<<<<<<< HEAD /* * Balance Chassis Module */ /* Includes ----------------------------------------------------------------- */ #include "module/balance_chassis.h" #include "bsp/can.h" #include "bsp/time.h" #include "component/user_math.h" #include "device/motor_lk.h" #include "module/config.h" #include #include /* Private typedef ---------------------------------------------------------- */ /* Private define ----------------------------------------------------------- */ #define CAN_CMD_ENABLE_ID 121 // 使能命令ID #define CAN_CMD_JOINT_ID 122 // 关节控制命令ID #define CAN_CMD_WHEEL_LEFT_ID 0x128 // 左轮控制命令ID #define CAN_CMD_WHEEL_RIGHT_ID 0x129 // 右轮控制命令ID #define CAN_FEEDBACK_JOINT_BASE_ID 124 // 关节反馈基础ID (124-127) #define CAN_FEEDBACK_WHEEL_LEFT_ID 130 // 左轮反馈ID #define CAN_FEEDBACK_WHEEL_RIGHT_ID 131 // 右轮反馈ID /* Private macro ------------------------------------------------------------ */ #define CMD_TIMEOUT_MS 50 // 50ms超时时间,允许控制频率在10-20Hz之间 /* Private variables -------------------------------------------------------- */ static bool joint_command_received = false; static bool wheel_command_received[2] = {false, false}; // 超时管理 - 防止控制频率不同导致的控制/relax交替 static uint32_t joint_last_cmd_time = 0; static uint32_t wheel_last_cmd_time[2] = {0, 0}; /* Private function --------------------------------------------------------- */ /** * @brief 检查并处理CAN控制命令 * @param chassis 底盘实例 * @return 成功返回DEVICE_OK */ static int8_t Chassis_ProcessCANCommands(Chassis_t *chassis) { BSP_CAN_Message_t rx_msg; joint_command_received = false; wheel_command_received[0] = false; wheel_command_received[1] = false; // 检查ID 128 - 左轮控制命令 (与电机发送格式一致) if (BSP_CAN_GetMessage(BSP_CAN_1, CAN_CMD_WHEEL_LEFT_ID, &rx_msg, BSP_CAN_TIMEOUT_IMMEDIATE) == BSP_OK) { wheel_command_received[0] = true; wheel_last_cmd_time[0] = BSP_TIME_Get_ms(); // 更新左轮命令时间戳 float left_out = (float)((int16_t)(rx_msg.data[4] | (rx_msg.data[5] << 8))) / 2048.0f; chassis->output.wheel[0] = left_out; MOTOR_LK_SetOutput(&chassis->param.wheel_param[0], left_out); } // 检查ID 129 - 右轮控制命令 (与电机发送格式一致) if (BSP_CAN_GetMessage(BSP_CAN_1, CAN_CMD_WHEEL_RIGHT_ID, &rx_msg, BSP_CAN_TIMEOUT_IMMEDIATE) == BSP_OK) { wheel_command_received[1] = true; wheel_last_cmd_time[1] = BSP_TIME_Get_ms(); // 更新右轮命令时间戳 float right_out = (float)((int16_t)(rx_msg.data[4] | (rx_msg.data[5] << 8))) / 2048.0f; chassis->output.wheel[1] = right_out; MOTOR_LK_SetOutput(&chassis->param.wheel_param[1], right_out); } BSP_TIME_Delay_ms(1); // 短暂延时,避免总线冲突 // 检查ID 121 - 使能4个关节电机 if (BSP_CAN_GetMessage(BSP_CAN_1, CAN_CMD_ENABLE_ID, &rx_msg, BSP_CAN_TIMEOUT_IMMEDIATE) == BSP_OK) { joint_command_received = true; for (int i = 0; i < 4; i++) { MOTOR_LZ_Enable(&chassis->param.joint_param[i]); } } // 检查ID 122 - 运控模式控制4个关节电机 if (BSP_CAN_GetMessage(BSP_CAN_1, CAN_CMD_JOINT_ID, &rx_msg, BSP_CAN_TIMEOUT_IMMEDIATE) == BSP_OK) { joint_command_received = true; joint_last_cmd_time = BSP_TIME_Get_ms(); // 更新关节命令时间戳 // 8字节数据分别是4个电机的力矩 (每个电机2字节,有符号整数,精度0.01 Nm) for (int i = 0; i < 4; i++) { int16_t torque_raw; memcpy(&torque_raw, &rx_msg.data[i * 2], sizeof(int16_t)); float torque = (float)torque_raw / 100.0f; // 转换为浮点数力矩值 chassis->output.joint[i] = torque; // 使用运控模式控制电机,只设置力矩,其他参数为0 MOTOR_LZ_MotionParam_t motion_param = { .target_angle = 0.0f, .target_velocity = 0.0f, .kp = 0.0f, .kd = 0.0f, .torque = torque }; MOTOR_LZ_MotionControl(&chassis->param.joint_param[i], &motion_param); } } return DEVICE_OK; } /** * @brief 发送关节电机反馈数据 * @param chassis 底盘实例 * @return 成功返回DEVICE_OK */ static int8_t Chassis_SendJointFeedback(Chassis_t *chassis) { // 发送4个关节电机的反馈数据,ID分别为124、125、126、127 for (int i = 0; i < 4; i++) { MOTOR_LZ_t* motor = MOTOR_LZ_GetMotor(&chassis->param.joint_param[i]); if (motor != NULL) { BSP_CAN_StdDataFrame_t motor_frame = { .id = CAN_FEEDBACK_JOINT_BASE_ID + i, // ID: 124, 125, 126, 127 .dlc = 8, .data = {0} }; // 数据重构:转矩电流(2字节) + 位置(3字节) + 速度(3字节) = 8字节 // 转矩电流 - 转换为16位整数 (精度0.01 Nm) int16_t torque_int = (int16_t)(motor->lz_feedback.current_torque * 100); memcpy(&motor_frame.data[0], &torque_int, sizeof(int16_t)); // 位置 - 转换为24位整数,使用3字节 (精度0.0001 rad) int32_t angle_int = (int32_t)(motor->lz_feedback.current_angle * 10000) & 0xFFFFFF; motor_frame.data[2] = (angle_int >> 16) & 0xFF; motor_frame.data[3] = (angle_int >> 8) & 0xFF; motor_frame.data[4] = angle_int & 0xFF; // 速度 - 转换为24位整数,使用3字节 (精度0.001 rad/s) int32_t velocity_int = (int32_t)(motor->lz_feedback.current_velocity * 1000) & 0xFFFFFF; motor_frame.data[5] = (velocity_int >> 16) & 0xFF; motor_frame.data[6] = (velocity_int >> 8) & 0xFF; motor_frame.data[7] = velocity_int & 0xFF; BSP_CAN_TransmitStdDataFrame(BSP_CAN_1, &motor_frame); } } return DEVICE_OK; } /** * @brief 发送轮子电机反馈数据 * @param chassis 底盘实例 * @return 成功返回DEVICE_OK */ static int8_t Chassis_SendWheelFeedback(Chassis_t *chassis) { // 发送2个轮子电机的反馈数据,ID分别为130、131 for (int i = 0; i < 2; i++) { MOTOR_LK_t* motor = MOTOR_LK_GetMotor(&chassis->param.wheel_param[i]); if (motor != NULL) { BSP_CAN_StdDataFrame_t wheel_frame = { .id = CAN_FEEDBACK_WHEEL_LEFT_ID + i, // ID: 130, 131 .dlc = 8, .data = {0} }; // 使用LK电机的标准反馈格式 // 角度(2字节) + 速度(2字节) + 力矩电流(2字节) + 编码器(2字节) // 角度 - 转换为16位整数 (精度0.01度) int16_t angle_int = (int16_t)(motor->motor.feedback.rotor_abs_angle * 180.0f / M_PI * 100); wheel_frame.data[0] = (angle_int >> 8) & 0xFF; wheel_frame.data[1] = angle_int & 0xFF; // 速度 - 转换为16位整数 (精度1dps) int16_t speed_int = (int16_t)(motor->motor.feedback.rotor_speed); wheel_frame.data[2] = (speed_int >> 8) & 0xFF; wheel_frame.data[3] = speed_int & 0xFF; // 力矩电流 - 转换为16位整数 int16_t current_int = (int16_t)(motor->motor.feedback.torque_current); wheel_frame.data[4] = (current_int >> 8) & 0xFF; wheel_frame.data[5] = current_int & 0xFF; // 编码器值 - 直接使用角度值作为编码器 uint16_t encoder = (uint16_t)(motor->motor.feedback.rotor_abs_angle / (2 * M_PI) * 65535); wheel_frame.data[6] = (encoder >> 8) & 0xFF; wheel_frame.data[7] = encoder & 0xFF; BSP_CAN_TransmitStdDataFrame(BSP_CAN_1, &wheel_frame); } } return DEVICE_OK; } /* Exported functions ------------------------------------------------------- */ /** * @brief 底盘初始化 * @param chassis 底盘实例 * @param param 底盘参数 * @return 成功返回DEVICE_OK */ int8_t Chassis_Init(Chassis_t *chassis, Chassis_Param_t *param) { if (chassis == NULL || param == NULL) { return DEVICE_ERR_NULL; } // 复制参数 memcpy(&chassis->param, param, sizeof(Chassis_Param_t)); // 初始化CAN BSP_CAN_Init(); // 初始化电机驱动 MOTOR_LZ_Init(); // 注册关节电机 for (int i = 0; i < 4; i++) { if (MOTOR_LZ_Register(&chassis->param.joint_param[i]) != DEVICE_OK) { return DEVICE_ERR; } } // 注册轮子电机 for (int i = 0; i < 2; i++) { if (MOTOR_LK_Register(&chassis->param.wheel_param[i]) != DEVICE_OK) { return DEVICE_ERR; } } // 注册CAN接收ID BSP_CAN_RegisterId(BSP_CAN_1, CAN_CMD_ENABLE_ID, 0); // 使能命令 BSP_CAN_RegisterId(BSP_CAN_1, CAN_CMD_JOINT_ID, 0); // 关节控制命令 BSP_CAN_RegisterId(BSP_CAN_1, CAN_CMD_WHEEL_LEFT_ID, 0); // 左轮控制命令 BSP_CAN_RegisterId(BSP_CAN_1, CAN_CMD_WHEEL_RIGHT_ID, 0); // 右轮控制命令 return DEVICE_OK; } /** * @brief 更新底盘数据 * @param chassis 底盘实例 * @return 成功返回DEVICE_OK */ int8_t Chassis_Update(Chassis_t *chassis) { if (chassis == NULL) { return DEVICE_ERR_NULL; } // 更新所有电机数据 MOTOR_LZ_UpdateAll(); MOTOR_LK_UpdateAll(); // 更新反馈数据 for (int i = 0; i < 4; i++) { MOTOR_LZ_t* joint_motor = MOTOR_LZ_GetMotor(&chassis->param.joint_param[i]); if (joint_motor != NULL) { chassis->data.joint[i] = joint_motor->motor.feedback; } } for (int i = 0; i < 2; i++) { MOTOR_LK_t* wheel_motor = MOTOR_LK_GetMotor(&chassis->param.wheel_param[i]); if (wheel_motor != NULL) { chassis->data.wheel[i] = wheel_motor->motor.feedback; } } return DEVICE_OK; } /** * @brief 使能底盘 * @param chassis 底盘实例 * @return 成功返回DEVICE_OK */ int8_t Chassis_Enable(Chassis_t *chassis) { if (chassis == NULL) { return DEVICE_ERR_NULL; } // 使能关节电机 for (int i = 0; i < 4; i++) { MOTOR_LZ_Enable(&chassis->param.joint_param[i]); } // 