# 2连杆分析 参考:[五连杆运动学解算与VMC](https://zhuanlan.zhihu.com/p/613007726) ![pic](./2_link.png) ## 1 正运动学解算 $\phi_1$和$\phi_2$可由电机编码器测量得到。 $C$点坐标: $$ \left \{ \begin{array}{l} x_C = l_1\cos\phi_1 + l_2\cos\phi_2\\ y_C = l_1\sin\phi_1 + l_2\sin\phi_2 \end{array} \right . $$ 得: $$ \left \{ \begin{array}{l} L0 = \sqrt{x_C^2 + y_C^2} \\ \phi_0 = \arctan{\frac{y_C}{x_C}} \end{array} \right . $$ ## 2 逆运动学解算 由余弦定理易得: $$ \phi_2+\phi_3 = \arccos\frac{l_1^2+l_2^2-L_0^2}{2l_1l_2} $$ 又: $$ \phi_3 = \pi - \phi_1 $$ 得: $$ \phi_2 = \arccos\frac{l_1^2+l_2^2-L_0^2}{2l_1l_2}+\phi_1-\pi $$ ## 3 雅可比矩阵 基于文中描述可得: $$ \left \{ \begin{array}{l} \dot x_C = -l_1\dot\phi_1\sin\phi_1 - l_2\dot\phi_2\sin\phi_2\\ \dot y_C = l_1\dot\phi_1\cos\phi_1 + l_2\dot\phi_2\cos\phi_2 \end{array} \right . $$ 即: $$ \left [ \begin{matrix} \dot x_C \\ \dot y_C \end{matrix} \right ] = \left [ \begin{matrix} -l_1\sin\phi_1 & -l_2\sin\phi_2 \\ l_1\cos\phi_1 & l_2\cos\phi_2 \end{matrix} \right ] \left [ \begin{matrix} \dot\phi_1 \\ \dot\phi_2 \end{matrix} \right ] $$ 记作: $$ \left [ \begin{matrix} \dot x_C \\ \dot y_C \end{matrix} \right ] = J_0 \left [ \begin{matrix} \dot\phi_1 \\ \dot\phi_2 \end{matrix} \right ] $$ 下面操作与文中相同,可得: $$ J^T = J_0^TRM = \left[ \begin{matrix} l_1 \,\sin \left(\phi_0 -\phi_1 \right) & \frac{l_1 \,\cos \left(\phi_0 -\phi_1 \right)}{L_0 }\\ l_2 \,\sin \left(\phi_0 -\phi_2 \right) & \frac{l_2 \,\cos \left(\phi_0 -\phi_2 \right)}{L_0 } \end{matrix} \right] $$ 即: $$ J = \left[ \begin{matrix} l_1 \,\sin \left(\phi_0 -\phi_1 \right) & l_2 \,\sin \left(\phi_0 -\phi_2 \right)\\ \frac{l_1 \,\cos \left(\phi_0 -\phi_1 \right)}{L_0 } & \frac{l_2 \,\cos \left(\phi_0 -\phi_2 \right)}{L_0 } \end{matrix} \right] $$