_1509_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 576, 1, 1" offset="526988" size="1152" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="351" name="Reshape_1509" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="352" name="/m/model.10/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.10/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="353" name="Range_1519" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="1056" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="354" name="/m/model.10/conv/conv.5/avg_pool/GlobalAveragePool" type="ReduceMean" version="opset1">
<data keep_dims="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.10/conv/conv.5/avg_pool/GlobalAveragePool_output_0">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="355" name="/m/model.10/conv/conv.5/Constant" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="528140" size="16" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.10/conv/conv.5/Constant_output_0">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="356" name="/m/model.10/conv/conv.5/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.10/conv/conv.5/Reshape_output_0">
<dim>1</dim>
<dim>576</dim>
</port>
</output>
</layer>
<layer id="357" name="m.model.10.conv.5.fc.0.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="144, 576" offset="528156" size="165888" />
<output>
<port id="0" precision="FP16" names="m.model.10.conv.5.fc.0.weight">
<dim>144</dim>
<dim>576</dim>
</port>
</output>
</layer>
<layer id="358" name="m.model.10.conv.5.fc.0.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>144</dim>
<dim>576</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>144</dim>
<dim>576</dim>
</port>
</output>
</layer>
<layer id="359" name="/m/model.10/conv/conv.5/fc/fc.0/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
</port>
<port id="1" precision="FP32">
<dim>144</dim>
<dim>576</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="360" name="Constant_5259_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 144" offset="694044" size="288" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="361" name="Constant_5259" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>144</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="362" name="/m/model.10/conv/conv.5/fc/fc.0/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>144</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>144</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.10/conv/conv.5/fc/fc.0/Gemm_output_0">
<dim>1</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="363" name="/m/model.10/conv/conv.5/fc/fc.1/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>144</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.10/conv/conv.5/fc/fc.1/Relu_output_0">
<dim>1</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="364" name="m.model.10.conv.5.fc.2.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="576, 144" offset="694332" size="165888" />
<output>
<port id="0" precision="FP16" names="m.model.10.conv.5.fc.2.weight">
<dim>576</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="365" name="m.model.10.conv.5.fc.2.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>576</dim>
<dim>144</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>576</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="366" name="/m/model.10/conv/conv.5/fc/fc.2/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>144</dim>
</port>
<port id="1" precision="FP32">
<dim>576</dim>
<dim>144</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>576</dim>
</port>
</output>
</layer>
<layer id="367" name="Constant_5260_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 576" offset="860220" size="1152" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>576</dim>
</port>
</output>
</layer>
<layer id="368" name="Constant_5260" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>576</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>576</dim>
</port>
</output>
</layer>
<layer id="369" name="/m/model.10/conv/conv.5/fc/fc.2/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>576</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.10/conv/conv.5/fc/fc.2/Gemm_output_0">
<dim>1</dim>
<dim>576</dim>
</port>
</output>
</layer>
<layer id="370" name="/m/model.10/conv/conv.5/fc/fc.3/Div" type="HSigmoid" version="opset5">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.10/conv/conv.5/fc/fc.3/Div_output_0">
<dim>1</dim>
<dim>576</dim>
</port>
</output>
</layer>
<layer id="371" name="/m/model.10/conv/conv.5/Constant_1" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="861372" size="32" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.10/conv/conv.5/Constant_1_output_0">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="372" name="/m/model.10/conv/conv.5/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.10/conv/conv.5/Reshape_1_output_0">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="373" name="/m/model.10/conv/conv.5/Mul" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.10/conv/conv.5/Mul_output_0">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="374" name="/m/model.10/conv/conv.6/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.10/conv/conv.6/Mul_output_0">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="375" name="onnx::Conv_942_compressed" type="Const" version="opset1">
<data element_type="f16" shape="48, 576, 1, 1" offset="861404" size="55296" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_942">
<dim>48</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="376" name="onnx::Conv_942" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>48</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>48</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="377" name="/m/model.10/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>48</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="378" name="Reshape_1572_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 48, 1, 1" offset="916700" size="96" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="379" name="Reshape_1572" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="380" name="/m/model.10/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.10/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="381" name="/m/model.10/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.10/Add_output_0">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="382" name="onnx::Conv_945_compressed" type="Const" version="opset1">
<data element_type="f16" shape="576, 48, 1, 1" offset="916796" size="55296" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_945">
<dim>576</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="383" name="onnx::Conv_945" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>576</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>576</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="384" name="/m/model.11/conv/conv.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>576</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="385" name="Reshape_1589_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 576, 1, 1" offset="972092" size="1152" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="386" name="Reshape_1589" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="387" name="/m/model.11/conv/conv.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.11/conv/conv.0/Conv_output_0">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="388" name="/m/model.11/conv/conv.2/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.11/conv/conv.2/Mul_output_0">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="389" name="Reshape_1609_compressed" type="Const" version="opset1">
<data element_type="f16" shape="576, 1, 1, 5, 5" offset="973244" size="28800" />
<output>
<port id="0" precision="FP16">
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="390" name="Reshape_1609" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</output>
</layer>
<layer id="391" name="/m/model.11/conv/conv.3/Conv/WithoutBiases" type="GroupConvolution" version="opset1">
<data strides="1, 1" pads_begin="2, 2" pads_end="2, 2" dilations="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
<dim>5</dim>
<dim>5</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="392" name="Reshape_1661_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 576, 1, 1" offset="1002044" size="1152" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="393" name="Reshape_1661" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="394" name="/m/model.11/conv/conv.3/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.11/conv/conv.3/Conv_output_0">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="395" name="Range_1671" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="1056" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="396" name="/m/model.11/conv/conv.5/avg_pool/GlobalAveragePool" type="ReduceMean" version="opset1">
<data keep_dims="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.11/conv/conv.5/avg_pool/GlobalAveragePool_output_0">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="397" name="/m/model.11/conv/conv.5/Constant" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="528140" size="16" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.11/conv/conv.5/Constant_output_0">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="398" name="/m/model.11/conv/conv.5/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.11/conv/conv.5/Reshape_output_0">
<dim>1</dim>
<dim>576</dim>
</port>
</output>
</layer>
<layer id="399" name="m.model.11.conv.5.fc.0.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="144, 576" offset="1003196" size="165888" />
<output>
<port id="0" precision="FP16" names="m.model.11.conv.5.fc.0.weight">
<dim>144</dim>
<dim>576</dim>
</port>
</output>
</layer>
<layer id="400" name="m.model.11.conv.5.fc.0.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>144</dim>
<dim>576</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>144</dim>
<dim>576</dim>
</port>
</output>
</layer>
<layer id="401" name="/m/model.11/conv/conv.5/fc/fc.0/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
</port>
<port id="1" precision="FP32">
<dim>144</dim>
<dim>576</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="402" name="Constant_5261_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 144" offset="1169084" size="288" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="403" name="Constant_5261" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>144</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="404" name="/m/model.11/conv/conv.5/fc/fc.0/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>144</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>144</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.11/conv/conv.5/fc/fc.0/Gemm_output_0">
<dim>1</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="405" name="/m/model.11/conv/conv.5/fc/fc.1/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>144</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.11/conv/conv.5/fc/fc.1/Relu_output_0">
<dim>1</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="406" name="m.model.11.conv.5.fc.2.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="576, 144" offset="1169372" size="165888" />
<output>
<port id="0" precision="FP16" names="m.model.11.conv.5.fc.2.weight">
<dim>576</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="407" name="m.model.11.conv.5.fc.2.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>576</dim>
<dim>144</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>576</dim>
<dim>144</dim>
</port>
</output>
</layer>
<layer id="408" name="/m/model.11/conv/conv.5/fc/fc.2/Gemm/WithoutBiases" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>144</dim>
</port>
<port id="1" precision="FP32">
<dim>576</dim>
<dim>144</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>576</dim>
</port>
</output>
</layer>
<layer id="409" name="Constant_5262_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 576" offset="1335260" size="1152" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>576</dim>
</port>
</output>
</layer>
<layer id="410" name="Constant_5262" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>576</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>576</dim>
</port>
</output>
</layer>
<layer id="411" name="/m/model.11/conv/conv.5/fc/fc.2/Gemm" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>576</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.11/conv/conv.5/fc/fc.2/Gemm_output_0">
<dim>1</dim>
<dim>576</dim>
</port>
</output>
</layer>
<layer id="412" name="/m/model.11/conv/conv.5/fc/fc.3/Div" type="HSigmoid" version="opset5">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.11/conv/conv.5/fc/fc.3/Div_output_0">
<dim>1</dim>
<dim>576</dim>
</port>
</output>
</layer>
<layer id="413" name="/m/model.11/conv/conv.5/Constant_1" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="861372" size="32" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.11/conv/conv.5/Constant_1_output_0">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="414" name="/m/model.11/conv/conv.5/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.11/conv/conv.5/Reshape_1_output_0">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="415" name="/m/model.11/conv/conv.5/Mul" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.11/conv/conv.5/Mul_output_0">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="416" name="/m/model.11/conv/conv.6/Mul" type="HSwish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.11/conv/conv.6/Mul_output_0">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="417" name="onnx::Conv_951_compressed" type="Const" version="opset1">