开启轮子电机 for (int i = 0; i < 2; i++) { MOTOR_LK_MotorOn(&chassis->param.wheel_param[i]); } return DEVICE_OK; } /** * @brief 底盘松弛 * @param chassis 底盘实例 * @return 成功返回DEVICE_OK */ int8_t Chassis_Relax(Chassis_t *chassis) { if (chassis == NULL) { return DEVICE_ERR_NULL; } // 关节电机松弛 for (int i = 0; i < 4; i++) { MOTOR_LZ_Relax(&chassis->param.joint_param[i]); } // 轮子电机松弛 for (int i = 0; i < 2; i++) { MOTOR_LK_Relax(&chassis->param.wheel_param[i]); } return DEVICE_OK; } /** * @brief 底盘控制处理 * @param chassis 底盘实例 * @return 成功返回DEVICE_OK */ int8_t Chassis_Ctrl(Chassis_t *chassis) { if (chassis == NULL) { return DEVICE_ERR_NULL; } // 处理CAN控制命令 Chassis_ProcessCANCommands(chassis); uint32_t current_time = BSP_TIME_Get_ms(); // 关节电机超时检查 - 只有在超时时才执行relax if (!joint_command_received && (current_time - joint_last_cmd_time) > CMD_TIMEOUT_MS) { for (int i = 0; i < 4; i++) { MOTOR_LZ_Relax(&chassis->param.joint_param[i]); chassis->output.joint[i] = 0.0f; // 松弛时输出力矩设为0 } } // 轮子电机超时检查 - 只有在超时时才执行relax for (int i = 0; i < 2; i++) { if (!wheel_command_received[i] && (current_time - wheel_last_cmd_time[i]) > CMD_TIMEOUT_MS) { MOTOR_LK_Relax(&chassis->param.wheel_param[i]); chassis->output.wheel[i] = 0.0f; // 松弛时输出设为0 } } // 发送反馈数据 Chassis_SendJointFeedback(chassis); Chassis_SendWheelFeedback(chassis); return DEVICE_OK; ======= #include "module/balance_chassis.h" #include "bsp/can.h" #include "bsp/time.h" #include "component/kinematics.h" #include "component/limiter.h" #include "component/user_math.h" #include "device/motor_lk.h" #include "device/motor_lz.h" #include #include #include /** * @brief 使能所有电机 * @param c 底盘结构体指针 * @return */ static int8_t Chassis_MotorEnable(Chassis_t *c) { if (c == NULL) return CHASSIS_ERR_NULL; for (int i = 0; i < 4; i++) { MOTOR_LZ_Enable(&c->param->joint_motors[i]); } BSP_TIME_Delay_us(200); for (int i = 0; i < 2; i++) { MOTOR_LK_MotorOn(&c->param->wheel_motors[i]); } return CHASSIS_OK; } /** * @brief 关闭所有电机 * @param c 底盘结构体指针 * @return */ static int8_t Chassis_MotorRelax(Chassis_t *c) { if (c == NULL) return CHASSIS_ERR_NULL; for (int i = 0; i < 2; i++) { MOTOR_LK_Relax(&c->param->wheel_motors[i]); } BSP_TIME_Delay_us(200); for (int i = 0; i < 4; i++) { MOTOR_LZ_Relax(&c->param->joint_motors[i]); } return CHASSIS_OK; } static int8_t Chassis_SetMode(Chassis_t *c, Chassis_Mode_t mode) { if (c == NULL) return CHASSIS_ERR_NULL; /* 主结构体不能为空 */ if (mode == c->mode) return CHASSIS_OK; /* 模式未改变直接返回 */ Chassis_MotorEnable(c); PID_Reset(&c->pid.leg_length[0]); PID_Reset(&c->pid.leg_length[1]); PID_Reset(&c->pid.yaw); PID_Reset(&c->pid.roll); PID_Reset(&c->pid.tp[0]); PID_Reset(&c->pid.tp[1]); c->yaw_control.target_yaw = c->feedback.imu.euler.yaw; // 清空位移 c->chassis_state.position_x = 0.0f; c->chassis_state.velocity_x = 0.0f; c->chassis_state.last_velocity_x = 0.0f; c->chassis_state.target_x = 0.0f; LQR_Reset(&c->lqr[0]); LQR_Reset(&c->lqr[1]); c->mode = mode; c->state = 0; // 重置状态,确保每次切换模式时都重新初始化 return CHASSIS_OK; } /* 更新机体状态估计 */ static void Chassis_UpdateChassisState(Chassis_t *c) { if (c == NULL) return; // 从轮子编码器估计机体速度 (参考C++代码) float left_wheel_speed_dps = c->feedback.wheel[0].rotor_speed; // dps (度每秒) float right_wheel_speed_dps = c->feedback.wheel[1].rotor_speed; // dps (度每秒) // 将dps转换为rad/s float left_wheel_speed = left_wheel_speed_dps * M_PI / 180.0f; // rad/s float right_wheel_speed = right_wheel_speed_dps * M_PI / 180.0f; // rad/s float wheel_radius = 0.072f; float left_wheel_linear_vel = left_wheel_speed * wheel_radius; float right_wheel_linear_vel = right_wheel_speed * wheel_radius; // 机体x方向速度 (轮子中心速度) c->chassis_state.last_velocity_x = c->chassis_state.velocity_x; c->chassis_state.velocity_x = (left_wheel_linear_vel + right_wheel_linear_vel) / 2.0f; // 积分得到位置 c->chassis_state.position_x += c->chassis_state.velocity_x * c->dt; } int8_t Chassis_Init(Chassis_t *c, Chassis_Params_t *param, float target_freq) { if (c == NULL || param == NULL || target_freq <= 0.0f) { return -1; // 参数错误 } c->param = param; /*初始化can*/ BSP_CAN_Init(); /*初始化和注册所有电机*/ MOTOR_LZ_Init(); for (int i = 0; i < 4; i++) { MOTOR_LZ_Register(&c->param->joint_motors[i]); } for (int i = 0; i < 2; i++) { MOTOR_LK_Register(&c->param->wheel_motors[i]); } MOTOR_DM_Register(&c->param->yaw_motor); // Chassis_MotorEnable(c); /*初始化VMC控制器*/ VMC_Init(&c->vmc_[0], ¶m->vmc_param[0], target_freq); VMC_Init(&c->vmc_[1], ¶m->vmc_param[1], target_freq); /*初始化pid*/ PID_Init(&c->pid.leg_length[0], KPID_MODE_CALC_D, target_freq, ¶m->leg_length); PID_Init(&c->pid.leg_length[1], KPID_MODE_CALC_D, target_freq, ¶m->leg_length); PID_Init(&c->pid.yaw, KPID_MODE_CALC_D, target_freq, ¶m->yaw); PID_Init(&c->pid.roll, KPID_MODE_CALC_D, target_freq, ¶m->roll); PID_Init(&c->pid.tp[0], KPID_MODE_CALC_D, target_freq, ¶m->tp); PID_Init(&c->pid.tp[1], KPID_MODE_CALC_D, target_freq, ¶m->tp); /*初始化LQR控制器*/ LQR_Init(&c->lqr[0], ¶m->lqr_gains); LQR_Init(&c->lqr[1], ¶m->lqr_gains); /*初始化机体状态*/ c->chassis_state.position_x = 0.0f; c->chassis_state.velocity_x = 0.0f; c->chassis_state.last_velocity_x = 0.0f; c->chassis_state.target_x = 0.0f; /*初始化yaw控制状态*/ c->yaw_control.target_yaw = 0.0f; c->yaw_control.current_yaw = 0.0f; c->yaw_control.yaw_force = 0.0f; return CHASSIS_OK; } int8_t