%计算不同腿长下适合的K矩阵,再进行多项式拟合,得到2*6矩阵每个参数对应的多项式参数 tic j=1; leg=0.1:0.01:0.4; for i=leg k=get_k_length(i); k11(j) = k(1,1); k12(j) = k(1,2); k13(j) = k(1,3); k14(j) = k(1,4); k15(j) = k(1,5); k16(j) = k(1,6); k21(j) = k(2,1); k22(j) = k(2,2); k23(j) = k(2,3); k24(j) = k(2,4); k25(j) = k(2,5); k26(j) = k(2,6); j=j+1; fprintf('leg_length=%d\n', i); end a11=polyfit(leg,k11,3); a12=polyfit(leg,k12,3); a13=polyfit(leg,k13,3); a14=polyfit(leg,k14,3); a15=polyfit(leg,k15,3); a16=polyfit(leg,k16,3); a21=polyfit(leg,k21,3); a22=polyfit(leg,k22,3); a23=polyfit(leg,k23,3); a24=polyfit(leg,k24,3); a25=polyfit(leg,k25,3); a26=polyfit(leg,k26,3); toc % x0=leg; %步长为0.1 % y11=polyval(a11,x0); %返回值y0是对应于x0的函数值 % y12=polyval(a12,x0); %返回值y0是对应于x0的函数值 % y13=polyval(a13,x0); %返回值y0是对应于x0的函数值 % y14=polyval(a14,x0); %返回值y0是对应于x0的函数值 % y15=polyval(a15,x0); %返回值y0是对应于x0的函数值 % y16=polyval(a16,x0); %返回值y0是对应于x0的函数值 % % y21=polyval(a21,x0); %返回值y0是对应于x0的函数值 % y22=polyval(a22,x0); %返回值y0是对应于x0的函数值 % y23=polyval(a23,x0); %返回值y0是对应于x0的函数值 % y24=polyval(a24,x0); %返回值y0是对应于x0的函数值 % y25=polyval(a25,x0); %返回值y0是对应于x0的函数值 % y26=polyval(a26,x0); %返回值y0是对应于x0的函数值 % subplot(3,4,1);plot(leg,k11,'o',x0,y11,'r');xlabel('x');ylabel('y');title('k11'); % subplot(3,4,2);plot(leg,k12,'o',x0,y12,'r');xlabel('x');ylabel('y');title('k12'); % subplot(3,4,5);plot(leg,k13,'o',x0,y13,'r');xlabel('x');ylabel('y');title('k13'); % subplot(3,4,6);plot(leg,k14,'o',x0,y14,'r');xlabel('x');ylabel('y');title('k14'); % subplot(3,4,9);plot(leg,k15,'o',x0,y15,'r');xlabel('x');ylabel('y');title('k15'); % subplot(3,4,10);plot(leg,k16,'o',x0,y16,'r');xlabel('x');ylabel('y');title('k16'); % % subplot(3,4,3);plot(leg,k21,'o',x0,y21,'r');xlabel('x');ylabel('y');title('k21'); % subplot(3,4,4);plot(leg,k22,'o',x0,y22,'r');xlabel('x');ylabel('y');title('k22'); % subplot(3,4,7);plot(leg,k23,'o',x0,y23,'r');xlabel('x');ylabel('y');title('k23'); % subplot(3,4,8);plot(leg,k24,'o',x0,y24,'r');xlabel('x');ylabel('y');title('k24'); % subplot(3,4,11);plot(leg,k25,'o',x0,y25,'r');xlabel('x');ylabel('y');title('k25'); % subplot(3,4,12);plot(leg,k26,'o',x0,y26,'r');xlabel('x');ylabel('y');title('k26'); % grid on; %添加网格线 % set(gca,'GridLineStyle',':','GridColor','k','GridAlpha',1); %将网格线变成虚线 % fprintf('fp32 a11[6] = {0,%.4f,%.4f,%.4f,%.4f};\n',a11(1),a11(2),a11(3),a11(4)); % fprintf('fp32 a12[6] = {0,%.4f,%.4f,%.4f,%.4f};\n',a12(1),a12(2),a12(3),a12(4)); % fprintf('fp32 a13[6] = {0,%.4f,%.4f,%.4f,%.4f};\n',a13(1),a13(2),a13(3),a13(4)); % fprintf('fp32 a14[6] = {0,%.4f,%.4f,%.4f,%.4f};\n',a14(1),a14(2),a14(3),a14(4)); % fprintf('fp32 a15[6] = {0,%.4f,%.4f,%.4f,%.4f};\n',a15(1),a15(2),a15(3),a15(4)); % fprintf('fp32 a16[6] = {0,%.4f,%.4f,%.4f,%.4f};\n',a16(1),a16(2),a16(3),a16(4)); % % fprintf('fp32 a21[6] = {0,%.4f,%.4f,%.4f,%.4f};\n',a21(1),a21(2),a21(3),a21(4)); % fprintf('fp32 a22[6] = {0,%.4f,%.4f,%.4f,%.4f};\n',a22(1),a22(2),a22(3),a22(4)); % fprintf('fp32 a23[6] = {0,%.4f,%.4f,%.4f,%.4f};\n',a23(1),a23(2),a23(3),a23(4)); % fprintf('fp32 a24[6] = {0,%.4f,%.4f,%.4f,%.4f};\n',a24(1),a24(2),a24(3),a24(4)); % fprintf('fp32 a25[6] = {0,%.4f,%.4f,%.4f,%.4f};\n',a25(1),a25(2),a25(3),a25(4)); % fprintf('fp32 a26[6] = {0,%.4f,%.4f,%.4f,%.4f};\n',a26(1),a26(2),a26(3),a26(4)); toc