<data element_type="f16" shape="48, 576, 1, 1" offset="1336412" size="55296" />
<output>
<port id="0" precision="FP16" names="onnx::Conv_951">
<dim>48</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="418" name="onnx::Conv_951" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>48</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>48</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="419" name="/m/model.11/conv/conv.7/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>576</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>48</dim>
<dim>576</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="420" name="Reshape_1724_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 48, 1, 1" offset="1391708" size="96" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="421" name="Reshape_1724" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="422" name="/m/model.11/conv/conv.7/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.11/conv/conv.7/Conv_output_0">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="423" name="/m/model.11/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.11/Add_output_0">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="424" name="m.model.12.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="112, 48, 1, 1" offset="1391804" size="10752" />
<output>
<port id="0" precision="FP16" names="m.model.12.conv.weight">
<dim>112</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="425" name="m.model.12.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>112</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>112</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="426" name="/m/model.12/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>112</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="427" name="Reshape_1741_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 112, 1, 1" offset="1402556" size="224" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="428" name="Reshape_1741" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="429" name="/m/model.12/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.12/conv/Conv_output_0">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="430" name="/m/model.12/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.12/act/Mul_output_0">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="431" name="/m/model.13/Constant" type="Const" version="opset1">
<data element_type="f32" shape="4" offset="1402780" size="16" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="FP32" names="/m/model.13/Constant_output_0">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="432" name="/m/model.13/Resize" type="Interpolate" version="opset11">
<data mode="nearest" shape_calculation_mode="scales" coordinate_transformation_mode="asymmetric" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.13/Resize_output_0">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="433" name="/m/model.14/Concat" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.14/Concat_output_0">
<dim>1</dim>
<dim>136</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="434" name="m.model.15.cv1.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="56, 136, 1, 1" offset="1402796" size="15232" />
<output>
<port id="0" precision="FP16" names="m.model.15.cv1.conv.weight">
<dim>56</dim>
<dim>136</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="435" name="m.model.15.cv1.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>56</dim>
<dim>136</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>136</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="436" name="/m/model.15/cv1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>136</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>136</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="437" name="Reshape_1763_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 56, 1, 1" offset="1418028" size="112" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="438" name="Reshape_1763" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="439" name="/m/model.15/cv1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.15/cv1/conv/Conv_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="440" name="/m/model.15/cv1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.15/cv1/act/Mul_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="441" name="m.model.15.m.0.cv1.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="56, 56, 1, 1" offset="1418140" size="6272" />
<output>
<port id="0" precision="FP16" names="m.model.15.m.0.cv1.conv.weight">
<dim>56</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="442" name="m.model.15.m.0.cv1.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>56</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="443" name="/m/model.15/m/m.0/cv1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="444" name="Reshape_1781_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 56, 1, 1" offset="1424412" size="112" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="445" name="Reshape_1781" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="446" name="/m/model.15/m/m.0/cv1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.15/m/m.0/cv1/conv/Conv_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="447" name="/m/model.15/m/m.0/cv1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.15/m/m.0/cv1/act/Mul_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="448" name="m.model.15.m.0.cv2.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="56, 56, 3, 3" offset="1424524" size="56448" />
<output>
<port id="0" precision="FP16" names="m.model.15.m.0.cv2.conv.weight">
<dim>56</dim>
<dim>56</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="449" name="m.model.15.m.0.cv2.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>56</dim>
<dim>56</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>56</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="450" name="/m/model.15/m/m.0/cv2/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>56</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="451" name="Reshape_1799_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 56, 1, 1" offset="1480972" size="112" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="452" name="Reshape_1799" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="453" name="/m/model.15/m/m.0/cv2/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.15/m/m.0/cv2/conv/Conv_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="454" name="/m/model.15/m/m.0/cv2/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.15/m/m.0/cv2/act/Mul_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="455" name="m.model.15.cv2.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="56, 136, 1, 1" offset="1481084" size="15232" />
<output>
<port id="0" precision="FP16" names="m.model.15.cv2.conv.weight">
<dim>56</dim>
<dim>136</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="456" name="m.model.15.cv2.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>56</dim>
<dim>136</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>136</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="457" name="/m/model.15/cv2/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>136</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>136</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="458" name="Reshape_1817_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 56, 1, 1" offset="1496316" size="112" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="459" name="Reshape_1817" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="460" name="/m/model.15/cv2/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.15/cv2/conv/Conv_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="461" name="/m/model.15/cv2/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.15/cv2/act/Mul_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="462" name="/m/model.15/Concat" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.15/Concat_output_0">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="463" name="m.model.15.cv3.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="112, 112, 1, 1" offset="1496428" size="25088" />
<output>
<port id="0" precision="FP16" names="m.model.15.cv3.conv.weight">
<dim>112</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="464" name="m.model.15.cv3.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>112</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>112</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="465" name="/m/model.15/cv3/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>112</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="466" name="Reshape_1836_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 112, 1, 1" offset="1521516" size="224" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="467" name="Reshape_1836" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="468" name="/m/model.15/cv3/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.15/cv3/conv/Conv_output_0">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="469" name="/m/model.15/cv3/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.15/cv3/act/Mul_output_0">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="470" name="m.model.16.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="56, 112, 1, 1" offset="1521740" size="12544" />
<output>
<port id="0" precision="FP16" names="m.model.16.conv.weight">
<dim>56</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="471" name="m.model.16.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>56</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="472" name="/m/model.16/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="473" name="Reshape_1854_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 56, 1, 1" offset="1534284" size="112" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="474" name="Reshape_1854" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="475" name="/m/model.16/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.16/conv/Conv_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="476" name="/m/model.16/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.16/act/Mul_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="477" name="/m/model.17/Constant" type="Const" version="opset1">
<data element_type="f32" shape="4" offset="1402780" size="16" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="FP32" names="/m/model.17/Constant_output_0">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="478" name="/m/model.17/Resize" type="Interpolate" version="opset11">
<data mode="nearest" shape_calculation_mode="scales" coordinate_transformation_mode="asymmetric" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.17/Resize_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="479" name="/m/model.18/Concat" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.18/Concat_output_0">
<dim>1</dim>
<dim>72</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="480" name="m.model.19.cv1.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="28, 72, 1, 1" offset="1534396" size="4032" />
<output>
<port id="0" precision="FP16" names="m.model.19.cv1.conv.weight">
<dim>28</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="481" name="m.model.19.cv1.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>28</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>28</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="482" name="/m/model.19/cv1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>28</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="483" name="Reshape_1876_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 28, 1, 1" offset="1538428" size="56" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>28</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="484" name="Reshape_1876" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>28</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="485" name="/m/model.19/cv1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.19/cv1/conv/Conv_output_0">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="486" name="/m/model.19/cv1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.19/cv1/act/Mul_output_0">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="487" name="m.model.19.m.0.cv1.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="28, 28, 1, 1" offset="1538484" size="1568" />
<output>
<port id="0" precision="FP16" names="m.model.19.m.0.cv1.conv.weight">
<dim>28</dim>
<dim>28</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="488" name="m.model.19.m.0.cv1.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>28</dim>
<dim>28</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>28</dim>
<dim>28</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="489" name="/m/model.19/m/m.0/cv1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>28</dim>
