271 lines
8.3 KiB
C++
271 lines
8.3 KiB
C++
#include "yolo11.hpp"
|
|
|
|
#include <fmt/chrono.h>
|
|
#include <yaml-cpp/yaml.h>
|
|
|
|
#include <filesystem>
|
|
|
|
#include "tools/img_tools.hpp"
|
|
#include "tools/logger.hpp"
|
|
|
|
namespace auto_aim
|
|
{
|
|
YOLO11::YOLO11(const std::string & config_path, bool debug)
|
|
: debug_(debug), detector_(config_path, false)
|
|
{
|
|
auto yaml = YAML::LoadFile(config_path);
|
|
|
|
model_path_ = yaml["yolo11_model_path"].as<std::string>();
|
|
device_ = yaml["device"].as<std::string>();
|
|
binary_threshold_ = yaml["threshold"].as<double>();
|
|
min_confidence_ = yaml["min_confidence"].as<double>();
|
|
int x = 0, y = 0, width = 0, height = 0;
|
|
x = yaml["roi"]["x"].as<int>();
|
|
y = yaml["roi"]["y"].as<int>();
|
|
width = yaml["roi"]["width"].as<int>();
|
|
height = yaml["roi"]["height"].as<int>();
|
|
use_roi_ = yaml["use_roi"].as<bool>();
|
|
roi_ = cv::Rect(x, y, width, height);
|
|
offset_ = cv::Point2f(x, y);
|
|
|
|
save_path_ = "imgs";
|
|
std::filesystem::create_directory(save_path_);
|
|
auto model = core_.read_model(model_path_);
|
|
ov::preprocess::PrePostProcessor ppp(model);
|
|
auto & input = ppp.input();
|
|
|
|
input.tensor()
|
|
.set_element_type(ov::element::u8)
|
|
.set_shape({1, 640, 640, 3})
|
|
.set_layout("NHWC")
|
|
.set_color_format(ov::preprocess::ColorFormat::BGR);
|
|
|
|
input.model().set_layout("NCHW");
|
|
|
|
input.preprocess()
|
|
.convert_element_type(ov::element::f32)
|
|
.convert_color(ov::preprocess::ColorFormat::RGB)
|
|
.scale(255.0);
|
|
|
|
// TODO: ov::hint::performance_mode(ov::hint::PerformanceMode::LATENCY)
|
|
model = ppp.build();
|
|
compiled_model_ = core_.compile_model(
|
|
model, device_, ov::hint::performance_mode(ov::hint::PerformanceMode::LATENCY));
|
|
}
|
|
|
|
std::list<Armor> YOLO11::detect(const cv::Mat & raw_img, int frame_count)
|
|
{
|
|
if (raw_img.empty()) {
|
|
tools::logger()->warn("Empty img!, camera drop!");
|
|
return std::list<Armor>();
|
|
}
|
|
|
|
cv::Mat bgr_img;
|
|
tmp_img_ = raw_img;
|
|
if (use_roi_) {
|
|
if (roi_.width == -1) { // -1 表示该维度不裁切
|
|
roi_.width = raw_img.cols;
|
|
}
|
|
if (roi_.height == -1) { // -1 表示该维度不裁切
|
|
roi_.height = raw_img.rows;
|
|
}
|
|
bgr_img = raw_img(roi_);
|
|
} else {
|
|
bgr_img = raw_img;
|
|
}
|
|
|
|
auto x_scale = static_cast<double>(640) / bgr_img.rows;
|
|
auto y_scale = static_cast<double>(640) / bgr_img.cols;
|
|
auto scale = std::min(x_scale, y_scale);
|
|
auto h = static_cast<int>(bgr_img.rows * scale);
|
|
auto w = static_cast<int>(bgr_img.cols * scale);
|
|
|
|
// preproces
|
|
auto input = cv::Mat(640, 640, CV_8UC3, cv::Scalar(0, 0, 0));
|
|
auto roi = cv::Rect(0, 0, w, h);
|
|
cv::resize(bgr_img, input(roi), {w, h});
|
|
ov::Tensor input_tensor(ov::element::u8, {1, 640, 640, 3}, input.data);
|
|
|
|
/// infer
|
|
auto infer_request = compiled_model_.create_infer_request();
|
|
infer_request.set_input_tensor(input_tensor);