Chassis_UpdateFeedback(Chassis_t *c) { if (c == NULL) { return -1; // 参数错误 } /*更新电机反馈*/ for (int i = 0; i < 4; i++) { MOTOR_LZ_Update(&c->param->joint_motors[i]); } MOTOR_LK_Update(&c->param->wheel_motors[0]); MOTOR_LK_Update(&c->param->wheel_motors[1]); // 更新关节电机反馈并检查离线状态 for (int i = 0; i < 4; i++) { MOTOR_LZ_t *joint_motor = MOTOR_LZ_GetMotor(&c->param->joint_motors[i]); if (joint_motor != NULL) { if (joint_motor->motor.feedback.rotor_abs_angle > M_PI) { joint_motor->motor.feedback.rotor_abs_angle -= M_2PI; } joint_motor->motor.feedback.rotor_abs_angle = -joint_motor->motor.feedback.rotor_abs_angle; // 机械零点调整 c->feedback.joint[i] = joint_motor->motor.feedback; } } // 更新轮子电机反馈并检查离线状态 for (int i = 0; i < 2; i++) { MOTOR_LK_t *wheel_motor = MOTOR_LK_GetMotor(&c->param->wheel_motors[i]); if (wheel_motor != NULL) { c->feedback.wheel[i] = wheel_motor->motor.feedback; } } /* 更新云台电机反馈数据(yaw轴) */ MOTOR_DM_Update(&(c->param->yaw_motor)); MOTOR_DM_t *dm_motor = MOTOR_DM_GetMotor(&(c->param->yaw_motor)); if (dm_motor != NULL) { c->feedback.yaw = dm_motor->motor.feedback; } // 更新机体状态估计 Chassis_UpdateChassisState(c); return 0; } int8_t Chassis_UpdateIMU(Chassis_t *c, const Chassis_IMU_t imu) { if (c == NULL) { return -1; // 参数错误 } c->feedback.imu = imu; return 0; } int8_t Chassis_Control(Chassis_t *c, const Chassis_CMD_t *c_cmd) { if (c == NULL || c_cmd == NULL) { return CHASSIS_ERR_NULL; // 参数错误 } c->dt = (BSP_TIME_Get_us() - c->lask_wakeup) / 1000000.0f; /* 计算两次调用的时间间隔,单位秒 */ c->lask_wakeup = BSP_TIME_Get_us(); /*设置底盘模式*/ if (Chassis_SetMode(c, c_cmd->mode) != CHASSIS_OK) { return CHASSIS_ERR_MODE; // 设置模式失败 } // 更新VMC正解算用于状态估计 VMC_ForwardSolve(&c->vmc_[0], c->feedback.joint[0].rotor_abs_angle, c->feedback.joint[1].rotor_abs_angle, c->feedback.imu.euler.pit, c->feedback.imu.gyro.y); VMC_ForwardSolve(&c->vmc_[1], c->feedback.joint[3].rotor_abs_angle, c->feedback.joint[2].rotor_abs_angle, c->feedback.imu.euler.pit, c->feedback.imu.gyro.y); /*根据底盘模式执行不同的控制逻辑*/ switch (c->mode) { case CHASSIS_MODE_RELAX: // 放松模式,电机不输出 Chassis_MotorRelax(c); Chassis_LQRControl(c, c_cmd); break; case CHASSIS_MODE_RECOVER: { float fn; fn = -25.0f; VMC_InverseSolve(&c->vmc_[0], fn, 0.0f); VMC_GetJointTorques(&c->vmc_[0], &c->output.joint[0].torque, &c->output.joint[1].torque); VMC_InverseSolve(&c->vmc_[1], fn, 0.0f); VMC_GetJointTorques(&c->vmc_[1], &c->output.joint[3].torque, &c->output.joint[2].torque); // Chassis_MotorEnable(c); c->output.wheel[0] = 0.0f; c->output.wheel[1] = 0.0f; Chassis_Output(c); // 统一输出 } break; case CHASSIS_MODE_WHELL_LEG_BALANCE: // 轮腿平衡模式,使用LQR控制和PID腿长控制 // 