<dim>28</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="490" name="Reshape_1894_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 28, 1, 1" offset="1540052" size="56" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>28</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="491" name="Reshape_1894" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>28</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="492" name="/m/model.19/m/m.0/cv1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.19/m/m.0/cv1/conv/Conv_output_0">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="493" name="/m/model.19/m/m.0/cv1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.19/m/m.0/cv1/act/Mul_output_0">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="494" name="m.model.19.m.0.cv2.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="28, 28, 3, 3" offset="1540108" size="14112" />
<output>
<port id="0" precision="FP16" names="m.model.19.m.0.cv2.conv.weight">
<dim>28</dim>
<dim>28</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="495" name="m.model.19.m.0.cv2.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>28</dim>
<dim>28</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>28</dim>
<dim>28</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="496" name="/m/model.19/m/m.0/cv2/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>28</dim>
<dim>28</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="497" name="Reshape_1912_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 28, 1, 1" offset="1554220" size="56" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>28</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="498" name="Reshape_1912" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>28</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="499" name="/m/model.19/m/m.0/cv2/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.19/m/m.0/cv2/conv/Conv_output_0">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="500" name="/m/model.19/m/m.0/cv2/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.19/m/m.0/cv2/act/Mul_output_0">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="501" name="m.model.19.cv2.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="28, 72, 1, 1" offset="1554276" size="4032" />
<output>
<port id="0" precision="FP16" names="m.model.19.cv2.conv.weight">
<dim>28</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="502" name="m.model.19.cv2.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>28</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>28</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="503" name="/m/model.19/cv2/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>72</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>28</dim>
<dim>72</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="504" name="Reshape_1930_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 28, 1, 1" offset="1558308" size="56" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>28</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="505" name="Reshape_1930" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>28</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="506" name="/m/model.19/cv2/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.19/cv2/conv/Conv_output_0">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="507" name="/m/model.19/cv2/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.19/cv2/act/Mul_output_0">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="508" name="/m/model.19/Concat" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>28</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.19/Concat_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="509" name="m.model.19.cv3.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="56, 56, 1, 1" offset="1558364" size="6272" />
<output>
<port id="0" precision="FP16" names="m.model.19.cv3.conv.weight">
<dim>56</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="510" name="m.model.19.cv3.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>56</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="511" name="/m/model.19/cv3/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="512" name="Reshape_1949_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 56, 1, 1" offset="1564636" size="112" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="513" name="Reshape_1949" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="514" name="/m/model.19/cv3/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.19/cv3/conv/Conv_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="515" name="/m/model.19/cv3/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.19/cv3/act/Mul_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="516" name="m.model.26.m.0.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="66, 56, 1, 1" offset="1564748" size="7392" />
<output>
<port id="0" precision="FP16" names="m.model.26.m.0.weight">
<dim>66</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="517" name="m.model.26.m.0.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>66</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>66</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="518" name="/m/model.26/m.0/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>66</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="519" name="Reshape_2187_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 66, 1, 1" offset="1572140" size="132" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>66</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="520" name="Reshape_2187" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>66</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="521" name="/m/model.26/m.0/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.26/m.0/Conv_output_0">
<dim>1</dim>
<dim>66</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="522" name="/m/model.26/Constant" type="Const" version="opset1">
<data element_type="i64" shape="5" offset="1572272" size="40" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.26/Constant_output_0">
<dim>5</dim>
</port>
</output>
</layer>
<layer id="523" name="/m/model.26/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="I64">
<dim>5</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.26/Reshape_output_0">
<dim>1</dim>
<dim>3</dim>
<dim>22</dim>
<dim>80</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="524" name="Constant_2193" type="Const" version="opset1">
<data element_type="i64" shape="5" offset="1572312" size="40" />
<output>
<port id="0" precision="I64">
<dim>5</dim>
</port>
</output>
</layer>
<layer id="525" name="/m/model.26/Transpose" type="Transpose" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>22</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="I64">
<dim>5</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.26/Transpose_output_0">
<dim>1</dim>
<dim>3</dim>
<dim>80</dim>
<dim>80</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="526" name="/m/model.26/Constant_1_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 3, 1, 1, 22" offset="1572352" size="132" />
<output>
<port id="0" precision="FP16" names="/m/model.26/Constant_1_output_0">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="527" name="/m/model.26/Constant_1" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
<dim>22</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="528" name="/m/model.26/Mul" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>80</dim>
<dim>80</dim>
<dim>22</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
<dim>22</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.26/Mul_output_0">
<dim>1</dim>
<dim>3</dim>
<dim>80</dim>
<dim>80</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="529" name="/m/model.26/Constant_2_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 1, 80, 80, 22" offset="1572484" size="281600" />
<output>
<port id="0" precision="FP16" names="/m/model.26/Constant_2_output_0">
<dim>1</dim>
<dim>1</dim>
<dim>80</dim>
<dim>80</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="530" name="/m/model.26/Constant_2" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>1</dim>
<dim>80</dim>
<dim>80</dim>
<dim>22</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>80</dim>
<dim>80</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="531" name="/m/model.26/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>80</dim>
<dim>80</dim>
<dim>22</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>80</dim>
<dim>80</dim>
<dim>22</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.26/Add_output_0">
<dim>1</dim>
<dim>3</dim>
<dim>80</dim>
<dim>80</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="532" name="/m/model.26/Constant_3" type="Const" version="opset1">
<data element_type="i64" shape="3" offset="1854084" size="24" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.26/Constant_3_output_0">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="533" name="/m/model.26/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>80</dim>
<dim>80</dim>
<dim>22</dim>
</port>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.26/Reshape_1_output_0">
<dim>1</dim>
<dim>19200</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="534" name="m.model.20.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="56, 56, 3, 3" offset="1854108" size="56448" />
<output>
<port id="0" precision="FP16" names="m.model.20.conv.weight">
<dim>56</dim>
<dim>56</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="535" name="m.model.20.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>56</dim>
<dim>56</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>56</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="536" name="/m/model.20/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>80</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>56</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="537" name="Reshape_1967_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 56, 1, 1" offset="1910556" size="112" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="538" name="Reshape_1967" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="539" name="/m/model.20/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.20/conv/Conv_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="540" name="/m/model.20/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.20/act/Mul_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="541" name="/m/model.21/Concat" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.21/Concat_output_0">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="542" name="m.model.22.cv1.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="56, 112, 1, 1" offset="1910668" size="12544" />
<output>
<port id="0" precision="FP16" names="m.model.22.cv1.conv.weight">
<dim>56</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="543" name="m.model.22.cv1.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>56</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="544" name="/m/model.22/cv1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="545" name="Reshape_1986_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 56, 1, 1" offset="1923212" size="112" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="546" name="Reshape_1986" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="547" name="/m/model.22/cv1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.22/cv1/conv/Conv_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="548" name="/m/model.22/cv1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.22/cv1/act/Mul_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="549" name="m.model.22.m.0.cv1.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="56, 56, 1, 1" offset="1923324" size="6272" />
<output>
<port id="0" precision="FP16" names="m.model.22.m.0.cv1.conv.weight">
<dim>56</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="550" name="m.model.22.m.0.cv1.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>56</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="551" name="/m/model.22/m/m.0/cv1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="552" name="Reshape_2004_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 56, 1, 1" offset="1929596" size="112" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="553" name="Reshape_2004" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="554" name="/m/model.22/m/m.0/cv1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.22/m/m.0/cv1/conv/Conv_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="555" name="/m/model.22/m/m.0/cv1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.22/m/m.0/cv1/act/Mul_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="556" name="m.model.22.m.0.cv2.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="56, 56, 3, 3" offset="1929708" size="56448" />
<output>
<port id="0" precision="FP16" names="m.model.22.m.0.cv2.conv.weight">
<dim>56</dim>
<dim>56</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="557" name="m.model.22.m.0.cv2.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>56</dim>
<dim>56</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>56</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="558" name="/m/model.22/m/m.0/cv2/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>56</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="559" name="Reshape_2022_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 56, 1, 1" offset="1986156" size="112" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="560" name="Reshape_2022" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="561" name="/m/model.22/m/m.0/cv2/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.22/m/m.0/cv2/conv/Conv_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="562" name="/m/model.22/m/m.0/cv2/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.22/m/m.0/cv2/act/Mul_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="563" name="m.model.22.cv2.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="56, 112, 1, 1" offset="1986268" size="12544" />