|
|
infer_request.infer();
|
|
|
|
// postprocess
|
|
auto output_tensor = infer_request.get_output_tensor();
|
|
auto output_shape = output_tensor.get_shape();
|
|
cv::Mat output(output_shape[1], output_shape[2], CV_32F, output_tensor.data());
|
|
|
|
return parse(scale, output, raw_img, frame_count);
|
|
}
|
|
|
|
std::list<Armor> YOLO11::parse(
|
|
double scale, cv::Mat & output, const cv::Mat & bgr_img, int frame_count)
|
|
{ // for each row: xywh + classess
|
|
cv::transpose(output, output);
|
|
|
|
std::vector<int> ids;
|
|
std::vector<float> confidences;
|
|
std::vector<cv::Rect> boxes;
|
|
std::vector<std::vector<cv::Point2f>> armors_key_points;
|
|
for (int r = 0; r < output.rows; r++) {
|
|
auto xywh = output.row(r).colRange(0, 4);
|
|
auto scores = output.row(r).colRange(4, 4 + class_num_);
|
|
auto one_key_points = output.row(r).colRange(4 + class_num_, 50);
|
|
|
|
std::vector<cv::Point2f> armor_key_points;
|
|
|
|
double score;
|
|
cv::Point max_point;
|
|
cv::minMaxLoc(scores, nullptr, &score, nullptr, &max_point);
|
|
|
|
if (score < score_threshold_) continue;
|
|
|
|
auto x = xywh.at<float>(0);
|
|
auto y = xywh.at<float>(1);
|
|
auto w = xywh.at<float>(2);
|
|
auto h = xywh.at<float>(3);
|
|
auto left = static_cast<int>((x - 0.5 * w) / scale);
|
|
auto top = static_cast<int>((y - 0.5 * h) / scale);
|
|
auto width = static_cast<int>(w / scale);
|
|
auto height = static_cast<int>(h / scale);
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
float x = one_key_points.at<float>(0, i * 2 + 0) / scale;
|
|
float y = one_key_points.at<float>(0, i * 2 + 1) / scale;
|
|
cv::Point2f kp = {x, y};
|
|
armor_key_points.push_back(kp);
|
|
}
|
|
ids.emplace_back(max_point.x);
|
|
confidences.emplace_back(score);
|
|
boxes.emplace_back(left, top, width, height);
|
|
armors_key_points.emplace_back(armor_key_points);
|
|
}
|
|
|
|
std::vector<int> indices;
|
|
cv::dnn::NMSBoxes(boxes, confidences, score_threshold_, nms_threshold_, indices);
|
|
|
|
std::list<Armor> armors;
|
|
for (const auto & i : indices) {
|
|
sort_keypoints(armors_key_points[i]);
|
|
if (use_roi_) {
|
|
armors.emplace_back(ids[i], confidences[i], boxes[i], armors_key_points[i], offset_);
|
|
} else {
|
|
armors.emplace_back(ids[i], confidences[i], boxes[i], armors_key_points[i]);
|
|
}
|
|
}
|
|
|
|
for (auto it = armors.begin(); it != armors.end();) {
|
|
if (!check_name(*it)) {
|
|
it = armors.erase(it);
|
|
continue;
|
|
}
|
|
|
|
if (!check_type(*it)) {
|
|
it = armors.erase(it);
|
|
continue;
|
|
}
|
|
|
|
it->center_norm = get_center_norm(bgr_img, it->center);
|
|
++it;
|
|
}
|
|
|
|
if (debug_) draw_detections(bgr_img, armors, frame_count);
|
|
|
|
return armors;
|
|
}
|
|
|
|
bool YOLO11::check_name(const Armor & armor) const
|
|
{
|
|
auto name_ok = armor.name != ArmorName::not_armor;
|
|
auto confidence_ok = armor.confidence > min_confidence_;
|
|
|
|
// 保存不确定的图案,用于神经网络的迭代
|
|
// if (name_ok && !confidence_ok) save(armor);
|
|
|
|
return name_ok && confidence_ok;
|
|
}
|
|
|
|
bool YOLO11::check_type(const Armor & armor) const
|
|
{
|
|
auto name_ok = (armor.type == ArmorType::small)
|
|
? (armor.name != ArmorName::one && armor.name != ArmorName::base)
|
|
: (armor.name != ArmorName::two && armor.name != ArmorName::sentry &&
|
|
armor.name != ArmorName::outpost);
|
|
|
|
// 保存异常的图案,用于神经网络的迭代
|
|
// if (!name_ok) save(armor);
|
|
|
|
return name_ok;
|
|
}
|
|
|
|
cv::Point2f YOLO11::get_center_norm(const cv::Mat & bgr_img, const cv::Point2f & center) const
|
|
{
|
|
auto h = bgr_img.rows;
|
|
auto w = bgr_img.cols;
|
|
return {center.x / w, center.y / h};
|
|
}
|
|
|
|
void YOLO11::sort_keypoints(std::vector<cv::Point2f> & keypoints)
|
|
{
|
|
if (keypoints.size() != 4) {
|
|
std::cout << "beyond 4!!" << std::endl;
|
|
return;
|
|
}
|
|
|
|
std::sort(keypoints.begin(), keypoints.end(), [](const cv::Point2f & a, const cv::Point2f & b) {
|
|
return a.y < b.y;
|
|
});
|
|
|
|
std::vector<cv::Point2f> top_points = {keypoints[0], keypoints[1]};
|
|
std::vector<cv::Point2f> bottom_points = {keypoints[2], keypoints[3]};
|
|
|
|
std::sort(top_points.begin(), top_points.end(), [](const cv::Point2f & a, const cv::Point2f & b) {
|
|
return a.x < b.x;
|
|
});
|
|
|
|
std::sort(
|
|
bottom_points.begin(), bottom_points.end(),
|
|
[](const cv::Point2f & a, const cv::Point2f & b) { return a.x < b.x; });
|
|
|
|
keypoints[0] = top_points[0]; // top-left
|
|
keypoints[1] = top_points[1]; // top-right
|
|
keypoints[2] = bottom_points[1]; // bottom-right
|
|
keypoints[3] = bottom_points[0]; // bottom-left
|
|
}
|
|
|
|
void YOLO11::draw_detections(
|
|
const cv::Mat & img, const std::list<Armor> & armors, int frame_count) const
|
|
{
|
|
auto detection = img.clone();
|
|
tools::draw_text(detection, fmt::format("[{}]", frame_count), {10, 30}, {255, 255, 255});
|
|
for (const auto & armor : armors) {
|
|
auto info = fmt::format(
|
|
"{:.2f} {} {} {}", armor.confidence, COLORS[armor.color], ARMOR_NAMES[armor.name],
|
|
ARMOR_TYPES[armor.type]);
|
|
tools::draw_points(detection, armor.points, {0, 255, 0});
|
|
tools::draw_text(detection, info, armor.center, {0, 255, 0});
|
|
}
|
|
|
|
if (use_roi_) {
|
|
cv::Scalar green(0, 255, 0);
|
|
cv::rectangle(detection, roi_, green, 2);
|
|
}
|
|
cv::resize(detection, detection, {}, 0.5, 0.5); // 显示时缩小图片尺寸
|
|
cv::imshow("detection", detection);
|
|
}
|
|
|
|
void YOLO11::save(const Armor & armor) const
|
|
{
|
|
auto file_name = fmt::format("{:%Y-%m-%d_%H-%M-%S}", std::chrono::system_clock::now());
|
|
auto img_path = fmt::format("{}/{}_{}.jpg", save_path_, armor.name, file_name);
|
|
cv::imwrite(img_path, tmp_img_);
|
|
}
|
|
|
|
std::list<Armor> YOLO11::postprocess(
|
|
double scale, cv::Mat & output, const cv::Mat & bgr_img, int frame_count)
|
|
{
|
|
return parse(scale, output, bgr_img, frame_count);
|
|
}
|
|
|
|
} // namespace auto_aim
|