<output>
<port id="0" precision="FP16" names="m.model.22.cv2.conv.weight">
<dim>56</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="564" name="m.model.22.cv2.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>56</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="565" name="/m/model.22/cv2/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>56</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="566" name="Reshape_2040_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 56, 1, 1" offset="1998812" size="112" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="567" name="Reshape_2040" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="568" name="/m/model.22/cv2/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.22/cv2/conv/Conv_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="569" name="/m/model.22/cv2/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.22/cv2/act/Mul_output_0">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="570" name="/m/model.22/Concat" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.22/Concat_output_0">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="571" name="m.model.22.cv3.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="112, 112, 1, 1" offset="1998924" size="25088" />
<output>
<port id="0" precision="FP16" names="m.model.22.cv3.conv.weight">
<dim>112</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="572" name="m.model.22.cv3.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>112</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>112</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="573" name="/m/model.22/cv3/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>112</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="574" name="Reshape_2059_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 112, 1, 1" offset="2024012" size="224" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="575" name="Reshape_2059" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="576" name="/m/model.22/cv3/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.22/cv3/conv/Conv_output_0">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="577" name="/m/model.22/cv3/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.22/cv3/act/Mul_output_0">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="578" name="m.model.26.m.1.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="66, 112, 1, 1" offset="2024236" size="14784" />
<output>
<port id="0" precision="FP16" names="m.model.26.m.1.weight">
<dim>66</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="579" name="m.model.26.m.1.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>66</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>66</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="580" name="/m/model.26/m.1/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>66</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="581" name="Reshape_2213_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 66, 1, 1" offset="2039020" size="132" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>66</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="582" name="Reshape_2213" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>66</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="583" name="/m/model.26/m.1/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.26/m.1/Conv_output_0">
<dim>1</dim>
<dim>66</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="584" name="/m/model.26/Constant_4" type="Const" version="opset1">
<data element_type="i64" shape="5" offset="2039152" size="40" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.26/Constant_4_output_0">
<dim>5</dim>
</port>
</output>
</layer>
<layer id="585" name="/m/model.26/Reshape_2" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="I64">
<dim>5</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.26/Reshape_2_output_0">
<dim>1</dim>
<dim>3</dim>
<dim>22</dim>
<dim>40</dim>
<dim>40</dim>
</port>
</output>
</layer>
<layer id="586" name="Constant_2219" type="Const" version="opset1">
<data element_type="i64" shape="5" offset="1572312" size="40" />
<output>
<port id="0" precision="I64">
<dim>5</dim>
</port>
</output>
</layer>
<layer id="587" name="/m/model.26/Transpose_1" type="Transpose" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>22</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="I64">
<dim>5</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.26/Transpose_1_output_0">
<dim>1</dim>
<dim>3</dim>
<dim>40</dim>
<dim>40</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="588" name="/m/model.26/Constant_5_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 3, 1, 1, 22" offset="2039192" size="132" />
<output>
<port id="0" precision="FP16" names="/m/model.26/Constant_5_output_0">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="589" name="/m/model.26/Constant_5" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
<dim>22</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="590" name="/m/model.26/Mul_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>40</dim>
<dim>40</dim>
<dim>22</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
<dim>22</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.26/Mul_1_output_0">
<dim>1</dim>
<dim>3</dim>
<dim>40</dim>
<dim>40</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="591" name="/m/model.26/Constant_6_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 1, 40, 40, 22" offset="2039324" size="70400" />
<output>
<port id="0" precision="FP16" names="/m/model.26/Constant_6_output_0">
<dim>1</dim>
<dim>1</dim>
<dim>40</dim>
<dim>40</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="592" name="/m/model.26/Constant_6" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>1</dim>
<dim>40</dim>
<dim>40</dim>
<dim>22</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>40</dim>
<dim>40</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="593" name="/m/model.26/Add_1" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>40</dim>
<dim>40</dim>
<dim>22</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>40</dim>
<dim>40</dim>
<dim>22</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.26/Add_1_output_0">
<dim>1</dim>
<dim>3</dim>
<dim>40</dim>
<dim>40</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="594" name="/m/model.26/Constant_7" type="Const" version="opset1">
<data element_type="i64" shape="3" offset="1854084" size="24" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.26/Constant_7_output_0">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="595" name="/m/model.26/Reshape_3" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>40</dim>
<dim>40</dim>
<dim>22</dim>
</port>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.26/Reshape_3_output_0">
<dim>1</dim>
<dim>4800</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="596" name="m.model.23.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="112, 112, 3, 3" offset="2109724" size="225792" />
<output>
<port id="0" precision="FP16" names="m.model.23.conv.weight">
<dim>112</dim>
<dim>112</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="597" name="m.model.23.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>112</dim>
<dim>112</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>112</dim>
<dim>112</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="598" name="/m/model.23/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>40</dim>
<dim>40</dim>
</port>
<port id="1" precision="FP32">
<dim>112</dim>
<dim>112</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="599" name="Reshape_2077_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 112, 1, 1" offset="2335516" size="224" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="600" name="Reshape_2077" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="601" name="/m/model.23/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.23/conv/Conv_output_0">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="602" name="/m/model.23/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.23/act/Mul_output_0">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="603" name="/m/model.24/Concat" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.24/Concat_output_0">
<dim>1</dim>
<dim>224</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="604" name="m.model.25.cv1.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="112, 224, 1, 1" offset="2335740" size="50176" />
<output>
<port id="0" precision="FP16" names="m.model.25.cv1.conv.weight">
<dim>112</dim>
<dim>224</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="605" name="m.model.25.cv1.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>112</dim>
<dim>224</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>112</dim>
<dim>224</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="606" name="/m/model.25/cv1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>224</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>112</dim>
<dim>224</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="607" name="Reshape_2096_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 112, 1, 1" offset="2385916" size="224" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="608" name="Reshape_2096" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="609" name="/m/model.25/cv1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.25/cv1/conv/Conv_output_0">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="610" name="/m/model.25/cv1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.25/cv1/act/Mul_output_0">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="611" name="m.model.25.m.0.cv1.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="112, 112, 1, 1" offset="2386140" size="25088" />
<output>
<port id="0" precision="FP16" names="m.model.25.m.0.cv1.conv.weight">
<dim>112</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="612" name="m.model.25.m.0.cv1.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>112</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>112</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="613" name="/m/model.25/m/m.0/cv1/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>112</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="614" name="Reshape_2114_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 112, 1, 1" offset="2411228" size="224" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="615" name="Reshape_2114" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="616" name="/m/model.25/m/m.0/cv1/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.25/m/m.0/cv1/conv/Conv_output_0">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="617" name="/m/model.25/m/m.0/cv1/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.25/m/m.0/cv1/act/Mul_output_0">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="618" name="m.model.25.m.0.cv2.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="112, 112, 3, 3" offset="2411452" size="225792" />
<output>
<port id="0" precision="FP16" names="m.model.25.m.0.cv2.conv.weight">
<dim>112</dim>
<dim>112</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="619" name="m.model.25.m.0.cv2.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>112</dim>
<dim>112</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>112</dim>
<dim>112</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="620" name="/m/model.25/m/m.0/cv2/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>112</dim>
<dim>112</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="621" name="Reshape_2132_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 112, 1, 1" offset="2637244" size="224" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="622" name="Reshape_2132" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="623" name="/m/model.25/m/m.0/cv2/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.25/m/m.0/cv2/conv/Conv_output_0">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="624" name="/m/model.25/m/m.0/cv2/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.25/m/m.0/cv2/act/Mul_output_0">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="625" name="m.model.25.cv2.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="112, 224, 1, 1" offset="2637468" size="50176" />
<output>
<port id="0" precision="FP16" names="m.model.25.cv2.conv.weight">
<dim>112</dim>
<dim>224</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="626" name="m.model.25.cv2.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>112</dim>
<dim>224</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>112</dim>
<dim>224</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="627" name="/m/model.25/cv2/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>224</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>112</dim>
<dim>224</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="628" name="Reshape_2150_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 112, 1, 1" offset="2687644" size="224" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="629" name="Reshape_2150" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="630" name="/m/model.25/cv2/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.25/cv2/conv/Conv_output_0">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="631" name="/m/model.25/cv2/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.25/cv2/act/Mul_output_0">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="632" name="/m/model.25/Concat" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>112</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.25/Concat_output_0">
<dim>1</dim>
<dim>224</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="633" name="m.model.25.cv3.conv.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="224, 224, 1, 1" offset="2687868" size="100352" />
<output>
<port id="0" precision="FP16" names="m.model.25.cv3.conv.weight">
<dim>224</dim>
<dim>224</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="634" name="m.model.25.cv3.conv.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>224</dim>
<dim>224</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>224</dim>
<dim>224</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="635" name="/m/model.25/cv3/conv/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>224</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>224</dim>
<dim>224</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>224</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="636" name="Reshape_2169_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 224, 1, 1" offset="2788220" size="448" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>224</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="637" name="Reshape_2169" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>224</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>224</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="638" name="/m/model.25/cv3/conv/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>224</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>224</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.25/cv3/conv/Conv_output_0">
<dim>1</dim>
<dim>224</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="639" name="/m/model.25/cv3/act/Mul" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>224</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="/m/model.25/cv3/act/Mul_output_0">
<dim>1</dim>
<dim>224</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="640" name="m.model.26.m.2.weight_compressed" type="Const" version="opset1">
<data element_type="f16" shape="66, 224, 1, 1" offset="2788668" size="29568" />
<output>
<port id="0" precision="FP16" names="m.model.26.m.2.weight">
<dim>66</dim>
<dim>224</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="641" name="m.model.26.m.2.weight" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>66</dim>
<dim>224</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>66</dim>
<dim>224</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="642" name="/m/model.26/m.2/Conv/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>224</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>66</dim>
<dim>224</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="643" name="Reshape_2239_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 66, 1, 1" offset="2818236" size="132" />
<output>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>66</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="644" name="Reshape_2239" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>66</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="645" name="/m/model.26/m.2/Conv" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.26/m.2/Conv_output_0">
<dim>1</dim>
<dim>66</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="646" name="/m/model.26/Constant_8" type="Const" version="opset1">
<data element_type="i64" shape="5" offset="2818368" size="40" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.26/Constant_8_output_0">
<dim>5</dim>
</port>
</output>
</layer>
<layer id="647" name="/m/model.26/Reshape_4" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>66</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="I64">
<dim>5</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.26/Reshape_4_output_0">
<dim>1</dim>
<dim>3</dim>
<dim>22</dim>
<dim>20</dim>
<dim>20</dim>
</port>
</output>
</layer>
<layer id="648" name="Constant_2245" type="Const" version="opset1">
<data element_type="i64" shape="5" offset="1572312" size="40" />
<output>
<port id="0" precision="I64">
<dim>5</dim>
</port>
</output>
</layer>
<layer id="649" name="/m/model.26/Transpose_2" type="Transpose" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>22</dim>
<dim>20</dim>
<dim>20</dim>
</port>
<port id="1" precision="I64">
<dim>5</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.26/Transpose_2_output_0">
<dim>1</dim>
<dim>3</dim>
<dim>20</dim>
<dim>20</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="650" name="/m/model.26/Constant_9_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 3, 1, 1, 22" offset="2818408" size="132" />
<output>
<port id="0" precision="FP16" names="/m/model.26/Constant_9_output_0">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="651" name="/m/model.26/Constant_9" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
<dim>22</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="652" name="/m/model.26/Mul_2" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>20</dim>
<dim>20</dim>
<dim>22</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
<dim>22</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.26/Mul_2_output_0">
<dim>1</dim>
<dim>3</dim>
<dim>20</dim>
<dim>20</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="653" name="/m/model.26/Constant_10_compressed" type="Const" version="opset1">
<data element_type="f16" shape="1, 1, 20, 20, 22" offset="2818540" size="17600" />
<output>
<port id="0" precision="FP16" names="/m/model.26/Constant_10_output_0">
<dim>1</dim>
<dim>1</dim>
<dim>20</dim>
<dim>20</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="654" name="/m/model.26/Constant_10" type="Convert" version="opset1">
<data destination_type="f32" />
<rt_info>
<attribute name="decompression" version="0" />
</rt_info>
<input>
<port id="0" precision="FP16">
<dim>1</dim>
<dim>1</dim>
<dim>20</dim>
<dim>20</dim>
<dim>22</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>20</dim>
<dim>20</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="655" name="/m/model.26/Add_2" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>20</dim>
<dim>20</dim>
<dim>22</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>20</dim>
<dim>20</dim>
<dim>22</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.26/Add_2_output_0">
<dim>1</dim>
<dim>3</dim>
<dim>20</dim>
<dim>20</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="656" name="/m/model.26/Constant_11" type="Const" version="opset1">
<data element_type="i64" shape="3" offset="1854084" size="24" />
<rt_info>
<attribute name="precise" version="0" />
</rt_info>
<output>
<port id="0" precision="I64" names="/m/model.26/Constant_11_output_0">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="657" name="/m/model.26/Reshape_5" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>20</dim>
<dim>20</dim>
<dim>22</dim>
</port>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="/m/model.26/Reshape_5_output_0">
<dim>1</dim>
<dim>1200</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="658" name="output" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>19200</dim>
<dim>22</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>4800</dim>
<dim>22</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>1200</dim>
<dim>22</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="output">
<dim>1</dim>
<dim>25200</dim>
<dim>22</dim>
</port>
</output>
</layer>
<layer id="659" name="output/sink_port_0" type="Result" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>25200</dim>
<dim>22</dim>
</port>
</input>
</layer>
</layers>
<edges>
<edge from-layer="0" from-port="0" to-layer="3" to-port="0" />
<edge from-layer="1" from-port="0" to-layer="2" to-port="0" />
<edge from-layer="2" from-port="1" to-layer="3" to-port="1" />
<edge from-layer="3" from-port="2" to-layer="6" to-port="0" />
<edge from-layer="4" from-port="0" to-layer="5" to-port="0" />
<edge from-layer="5" from-port="1" to-layer="6" to-port="1" />
<edge from-layer="6" from-port="2" to-layer="7" to-port="0" />
<edge from-layer="7" from-port="1" to-layer="10" to-port="0" />
<edge from-layer="8" from-port="0" to-layer="9" to-port="0" />
<edge from-layer="9" from-port="1" to-layer="10" to-port="1" />
<edge from-layer="10" from-port="2" to-layer="13" to-port="0" />
<edge from-layer="11" from-port="0" to-layer="12" to-port="0" />
<edge from-layer="12" from-port="1" to-layer="13" to-port="1" />
<edge from-layer="13" from-port="2" to-layer="14" to-port="0" />
<edge from-layer="14" from-port="1" to-layer="17" to-port="0" />
<edge from-layer="15" from-port="0" to-layer="16" to-port="0" />
<edge from-layer="16" from-port="1" to-layer="17" to-port="1" />
<edge from-layer="17" from-port="2" to-layer="20" to-port="0" />
<edge from-layer="18" from-port="0" to-layer="19" to-port="0" />
<edge from-layer="19" from-port="1" to-layer="20" to-port="1" />
<edge from-layer="20" from-port="2" to-layer="22" to-port="0" />
<edge from-layer="20" from-port="2" to-layer="41" to-port="0" />
<edge from-layer="21" from-port="0" to-layer="22" to-port="1" />
<edge from-layer="22" from-port="2" to-layer="24" to-port="0" />
<edge from-layer="23" from-port="0" to-layer="24" to-port="1" />
<edge from-layer="24" from-port="2" to-layer="27" to-port="0" />
<edge from-layer="25" from-port="0" to-layer="26" to-port="0" />
<edge from-layer="26" from-port="1" to-layer="27" to-port="1" />
<edge from-layer="27" from-port="2" to-layer="30" to-port="0" />
<edge from-layer="28" from-port="0" to-layer="29" to-port="0" />
<edge from-layer="29" from-port="1" to-layer="30" to-port="1" />
<edge from-layer="30" from-port="2" to-layer="31" to-port="0" />
<edge from-layer="31" from-port="1" to-layer="34" to-port="0" />
<edge from-layer="32" from-port="0" to-layer="33" to-port="0" />
<edge from-layer="33" from-port="1" to-layer="34" to-port="1" />
<edge from-layer="34" from-port="2" to-layer="37" to-port="0" />
<edge from-layer="35" from-port="0" to-layer="36" to-port="0" />
<edge from-layer="36" from-port="1" to-layer="37" to-port="1" />
<edge from-layer="37" from-port="2" to-layer="38" to-port="0" />
<edge from-layer="38" from-port="1" to-layer="40" to-port="0" />
<edge from-layer="39" from-port="0" to-layer="40" to-port="1" />
<edge from-layer="40" from-port="2" to-layer="41" to-port="1" />
<edge from-layer="41" from-port="2" to-layer="42" to-port="0" />
<edge from-layer="42" from-port="1" to-layer="45" to-port="0" />
<edge from-layer="43" from-port="0" to-layer="44" to-port="0" />
<edge from-layer="44" from-port="1" to-layer="45" to-port="1" />
<edge from-layer="45" from-port="2" to-layer="48" to-port="0" />
<edge from-layer="46" from-port="0" to-layer="47" to-port="0" />
<edge from-layer="47" from-port="1" to-layer="48" to-port="1" />
<edge from-layer="48" from-port="2" to-layer="51" to-port="0" />
<edge from-layer="49" from-port="0" to-layer="50" to-port="0" />
<edge from-layer="50" from-port="1" to-layer="51" to-port="1" />
<edge from-layer="51" from-port="2" to-layer="54" to-port="0" />
<edge from-layer="52" from-port="0" to-layer="53" to-port="0" />
<edge from-layer="53" from-port="1" to-layer="54" to-port="1" />
<edge from-layer="54" from-port="2" to-layer="55" to-port="0" />
<edge from-layer="55" from-port="1" to-layer="58" to-port="0" />
<edge from-layer="56" from-port="0" to-layer="57" to-port="0" />
<edge from-layer="57" from-port="1" to-layer="58" to-port="1" />
<edge from-layer="58" from-port="2" to-layer="61" to-port="0" />
<edge from-layer="59" from-port="0" to-layer="60" to-port="0" />
<edge from-layer="60" from-port="1" to-layer="61" to-port="1" />
<edge from-layer="61" from-port="2" to-layer="62" to-port="0" />
<edge from-layer="62" from-port="1" to-layer="65" to-port="0" />
<edge from-layer="63" from-port="0" to-layer="64" to-port="0" />
<edge from-layer="64" from-port="1" to-layer="65" to-port="1" />
<edge from-layer="65" from-port="2" to-layer="68" to-port="0" />
<edge from-layer="66" from-port="0" to-layer="67" to-port="0" />
<edge from-layer="67" from-port="1" to-layer="68" to-port="1" />
<edge from-layer="68" from-port="2" to-layer="89" to-port="0" />
<edge from-layer="68" from-port="2" to-layer="71" to-port="0" />
<edge from-layer="69" from-port="0" to-layer="70" to-port="0" />
<edge from-layer="70" from-port="1" to-layer="71" to-port="1" />
<edge from-layer="71" from-port="2" to-layer="74" to-port="0" />
<edge from-layer="72" from-port="0" to-layer="73" to-port="0" />
<edge from-layer="73" from-port="1" to-layer="74" to-port="1" />
<edge from-layer="74" from-port="2" to-layer="75" to-port="0" />
<edge from-layer="75" from-port="1" to-layer="78" to-port="0" />
<edge from-layer="76" from-port="0" to-layer="77" to-port="0" />
<edge from-layer="77" from-port="1" to-layer="78" to-port="1" />
<edge from-layer="78" from-port="2" to-layer="81" to-port="0" />
<edge from-layer="79" from-port="0" to-layer="80" to-port="0" />
<edge from-layer="80" from-port="1" to-layer="81" to-port="1" />
<edge from-layer="81" from-port="2" to-layer="82" to-port="0" />
<edge from-layer="82" from-port="1" to-layer="85" to-port="0" />
<edge from-layer="83" from-port="0" to-layer="84" to-port="0" />
<edge from-layer="84" from-port="1" to-layer="85" to-port="1" />
<edge from-layer="85" from-port="2" to-layer="88" to-port="0" />
<edge from-layer="86" from-port="0" to-layer="87" to-port="0" />
<edge from-layer="87" from-port="1" to-layer="88" to-port="1" />
<edge from-layer="88" from-port="2" to-layer="89" to-port="1" />
<edge from-layer="89" from-port="2" to-layer="92" to-port="0" />
<edge from-layer="89" from-port="2" to-layer="479" to-port="1" />
<edge from-layer="90" from-port="0" to-layer="91" to-port="0" />
<edge from-layer="91" from-port="1" to-layer="92" to-port="1" />
<edge from-layer="92" from-port="2" to-layer="95" to-port="0" />
<edge from-layer="93" from-port="0" to-layer="94" to-port="0" />
<edge from-layer="94" from-port="1" to-layer="95" to-port="1" />
<edge from-layer="95" from-port="2" to-layer="96" to-port="0" />
<edge from-layer="96" from-port="1" to-layer="99" to-port="0" />
<edge from-layer="97" from-port="0" to-layer="98" to-port="0" />
<edge from-layer="98" from-port="1" to-layer="99" to-port="1" />
<edge from-layer="99" from-port="2" to-layer="102" to-port="0" />
<edge from-layer="100" from-port="0" to-layer="101" to-port="0" />
<edge from-layer="101" from-port="1" to-layer="102" to-port="1" />
<edge from-layer="102" from-port="2" to-layer="104" to-port="0" />
<edge from-layer="102" from-port="2" to-layer="123" to-port="0" />
<edge from-layer="103" from-port="0" to-layer="104" to-port="1" />
<edge from-layer="104" from-port="2" to-layer="106" to-port="0" />
<edge from-layer="105" from-port="0" to-layer="106" to-port="1" />
<edge from-layer="106" from-port="2" to-layer="109" to-port="0" />
<edge from-layer="107" from-port="0" to-layer="108" to-port="0" />
<edge from-layer="108" from-port="1" to-layer="109" to-port="1" />
<edge from-layer="109" from-port="2" to-layer="112" to-port="0" />
<edge from-layer="110" from-port="0" to-layer="111" to-port="0" />
<edge from-layer="111" from-port="1" to-layer="112" to-port="1" />
<edge from-layer="112" from-port="2" to-layer="113" to-port="0" />
<edge from-layer="113" from-port="1" to-layer="116" to-port="0" />
<edge from-layer="114" from-port="0" to-layer="115" to-port="0" />
<edge from-layer="115" from-port="1" to-layer="116" to-port="1" />
<edge from-layer="116" from-port="2" to-layer="119" to-port="0" />
<edge from-layer="117" from-port="0" to-layer="118" to-port="0" />
<edge from-layer="118" from-port="1" to-layer="119" to-port="1" />
<edge from-layer="119" from-port="2" to-layer="120" to-port="0" />
<edge from-layer="120" from-port="1" to-layer="122" to-port="0" />
<edge from-layer="121" from-port="0" to-layer="122" to-port="1" />
<edge from-layer="122" from-port="2" to-layer="123" to-port="1" />
<edge from-layer="123" from-port="2" to-layer="124" to-port="0" />
<edge from-layer="124" from-port="1" to-layer="127" to-port="0" />
<edge from-layer="125" from-port="0" to-layer="126" to-port="0" />
<edge from-layer="126" from-port="1" to-layer="127" to-port="1" />
<edge from-layer="127" from-port="2" to-layer="130" to-port="0" />
<edge from-layer="128" from-port="0" to-layer="129" to-port="0" />
<edge from-layer="129" from-port="1" to-layer="130" to-port="1" />
<edge from-layer="130" from-port="2" to-layer="133" to-port="0" />
<edge from-layer="130" from-port="2" to-layer="172" to-port="0" />
<edge from-layer="131" from-port="0" to-layer="132" to-port="0" />
<edge from-layer="132" from-port="1" to-layer="133" to-port="1" />
<edge from-layer="133" from-port="2" to-layer="136" to-port="0" />
<edge from-layer="134" from-port="0" to-layer="135" to-port="0" />
<edge from-layer="135" from-port="1" to-layer="136" to-port="1" />
<edge from-layer="136" from-port="2" to-layer="137" to-port="0" />
<edge from-layer="137" from-port="1" to-layer="140" to-port="0" />
<edge from-layer="138" from-port="0" to-layer="139" to-port="0" />
<edge from-layer="139" from-port="1" to-layer="140" to-port="1" />
<edge from-layer="140" from-port="2" to-layer="143" to-port="0" />
<edge from-layer="141" from-port="0" to-layer="142" to-port="0" />
<edge from-layer="142" from-port="1" to-layer="143" to-port="1" />
<edge from-layer="143" from-port="2" to-layer="164" to-port="0" />
<edge from-layer="143" from-port="2" to-layer="145" to-port="0" />
<edge from-layer="144" from-port="0" to-layer="145" to-port="1" />
<edge from-layer="145" from-port="2" to-layer="147" to-port="0" />
<edge from-layer="146" from-port="0" to-layer="147" to-port="1" />
<edge from-layer="147" from-port="2" to-layer="150" to-port="0" />
<edge from-layer="148" from-port="0" to-layer="149" to-port="0" />
<edge from-layer="149" from-port="1" to-layer="150" to-port="1" />
<edge from-layer="150" from-port="2" to-layer="153" to-port="0" />
<edge from-layer="151" from-port="0" to-layer="152" to-port="0" />
<edge from-layer="152" from-port="1" to-layer="153" to-port="1" />
<edge from-layer="153" from-port="2" to-layer="154" to-port="0" />
<edge from-layer="154" from-port="1" to-layer="157" to-port="0" />
<edge from-layer="155" from-port="0" to-layer="156" to-port="0" />
<edge from-layer="156" from-port="1" to-layer="157" to-port="1" />
<edge from-layer="157" from-port="2" to-layer="160" to-port="0" />
<edge from-layer="158" from-port="0" to-layer="159" to-port="0" />
<edge from-layer="159" from-port="1" to-layer="160" to-port="1" />
<edge from-layer="160" from-port="2" to-layer="161" to-port="0" />
<edge from-layer="161" from-port="1" to-layer="163" to-port="0" />
<edge from-layer="162" from-port="0" to-layer="163" to-port="1" />
<edge from-layer="163" from-port="2" to-layer="164" to-port="1" />
<edge from-layer="164" from-port="2" to-layer="165" to-port="0" />
<edge from-layer="165" from-port="1" to-layer="168" to-port="0" />
<edge from-layer="166" from-port="0" to-layer="167" to-port="0" />
<edge from-layer="167" from-port="1" to-layer="168" to-port="1" />
<edge from-layer="168" from-port="2" to-layer="171" to-port="0" />
<edge from-layer="169" from-port="0" to-layer="170" to-port="0" />
<edge from-layer="170" from-port="1" to-layer="171" to-port="1" />
<edge from-layer="171" from-port="2" to-layer="172" to-port="1" />
<edge from-layer="172" from-port="2" to-layer="214" to-port="0" />
<edge from-layer="172" from-port="2" to-layer="175" to-port="0" />
<edge from-layer="173" from-port="0" to-layer="174" to-port="0" />
<edge from-layer="174" from-port="1" to-layer="175" to-port="1" />
<edge from-layer="175" from-port="2" to-layer="178" to-port="0" />
<edge from-layer="176" from-port="0" to-layer="177" to-port="0" />
<edge from-layer="177" from-port="1" to-layer="178" to-port="1" />
<edge from-layer="178" from-port="2" to-layer="179" to-port="0" />
<edge from-layer="179" from-port="1" to-layer="182" to-port="0" />
<edge from-layer="180" from-port="0" to-layer="181" to-port="0" />
<edge from-layer="181" from-port="1" to-layer="182" to-port="1" />
<edge from-layer="182" from-port="2" to-layer="185" to-port="0" />
<edge from-layer="183" from-port="0" to-layer="184" to-port="0" />
<edge from-layer="184" from-port="1" to-layer="185" to-port="1" />
<edge from-layer="185" from-port="2" to-layer="187" to-port="0" />
<edge from-layer="185" from-port="2" to-layer="206" to-port="0" />
<edge from-layer="186" from-port="0" to-layer="187" to-port="1" />
<edge from-layer="187" from-port="2" to-layer="189" to-port="0" />
<edge from-layer="188" from-port="0" to-layer="189" to-port="1" />
<edge from-layer="189" from-port="2" to-layer="192" to-port="0" />
<edge from-layer="190" from-port="0" to-layer="191" to-port="0" />
<edge from-layer="191" from-port="1" to-layer="192" to-port="1" />
<edge from-layer="192" from-port="2" to-layer="195" to-port="0" />
<edge from-layer="193" from-port="0" to-layer="194" to-port="0" />
<edge from-layer="194" from-port="1" to-layer="195" to-port="1" />
<edge from-layer="195" from-port="2" to-layer="196" to-port="0" />
<edge from-layer="196" from-port="1" to-layer="199" to-port="0" />
<edge from-layer="197" from-port="0" to-layer="198" to-port="0" />
<edge from-layer="198" from-port="1" to-layer="199" to-port="1" />
<edge from-layer="199" from-port="2" to-layer="202" to-port="0" />
<edge from-layer="200" from-port="0" to-layer="201" to-port="0" />
<edge from-layer="201" from-port="1" to-layer="202" to-port="1" />
<edge from-layer="202" from-port="2" to-layer="203" to-port="0" />
<edge from-layer="203" from-port="1" to-layer="205" to-port="0" />
<edge from-layer="204" from-port="0" to-layer="205" to-port="1" />
<edge from-layer="205" from-port="2" to-layer="206" to-port="1" />
<edge from-layer="206" from-port="2" to-layer="207" to-port="0" />
<edge from-layer="207" from-port="1" to-layer="210" to-port="0" />
<edge from-layer="208" from-port="0" to-layer="209" to-port="0" />
<edge from-layer="209" from-port="1" to-layer="210" to-port="1" />
<edge from-layer="210" from-port="2" to-layer="213" to-port="0" />
<edge from-layer="211" from-port="0" to-layer="212" to-port="0" />
<edge from-layer="212" from-port="1" to-layer="213" to-port="1" />
<edge from-layer="213" from-port="2" to-layer="214" to-port="1" />
<edge from-layer="214" from-port="2" to-layer="217" to-port="0" />
<edge from-layer="214" from-port="2" to-layer="256" to-port="0" />
<edge from-layer="215" from-port="0" to-layer="216" to-port="0" />
<edge from-layer="216" from-port="1" to-layer="217" to-port="1" />
<edge from-layer="217" from-port="2" to-layer="220" to-port="0" />
<edge from-layer="218" from-port="0" to-layer="219" to-port="0" />
<edge from-layer="219" from-port="1" to-layer="220" to-port="1" />
<edge from-layer="220" from-port="2" to-layer="221" to-port="0" />
<edge from-layer="221" from-port="1" to-layer="224" to-port="0" />
<edge from-layer="222" from-port="0" to-layer="223" to-port="0" />
<edge from-layer="223" from-port="1" to-layer="224" to-port="1" />
<edge from-layer="224" from-port="2" to-layer="227" to-port="0" />
<edge from-layer="225" from-port="0" to-layer="226" to-port="0" />
<edge from-layer="226" from-port="1" to-layer="227" to-port="1" />
<edge from-layer="227" from-port="2" to-layer="229" to-port="0" />
<edge from-layer="227" from-port="2" to-layer="248" to-port="0" />
<edge from-layer="228" from-port="0" to-layer="229" to-port="1" />
<edge from-layer="229" from-port="2" to-layer="231" to-port="0" />
<edge from-layer="230" from-port="0" to-layer="231" to-port="1" />
<edge from-layer="231" from-port="2" to-layer="234" to-port="0" />
<edge from-layer="232" from-port="0" to-layer="233" to-port="0" />
<edge from-layer="233" from-port="1" to-layer="234" to-port="1" />
<edge from-layer="234" from-port="2" to-layer="237" to-port="0" />
<edge from-layer="235" from-port="0" to-layer="236" to-port="0" />
<edge from-layer="236" from-port="1" to-layer="237" to-port="1" />
<edge from-layer="237" from-port="2" to-layer="238" to-port="0" />
<edge from-layer="238" from-port="1" to-layer="241" to-port="0" />
<edge from-layer="239" from-port="0" to-layer="240" to-port="0" />
<edge from-layer="240" from-port="1" to-layer="241" to-port="1" />
<edge from-layer="241" from-port="2" to-layer="244" to-port="0" />
<edge from-layer="242" from-port="0" to-layer="243" to-port="0" />
<edge from-layer="243" from-port="1" to-layer="244" to-port="1" />
<edge from-layer="244" from-port="2" to-layer="245" to-port="0" />
<edge from-layer="245" from-port="1" to-layer="247" to-port="0" />
<edge from-layer="246" from-port="0" to-layer="247" to-port="1" />
<edge from-layer="247" from-port="2" to-layer="248" to-port="1" />
<edge from-layer="248" from-port="2" to-layer="249" to-port="0" />
<edge from-layer="249" from-port="1" to-layer="252" to-port="0" />
<edge from-layer="250" from-port="0" to-layer="251" to-port="0" />
<edge from-layer="251" from-port="1" to-layer="252" to-port="1" />
<edge from-layer="252" from-port="2" to-layer="255" to-port="0" />
<edge from-layer="253" from-port="0" to-layer="254" to-port="0" />
<edge from-layer="254" from-port="1" to-layer="255" to-port="1" />
<edge from-layer="255" from-port="2" to-layer="256" to-port="1" />
<edge from-layer="256" from-port="2" to-layer="259" to-port="0" />
<edge from-layer="256" from-port="2" to-layer="298" to-port="0" />
<edge from-layer="257" from-port="0" to-layer="258" to-port="0" />
<edge from-layer="258" from-port="1" to-layer="259" to-port="1" />
<edge from-layer="259" from-port="2" to-layer="262" to-port="0" />
<edge from-layer="260" from-port="0" to-layer="261" to-port="0" />
<edge from-layer="261" from-port="1" to-layer="262" to-port="1" />
<edge from-layer="262" from-port="2" to-layer="263" to-port="0" />
<edge from-layer="263" from-port="1" to-layer="266" to-port="0" />
<edge from-layer="264" from-port="0" to-layer="265" to-port="0" />
<edge from-layer="265" from-port="1" to-layer="266" to-port="1" />
<edge from-layer="266" from-port="2" to-layer="269" to-port="0" />
<edge from-layer="267" from-port="0" to-layer="268" to-port="0" />
<edge from-layer="268" from-port="1" to-layer="269" to-port="1" />
<edge from-layer="269" from-port="2" to-layer="290" to-port="0" />
<edge from-layer="269" from-port="2" to-layer="271" to-port="0" />
<edge from-layer="270" from-port="0" to-layer="271" to-port="1" />
<edge from-layer="271" from-port="2" to-layer="273" to-port="0" />
<edge from-layer="272" from-port="0" to-layer="273" to-port="1" />
<edge from-layer="273" from-port="2" to-layer="276" to-port="0" />
<edge from-layer="274" from-port="0" to-layer="275" to-port="0" />
<edge from-layer="275" from-port="1" to-layer="276" to-port="1" />
<edge from-layer="276" from-port="2" to-layer="279" to-port="0" />
<edge from-layer="277" from-port="0" to-layer="278" to-port="0" />
<edge from-layer="278" from-port="1" to-layer="279" to-port="1" />
<edge from-layer="279" from-port="2" to-layer="280" to-port="0" />
<edge from-layer="280" from-port="1" to-layer="283" to-port="0" />
<edge from-layer="281" from-port="0" to-layer="282" to-port="0" />
<edge from-layer="282" from-port="1" to-layer="283" to-port="1" />
<edge from-layer="283" from-port="2" to-layer="286" to-port="0" />
<edge from-layer="284" from-port="0" to-layer="285" to-port="0" />
<edge from-layer="285" from-port="1" to-layer="286" to-port="1" />
<edge from-layer="286" from-port="2" to-layer="287" to-port="0" />
<edge from-layer="287" from-port="1" to-layer="289" to-port="0" />
<edge from-layer="288" from-port="0" to-layer="289" to-port="1" />
<edge from-layer="289" from-port="2" to-layer="290" to-port="1" />
<edge from-layer="290" from-port="2" to-layer="291" to-port="0" />
<edge from-layer="291" from-port="1" to-layer="294" to-port="0" />
<edge from-layer="292" from-port="0" to-layer="293" to-port="0" />
<edge from-layer="293" from-port="1" to-layer="294" to-port="1" />
<edge from-layer="294" from-port="2" to-layer="297" to-port="0" />
<edge from-layer="295" from-port="0" to-layer="296" to-port="0" />
<edge from-layer="296" from-port="1" to-layer="297" to-port="1" />
<edge from-layer="297" from-port="2" to-layer="298" to-port="1" />
<edge from-layer="298" from-port="2" to-layer="301" to-port="0" />
<edge from-layer="298" from-port="2" to-layer="433" to-port="1" />
<edge from-layer="299" from-port="0" to-layer="300" to-port="0" />
<edge from-layer="300" from-port="1" to-layer="301" to-port="1" />
<edge from-layer="301" from-port="2" to-layer="304" to-port="0" />
<edge from-layer="302" from-port="0" to-layer="303" to-port="0" />
<edge from-layer="303" from-port="1" to-layer="304" to-port="1" />
<edge from-layer="304" from-port="2" to-layer="305" to-port="0" />
<edge from-layer="305" from-port="1" to-layer="308" to-port="0" />
<edge from-layer="306" from-port="0" to-layer="307" to-port="0" />
<edge from-layer="307" from-port="1" to-layer="308" to-port="1" />
<edge from-layer="308" from-port="2" to-layer="311" to-port="0" />
<edge from-layer="309" from-port="0" to-layer="310" to-port="0" />
<edge from-layer="310" from-port="1" to-layer="311" to-port="1" />
<edge from-layer="311" from-port="2" to-layer="332" to-port="0" />
<edge from-layer="311" from-port="2" to-layer="313" to-port="0" />
<edge from-layer="312" from-port="0" to-layer="313" to-port="1" />
<edge from-layer="313" from-port="2" to-layer="315" to-port="0" />
<edge from-layer="314" from-port="0" to-layer="315" to-port="1" />
<edge from-layer="315" from-port="2" to-layer="318" to-port="0" />
<edge from-layer="316" from-port="0" to-layer="317" to-port="0" />
<edge from-layer="317" from-port="1" to-layer="318" to-port="1" />
<edge from-layer="318" from-port="2" to-layer="321" to-port="0" />
<edge from-layer="319" from-port="0" to-layer="320" to-port="0" />
<edge from-layer="320" from-port="1" to-layer="321" to-port="1" />
<edge from-layer="321" from-port="2" to-layer="322" to-port="0" />
<edge from-layer="322" from-port="1" to-layer="325" to-port="0" />
<edge from-layer="323" from-port="0" to-layer="324" to-port="0" />
<edge from-layer="324" from-port="1" to-layer="325" to-port="1" />
<edge from-layer="325" from-port="2" to-layer="328" to-port="0" />
<edge from-layer="326" from-port="0" to-layer="327" to-port="0" />
<edge from-layer="327" from-port="1" to-layer="328" to-port="1" />
<edge from-layer="328" from-port="2" to-layer="329" to-port="0" />
<edge from-layer="329" from-port="1" to-layer="331" to-port="0" />
<edge from-layer="330" from-port="0" to-layer="331" to-port="1" />
<edge from-layer="331" from-port="2" to-layer="332" to-port="1" />
<edge from-layer="332" from-port="2" to-layer="333" to-port="0" />
<edge from-layer="333" from-port="1" to-layer="336" to-port="0" />
<edge from-layer="334" from-port="0" to-layer="335" to-port="0" />
<edge from-layer="335" from-port="1" to-layer="336" to-port="1" />
<edge from-layer="336" from-port="2" to-layer="339" to-port="0" />
<edge from-layer="337" from-port="0" to-layer="338" to-port="0" />
<edge from-layer="338" from-port="1" to-layer="339" to-port="1" />
<edge from-layer="339" from-port="2" to-layer="381" to-port="0" />
<edge from-layer="339" from-port="2" to-layer="342" to-port="0" />
<edge from-layer="340" from-port="0" to-layer="341" to-port="0" />
<edge from-layer="341" from-port="1" to-layer="342" to-port="1" />
<edge from-layer="342" from-port="2" to-layer="345" to-port="0" />
<edge from-layer="343" from-port="0" to-layer="344" to-port="0" />
<edge from-layer="344" from-port="1" to-layer="345" to-port="1" />
<edge from-layer="345" from-port="2" to-layer="346" to-port="0" />
<edge from-layer="346" from-port="1" to-layer="349" to-port="0" />
<edge from-layer="347" from-port="0" to-layer="348" to-port="0" />
<edge from-layer="348" from-port="1" to-layer="349" to-port="1" />
<edge from-layer="349" from-port="2" to-layer="352" to-port="0" />
<edge from-layer="350" from-port="0" to-layer="351" to-port="0" />
<edge from-layer="351" from-port="1" to-layer="352" to-port="1" />
<edge from-layer="352" from-port="2" to-layer="373" to-port="0" />
<edge from-layer="352" from-port="2" to-layer="354" to-port="0" />
<edge from-layer="353" from-port="0" to-layer="354" to-port="1" />
<edge from-layer="354" from-port="2" to-layer="356" to-port="0" />
<edge from-layer="355" from-port="0" to-layer="356" to-port="1" />
<edge from-layer="356" from-port="2" to-layer="359" to-port="0" />
<edge from-layer="357" from-port="0" to-layer="358" to-port="0" />
<edge from-layer="358" from-port="1" to-layer="359" to-port="1" />
<edge from-layer="359" from-port="2" to-layer="362" to-port="0" />
<edge from-layer="360" from-port="0" to-layer="361" to-port="0" />
<edge from-layer="361" from-port="1" to-layer="362" to-port="1" />
<edge from-layer="362" from-port="2" to-layer="363" to-port="0" />
<edge from-layer="363" from-port="1" to-layer="366" to-port="0" />
<edge from-layer="364" from-port="0" to-layer="365" to-port="0" />
<edge from-layer="365" from-port="1" to-layer="366" to-port="1" />
<edge from-layer="366" from-port="2" to-layer="369" to-port="0" />
<edge from-layer="367" from-port="0" to-layer="368" to-port="0" />
<edge from-layer="368" from-port="1" to-layer="369" to-port="1" />
<edge from-layer="369" from-port="2" to-layer="370" to-port="0" />
<edge from-layer="370" from-port="1" to-layer="372" to-port="0" />
<edge from-layer="371" from-port="0" to-layer="372" to-port="1" />
<edge from-layer="372" from-port="2" to-layer="373" to-port="1" />
<edge from-layer="373" from-port="2" to-layer="374" to-port="0" />
<edge from-layer="374" from-port="1" to-layer="377" to-port="0" />
<edge from-layer="375" from-port="0" to-layer="376" to-port="0" />
<edge from-layer="376" from-port="1" to-layer="377" to-port="1" />
<edge from-layer="377" from-port="2" to-layer="380" to-port="0" />
<edge from-layer="378" from-port="0" to-layer="379" to-port="0" />
<edge from-layer="379" from-port="1" to-layer="380" to-port="1" />
<edge from-layer="380" from-port="2" to-layer="381" to-port="1" />
<edge from-layer="381" from-port="2" to-layer="384" to-port="0" />
<edge from-layer="381" from-port="2" to-layer="423" to-port="0" />
<edge from-layer="382" from-port="0" to-layer="383" to-port="0" />
<edge from-layer="383" from-port="1" to-layer="384" to-port="1" />
<edge from-layer="384" from-port="2" to-layer="387" to-port="0" />
<edge from-layer="385" from-port="0" to-layer="386" to-port="0" />
<edge from-layer="386" from-port="1" to-layer="387" to-port="1" />
<edge from-layer="387" from-port="2" to-layer="388" to-port="0" />
<edge from-layer="388" from-port="1" to-layer="391" to-port="0" />
<edge from-layer="389" from-port="0" to-layer="390" to-port="0" />
<edge from-layer="390" from-port="1" to-layer="391" to-port="1" />
<edge from-layer="391" from-port="2" to-layer="394" to-port="0" />
<edge from-layer="392" from-port="0" to-layer="393" to-port="0" />
<edge from-layer="393" from-port="1" to-layer="394" to-port="1" />
<edge from-layer="394" from-port="2" to-layer="415" to-port="0" />
<edge from-layer="394" from-port="2" to-layer="396" to-port="0" />
<edge from-layer="395" from-port="0" to-layer="396" to-port="1" />
<edge from-layer="396" from-port="2" to-layer="398" to-port="0" />
<edge from-layer="397" from-port="0" to-layer="398" to-port="1" />
<edge from-layer="398" from-port="2" to-layer="401" to-port="0" />
<edge from-layer="399" from-port="0" to-layer="400" to-port="0" />
<edge from-layer="400" from-port="1" to-layer="401" to-port="1" />
<edge from-layer="401" from-port="2" to-layer="404" to-port="0" />
<edge from-layer="402" from-port="0" to-layer="403" to-port="0" />
<edge from-layer="403" from-port="1" to-layer="404" to-port="1" />
<edge from-layer="404" from-port="2" to-layer="405" to-port="0" />
<edge from-layer="405" from-port="1" to-layer="408" to-port="0" />
<edge from-layer="406" from-port="0" to-layer="407" to-port="0" />
<edge from-layer="407" from-port="1" to-layer="408" to-port="1" />
<edge from-layer="408" from-port="2" to-layer="411" to-port="0" />
<edge from-layer="409" from-port="0" to-layer="410" to-port="0" />
<edge from-layer="410" from-port="1" to-layer="411" to-port="1" />
<edge from-layer="411" from-port="2" to-layer="412" to-port="0" />
<edge from-layer="412" from-port="1" to-layer="414" to-port="0" />
<edge from-layer="413" from-port="0" to-layer="414" to-port="1" />
<edge from-layer="414" from-port="2" to-layer="415" to-port="1" />
<edge from-layer="415" from-port="2" to-layer="416" to-port="0" />
<edge from-layer="416" from-port="1" to-layer="419" to-port="0" />
<edge from-layer="417" from-port="0" to-layer="418" to-port="0" />
<edge from-layer="418" from-port="1" to-layer="419" to-port="1" />
<edge from-layer="419" from-port="2" to-layer="422" to-port="0" />
<edge from-layer="420" from-port="0" to-layer="421" to-port="0" />
<edge from-layer="421" from-port="1" to-layer="422" to-port="1" />
<edge from-layer="422" from-port="2" to-layer="423" to-port="1" />
<edge from-layer="423" from-port="2" to-layer="426" to-port="0" />
<edge from-layer="424" from-port="0" to-layer="425" to-port="0" />
<edge from-layer="425" from-port="1" to-layer="426" to-port="1" />
<edge from-layer="426" from-port="2" to-layer="429" to-port="0" />
<edge from-layer="427" from-port="0" to-layer="428" to-port="0" />
<edge from-layer="428" from-port="1" to-layer="429" to-port="1" />
<edge from-layer="429" from-port="2" to-layer="430" to-port="0" />
<edge from-layer="430" from-port="1" to-layer="603" to-port="1" />
<edge from-layer="430" from-port="1" to-layer="432" to-port="0" />
<edge from-layer="431" from-port="0" to-layer="432" to-port="1" />
<edge from-layer="432" from-port="2" to-layer="433" to-port="0" />
<edge from-layer="433" from-port="2" to-layer="436" to-port="0" />
<edge from-layer="433" from-port="2" to-layer="457" to-port="0" />
<edge from-layer="434" from-port="0" to-layer="435" to-port="0" />
<edge from-layer="435" from-port="1" to-layer="436" to-port="1" />
<edge from-layer="436" from-port="2" to-layer="439" to-port="0" />
<edge from-layer="437" from-port="0" to-layer="438" to-port="0" />
<edge from-layer="438" from-port="1" to-layer="439" to-port="1" />
<edge from-layer="439" from-port="2" to-layer="440" to-port="0" />
<edge from-layer="440" from-port="1" to-layer="443" to-port="0" />
<edge from-layer="441" from-port="0" to-layer="442" to-port="0" />
<edge from-layer="442" from-port="1" to-layer="443" to-port="1" />
<edge from-layer="443" from-port="2" to-layer="446" to-port="0" />
<edge from-layer="444" from-port="0" to-layer="445" to-port="0" />
<edge from-layer="445" from-port="1" to-layer="446" to-port="1" />
<edge from-layer="446" from-port="2" to-layer="447" to-port="0" />
<edge from-layer="447" from-port="1" to-layer="450" to-port="0" />
<edge from-layer="448" from-port="0" to-layer="449" to-port="0" />
<edge from-layer="449" from-port="1" to-layer="450" to-port="1" />
<edge from-layer="450" from-port="2" to-layer="453" to-port="0" />
<edge from-layer="451" from-port="0" to-layer="452" to-port="0" />
<edge from-layer="452" from-port="1" to-layer="453" to-port="1" />
<edge from-layer="453" from-port="2" to-layer="454" to-port="0" />
<edge from-layer="454" from-port="1" to-layer="462" to-port="0" />
<edge from-layer="455" from-port="0" to-layer="456" to-port="0" />
<edge from-layer="456" from-port="1" to-layer="457" to-port="1" />
<edge from-layer="457" from-port="2" to-layer="460" to-port="0" />
<edge from-layer="458" from-port="0" to-layer="459" to-port="0" />
<edge from-layer="459" from-port="1" to-layer="460" to-port="1" />
<edge from-layer="460" from-port="2" to-layer="461" to-port="0" />
<edge from-layer="461" from-port="1" to-layer="462" to-port="1" />
<edge from-layer="462" from-port="2" to-layer="465" to-port="0" />
<edge from-layer="463" from-port="0" to-layer="464" to-port="0" />
<edge from-layer="464" from-port="1" to-layer="465" to-port="1" />
<edge from-layer="465" from-port="2" to-layer="468" to-port="0" />
<edge from-layer="466" from-port="0" to-layer="467" to-port="0" />
<edge from-layer="467" from-port="1" to-layer="468" to-port="1" />
<edge from-layer="468" from-port="2" to-layer="469" to-port="0" />
<edge from-layer="469" from-port="1" to-layer="472" to-port="0" />
<edge from-layer="470" from-port="0" to-layer="471" to-port="0" />
<edge from-layer="471" from-port="1" to-layer="472" to-port="1" />
<edge from-layer="472" from-port="2" to-layer="475" to-port="0" />
<edge from-layer="473" from-port="0" to-layer="474" to-port="0" />
<edge from-layer="474" from-port="1" to-layer="475" to-port="1" />
<edge from-layer="475" from-port="2" to-layer="476" to-port="0" />
<edge from-layer="476" from-port="1" to-layer="478" to-port="0" />
<edge from-layer="476" from-port="1" to-layer="541" to-port="1" />
<edge from-layer="477" from-port="0" to-layer="478" to-port="1" />
<edge from-layer="478" from-port="2" to-layer="479" to-port="0" />
<edge from-layer="479" from-port="2" to-layer="482" to-port="0" />
<edge from-layer="479" from-port="2" to-layer="503" to-port="0" />
<edge from-layer="480" from-port="0" to-layer="481" to-port="0" />
<edge from-layer="481" from-port="1" to-layer="482" to-port="1" />
<edge from-layer="482" from-port="2" to-layer="485" to-port="0" />
<edge from-layer="483" from-port="0" to-layer="484" to-port="0" />
<edge from-layer="484" from-port="1" to-layer="485" to-port="1" />
<edge from-layer="485" from-port="2" to-layer="486" to-port="0" />
<edge from-layer="486" from-port="1" to-layer="489" to-port="0" />
<edge from-layer="487" from-port="0" to-layer="488" to-port="0" />
<edge from-layer="488" from-port="1" to-layer="489" to-port="1" />
<edge from-layer="489" from-port="2" to-layer="492" to-port="0" />
<edge from-layer="490" from-port="0" to-layer="491" to-port="0" />
<edge from-layer="491" from-port="1" to-layer="492" to-port="1" />
<edge from-layer="492" from-port="2" to-layer="493" to-port="0" />
<edge from-layer="493" from-port="1" to-layer="496" to-port="0" />
<edge from-layer="494" from-port="0" to-layer="495" to-port="0" />
<edge from-layer="495" from-port="1" to-layer="496" to-port="1" />
<edge from-layer="496" from-port="2" to-layer="499" to-port="0" />
<edge from-layer="497" from-port="0" to-layer="498" to-port="0" />
<edge from-layer="498" from-port="1" to-layer="499" to-port="1" />
<edge from-layer="499" from-port="2" to-layer="500" to-port="0" />
<edge from-layer="500" from-port="1" to-layer="508" to-port="0" />
<edge from-layer="501" from-port="0" to-layer="502" to-port="0" />
<edge from-layer="502" from-port="1" to-layer="503" to-port="1" />
<edge from-layer="503" from-port="2" to-layer="506" to-port="0" />
<edge from-layer="504" from-port="0" to-layer="505" to-port="0" />
<edge from-layer="505" from-port="1" to-layer="506" to-port="1" />
<edge from-layer="506" from-port="2" to-layer="507" to-port="0" />
<edge from-layer="507" from-port="1" to-layer="508" to-port="1" />
<edge from-layer="508" from-port="2" to-layer="511" to-port="0" />
<edge from-layer="509" from-port="0" to-layer="510" to-port="0" />
<edge from-layer="510" from-port="1" to-layer="511" to-port="1" />
<edge from-layer="511" from-port="2" to-layer="514" to-port="0" />
<edge from-layer="512" from-port="0" to-layer="513" to-port="0" />
<edge from-layer="513" from-port="1" to-layer="514" to-port="1" />
<edge from-layer="514" from-port="2" to-layer="515" to-port="0" />
<edge from-layer="515" from-port="1" to-layer="518" to-port="0" />
<edge from-layer="515" from-port="1" to-layer="536" to-port="0" />
<edge from-layer="516" from-port="0" to-layer="517" to-port="0" />
<edge from-layer="517" from-port="1" to-layer="518" to-port="1" />
<edge from-layer="518" from-port="2" to-layer="521" to-port="0" />
<edge from-layer="519" from-port="0" to-layer="520" to-port="0" />
<edge from-layer="520" from-port="1" to-layer="521" to-port="1" />
<edge from-layer="521" from-port="2" to-layer="523" to-port="0" />
<edge from-layer="522" from-port="0" to-layer="523" to-port="1" />
<edge from-layer="523" from-port="2" to-layer="525" to-port="0" />
<edge from-layer="524" from-port="0" to-layer="525" to-port="1" />
<edge from-layer="525" from-port="2" to-layer="528" to-port="0" />
<edge from-layer="526" from-port="0" to-layer="527" to-port="0" />
<edge from-layer="527" from-port="1" to-layer="528" to-port="1" />
<edge from-layer="528" from-port="2" to-layer="531" to-port="0" />
<edge from-layer="529" from-port="0" to-layer="530" to-port="0" />
<edge from-layer="530" from-port="1" to-layer="531" to-port="1" />
<edge from-layer="531" from-port="2" to-layer="533" to-port="0" />
<edge from-layer="532" from-port="0" to-layer="533" to-port="1" />
<edge from-layer="533" from-port="2" to-layer="658" to-port="0" />
<edge from-layer="534" from-port="0" to-layer="535" to-port="0" />
<edge from-layer="535" from-port="1" to-layer="536" to-port="1" />
<edge from-layer="536" from-port="2" to-layer="539" to-port="0" />
<edge from-layer="537" from-port="0" to-layer="538" to-port="0" />
<edge from-layer="538" from-port="1" to-layer="539" to-port="1" />
<edge from-layer="539" from-port="2" to-layer="540" to-port="0" />
<edge from-layer="540" from-port="1" to-layer="541" to-port="0" />
<edge from-layer="541" from-port="2" to-layer="565" to-port="0" />
<edge from-layer="541" from-port="2" to-layer="544" to-port="0" />
<edge from-layer="542" from-port="0" to-layer="543" to-port="0" />
<edge from-layer="543" from-port="1" to-layer="544" to-port="1" />
<edge from-layer="544" from-port="2" to-layer="547" to-port="0" />
<edge from-layer="545" from-port="0" to-layer="546" to-port="0" />
<edge from-layer="546" from-port="1" to-layer="547" to-port="1" />
<edge from-layer="547" from-port="2" to-layer="548" to-port="0" />
<edge from-layer="548" from-port="1" to-layer="551" to-port="0" />
<edge from-layer="549" from-port="0" to-layer="550" to-port="0" />
<edge from-layer="550" from-port="1" to-layer="551" to-port="1" />
<edge from-layer="551" from-port="2" to-layer="554" to-port="0" />
<edge from-layer="552" from-port="0" to-layer="553" to-port="0" />
<edge from-layer="553" from-port="1" to-layer="554" to-port="1" />
<edge from-layer="554" from-port="2" to-layer="555" to-port="0" />
<edge from-layer="555" from-port="1" to-layer="558" to-port="0" />
<edge from-layer="556" from-port="0" to-layer="557" to-port="0" />
<edge from-layer="557" from-port="1" to-layer="558" to-port="1" />
<edge from-layer="558" from-port="2" to-layer="561" to-port="0" />
<edge from-layer="559" from-port="0" to-layer="560" to-port="0" />
<edge from-layer="560" from-port="1" to-layer="561" to-port="1" />
<edge from-layer="561" from-port="2" to-layer="562" to-port="0" />
<edge from-layer="562" from-port="1" to-layer="570" to-port="0" />
<edge from-layer="563" from-port="0" to-layer="564" to-port="0" />
<edge from-layer="564" from-port="1" to-layer="565" to-port="1" />
<edge from-layer="565" from-port="2" to-layer="568" to-port="0" />
<edge from-layer="566" from-port="0" to-layer="567" to-port="0" />
<edge from-layer="567" from-port="1" to-layer="568" to-port="1" />
<edge from-layer="568" from-port="2" to-layer="569" to-port="0" />
<edge from-layer="569" from-port="1" to-layer="570" to-port="1" />
<edge from-layer="570" from-port="2" to-layer="573" to-port="0" />
<edge from-layer="571" from-port="0" to-layer="572" to-port="0" />
<edge from-layer="572" from-port="1" to-layer="573" to-port="1" />
<edge from-layer="573" from-port="2" to-layer="576" to-port="0" />
<edge from-layer="574" from-port="0" to-layer="575" to-port="0" />
<edge from-layer="575" from-port="1" to-layer="576" to-port="1" />
<edge from-layer="576" from-port="2" to-layer="577" to-port="0" />
<edge from-layer="577" from-port="1" to-layer="580" to-port="0" />
<edge from-layer="577" from-port="1" to-layer="598" to-port="0" />
<edge from-layer="578" from-port="0" to-layer="579" to-port="0" />
<edge from-layer="579" from-port="1" to-layer="580" to-port="1" />
<edge from-layer="580" from-port="2" to-layer="583" to-port="0" />
<edge from-layer="581" from-port="0" to-layer="582" to-port="0" />
<edge from-layer="582" from-port="1" to-layer="583" to-port="1" />
<edge from-layer="583" from-port="2" to-layer="585" to-port="0" />
<edge from-layer="584" from-port="0" to-layer="585" to-port="1" />
<edge from-layer="585" from-port="2" to-layer="587" to-port="0" />
<edge from-layer="586" from-port="0" to-layer="587" to-port="1" />
<edge from-layer="587" from-port="2" to-layer="590" to-port="0" />
<edge from-layer="588" from-port="0" to-layer="589" to-port="0" />
<edge from-layer="589" from-port="1" to-layer="590" to-port="1" />
<edge from-layer="590" from-port="2" to-layer="593" to-port="0" />
<edge from-layer="591" from-port="0" to-layer="592" to-port="0" />
<edge from-layer="592" from-port="1" to-layer="593" to-port="1" />
<edge from-layer="593" from-port="2" to-layer="595" to-port="0" />
<edge from-layer="594" from-port="0" to-layer="595" to-port="1" />
<edge from-layer="595" from-port="2" to-layer="658" to-port="1" />
<edge from-layer="596" from-port="0" to-layer="597" to-port="0" />
<edge from-layer="597" from-port="1" to-layer="598" to-port="1" />
<edge from-layer="598" from-port="2" to-layer="601" to-port="0" />
<edge from-layer="599" from-port="0" to-layer="600" to-port="0" />
<edge from-layer="600" from-port="1" to-layer="601" to-port="1" />
<edge from-layer="601" from-port="2" to-layer="602" to-port="0" />
<edge from-layer="602" from-port="1" to-layer="603" to-port="0" />
<edge from-layer="603" from-port="2" to-layer="606" to-port="0" />
<edge from-layer="603" from-port="2" to-layer="627" to-port="0" />
<edge from-layer="604" from-port="0" to-layer="605" to-port="0" />
<edge from-layer="605" from-port="1" to-layer="606" to-port="1" />
<edge from-layer="606" from-port="2" to-layer="609" to-port="0" />
<edge from-layer="607" from-port="0" to-layer="608" to-port="0" />
<edge from-layer="608" from-port="1" to-layer="609" to-port="1" />
<edge from-layer="609" from-port="2" to-layer="610" to-port="0" />
<edge from-layer="610" from-port="1" to-layer="613" to-port="0" />
<edge from-layer="611" from-port="0" to-layer="612" to-port="0" />
<edge from-layer="612" from-port="1" to-layer="613" to-port="1" />
<edge from-layer="613" from-port="2" to-layer="616" to-port="0" />
<edge from-layer="614" from-port="0" to-layer="615" to-port="0" />
<edge from-layer="615" from-port="1" to-layer="616" to-port="1" />
<edge from-layer="616" from-port="2" to-layer="617" to-port="0" />
<edge from-layer="617" from-port="1" to-layer="620" to-port="0" />
<edge from-layer="618" from-port="0" to-layer="619" to-port="0" />
<edge from-layer="619" from-port="1" to-layer="620" to-port="1" />
<edge from-layer="620" from-port="2" to-layer="623" to-port="0" />
<edge from-layer="621" from-port="0" to-layer="622" to-port="0" />
<edge from-layer="622" from-port="1" to-layer="623" to-port="1" />
<edge from-layer="623" from-port="2" to-layer="624" to-port="0" />
<edge from-layer="624" from-port="1" to-layer="632" to-port="0" />
<edge from-layer="625" from-port="0" to-layer="626" to-port="0" />
<edge from-layer="626" from-port="1" to-layer="627" to-port="1" />
<edge from-layer="627" from-port="2" to-layer="630" to-port="0" />
<edge from-layer="628" from-port="0" to-layer="629" to-port="0" />
<edge from-layer="629" from-port="1" to-layer="630" to-port="1" />
<edge from-layer="630" from-port="2" to-layer="631" to-port="0" />
<edge from-layer="631" from-port="1" to-layer="632" to-port="1" />
<edge from-layer="632" from-port="2" to-layer="635" to-port="0" />
<edge from-layer="633" from-port="0" to-layer="634" to-port="0" />
<edge from-layer="634" from-port="1" to-layer="635" to-port="1" />
<edge from-layer="635" from-port="2" to-layer="638" to-port="0" />
<edge from-layer="636" from-port="0" to-layer="637" to-port="0" />
<edge from-layer="637" from-port="1" to-layer="638" to-port="1" />
<edge from-layer="638" from-port="2" to-layer="639" to-port="0" />
<edge from-layer="639" from-port="1" to-layer="642" to-port="0" />
<edge from-layer="640" from-port="0" to-layer="641" to-port="0" />
<edge from-layer="641" from-port="1" to-layer="642" to-port="1" />
<edge from-layer="642" from-port="2" to-layer="645" to-port="0" />
<edge from-layer="643" from-port="0" to-layer="644" to-port="0" />
<edge from-layer="644" from-port="1" to-layer="645" to-port="1" />
<edge from-layer="645" from-port="2" to-layer="647" to-port="0" />
<edge from-layer="646" from-port="0" to-layer="647" to-port="1" />
<edge from-layer="647" from-port="2" to-layer="649" to-port="0" />
<edge from-layer="648" from-port="0" to-layer="649" to-port="1" />
<edge from-layer="649" from-port="2" to-layer="652" to-port="0" />
<edge from-layer="650" from-port="0" to-layer="651" to-port="0" />
<edge from-layer="651" from-port="1" to-layer="652" to-port="1" />
<edge from-layer="652" from-port="2" to-layer="655" to-port="0" />
<edge from-layer="653" from-port="0" to-layer="654" to-port="0" />
<edge from-layer="654" from-port="1" to-layer="655" to-port="1" />
<edge from-layer="655" from-port="2" to-layer="657" to-port="0" />
<edge from-layer="656" from-port="0" to-layer="657" to-port="1" />
<edge from-layer="657" from-port="2" to-layer="658" to-port="2" />
<edge from-layer="658" from-port="3" to-layer="659" to-port="0" />
</edges>
<rt_info>
<Runtime_version value="2023.3.0-13775-ceeafaf64f3-releases/2023/3" />
<conversion_parameters>
<input_model value="DIR/0708.onnx" />
<is_python_object value="False" />
</conversion_parameters>
</rt_info>
</net>