执行LQR控制(包含PID腿长控制) // Chassis_MotorRelax(c); Chassis_LQRControl(c, c_cmd); Chassis_Output(c); // 统一输出 break; default: return CHASSIS_ERR_MODE; } return CHASSIS_OK; } int8_t Chassis_Output(Chassis_t *c) { if (c == NULL) return CHASSIS_ERR_NULL; for (int i = 0; i < 4; i++) { MOTOR_LZ_MotionParam_t param = {0}; param.torque = c->output.joint[i].torque; MOTOR_LZ_MotionControl(&c->param->joint_motors[i], ¶m); } BSP_TIME_Delay_us(200); // 等待CAN总线空闲,确保前面的命令发送完成 for (int i = 0; i < 2; i++) { MOTOR_LK_SetOutput(&c->param->wheel_motors[i], c->output.wheel[i]); // MOTOR_LK_SetOutput(&c->param->wheel_motors[i], 0.0f); } return CHASSIS_OK; } int8_t Chassis_LQRControl(Chassis_t *c, const Chassis_CMD_t *c_cmd) { if (c == NULL || c_cmd == NULL) { return CHASSIS_ERR_NULL; } /* 运动参数(参考C++版本的状态估计) */ static float xhat = 0.0f, x_dot_hat = 0.0f; float target_dot_x = 0.0f; // 简化的速度估计(后续可以改进为C++版本的复杂滤波) x_dot_hat = c->chassis_state.velocity_x; xhat = c->chassis_state.position_x; // 目标设定 target_dot_x = c_cmd->move_vec.vx * 2; c->chassis_state.target_x += target_dot_x * c->dt; /*更新当前状态*/ LQR_State_t current_state = {0}; current_state.theta = c->vmc_[0].leg.theta; // 左腿摆杆角度 current_state.d_theta = c->vmc_[0].leg.d_theta; // 左腿摆杆角速度 current_state.x = xhat; // 机体位置 current_state.d_x = x_dot_hat; // 机体速度 current_state.phi = -c->feedback.imu.euler.pit; // 机体俯仰角 current_state.d_phi = -c->feedback.imu.gyro.y; // 机体俯仰角速度 LQR_UpdateState(&c->lqr[0], ¤t_state); LQR_CalculateGainMatrix(&c->lqr[0], c->vmc_[0].leg.L0); current_state.theta = c->vmc_[1].leg.theta; // 右腿摆杆角度 current_state.d_theta = c->vmc_[1].leg.d_theta; // 右腿摆杆角速度 LQR_UpdateState(&c->lqr[1], ¤t_state); LQR_CalculateGainMatrix(&c->lqr[1], c->vmc_[1].leg.L0); LQR_State_t target_state = {0}; target_state.theta = 0.0f; // 目标摆杆角度 target_state.d_theta = 0.0f; // 目标摆杆角速度 target_state.phi = -0.2f; // 目标俯仰角 target_state.d_phi = 0.0f; // 目标俯仰角速度 target_state.x = c->chassis_state.target_x; // 目标位置 target_state.d_x = target_dot_x; // 目标速度 LQR_SetTargetState(&c->lqr[0], &target_state); LQR_SetTargetState(&c->lqr[1], &target_state); LQR_Control(&c->lqr[0]); LQR_Control(&c->lqr[1]); // /* 分别计算左右腿的LQR控制 */ // float Tw[2] = {0.0f, 0.0f}; // 轮毂力矩 // float Tp[2] = {0.0f, 0.0f}; // 髋关节力矩 // for (int leg = 0; leg < 2; leg++) { // /* 构建当前状态 */ // LQR_State_t current_state = {0}; // current_state.theta = leg_theta[leg]; // current_state.d_theta = leg_d_theta[leg]; // current_state.x = xhat; // current_state.d_x = x_dot_hat; // current_state.phi = -c->feedback.imu.euler.pit; // current_state.d_phi = -c->feedback.imu.gyro.y; // /* 构建目标状态 */ // LQR_State_t target_state = {0}; // target_state.theta = 0.0f; // 目标摆杆角度 // target_state.d_theta = 0.0f; // 目标摆杆角速度 // // target_state.x = 0; // 目标位置 // // target_state.d_x = 0.0f; // 目标速度 // target_state.phi = -0.2f; // 目标俯仰角 // target_state.d_phi = 0.0f; // 目标俯仰角速度 // // target_state.theta = -0.8845f * leg_L0[leg] + 0.40663f; // // 目标摆杆角度 // // target_state.d_theta = 0.0f; // 目标摆杆角速度 // target_state.x = c->chassis_state.target_x; // 目标位置 // target_state.d_x = target_dot_x; // 目标速度 // // target_state.phi = 0.16f; // 目标俯仰角 // // target_state.d_phi = 0.0f; // 目标俯仰角速度 // /* 根据当前腿长更新增益矩阵 */ // LQR_CalculateGainMatrix(&c->lqr[leg], leg_L0[leg]); // /* 更新LQR状态 */ // LQR_SetTargetState(&c->lqr[leg], &target_state); // LQR_UpdateState(&c->lqr[leg], ¤t_state); // if (onground_flag[leg]) { // /* 接地状态:使用LQR控制器计算输出 */ // if (LQR_Control(&c->lqr[leg]) == 0) { // LQR_Input_t lqr_output = {0}; // if (LQR_GetOutput(&c->lqr[leg], &lqr_output) == 0) { // Tw[leg] = lqr_output.T; // Tp[leg] = lqr_output.Tp; // // Tw[leg] = 0.0f; // 暂时屏蔽轮毂力矩输出 // // Tp[leg] = -2.5f; // 暂时屏蔽腿部力矩输出 // } else { // Tw[leg] = 0.0f; // Tp[leg] = 0.0f; // } // } else { // Tw[leg] = 0.0f; // Tp[leg] = 0.0f; // } // } else { // /* 离地状态:简化控制,只控制腿部摆动 */ // Tw[leg] = 0.0f; // // 只控制摆杆角度 // float theta_error = current_state.theta - target_state.theta; // float d_theta_error = current_state.d_theta - target_state.d_theta; // Tp[leg] = -(c->lqr[leg].K_matrix[1][0] * theta_error + // c->lqr[leg].K_matrix[1][1] * d_theta_error); // } // } // c->yaw_control.current_yaw = c->feedback.imu.euler.yaw; // c->yaw_control.target_yaw -= c_cmd->move_vec.vy * 0.005f; // // 目标偏航角,假设遥控器输入范围为[-10, 10],映射到[-0.02, 0.02] rad/s // // 修正目标yaw角度到[-pi, pi] // if (c->yaw_control.target_yaw > M_PI) { // c->yaw_control.target_yaw -= M_2PI; // } else if (c->yaw_control.target_yaw < -M_PI) { // c->yaw_control.target_yaw += M_2PI; // } // c->yaw_control.yaw_force = PID_Calc(&c->pid.yaw, c->yaw_control.target_yaw, // c->feedback.imu.euler.yaw, c->feedback.imu.gyro.z, c->dt); c->yaw_control.current_yaw = c->feedback.yaw.rotor_abs_angle; c->yaw_control.target_yaw = c->param->mech_zero_yaw + c_cmd->move_vec.vy; c->yaw_control.yaw_force = PID_Calc(&c->pid.yaw, c->yaw_control.target_yaw, c->feedback.yaw.rotor_abs_angle, 0.0f, c->dt); /* 轮毂力矩输出(参考C++版本的减速比) */ c->output.wheel[0] = c->lqr[0].control_output.T / 4.5f + c->yaw_control.yaw_force; c->output.wheel[1] = c->lqr[1].control_output.T / 4.5f - c->yaw_control.yaw_force; /* 腿长控制和VMC逆解算(使用PID控制) */ float target_L0[2]; float leg_d_length[2]; // 腿长变化率 /* 横滚角PID补偿计算 */ float roll_compensation = PID_Calc(&c->pid.roll, 0.0f, c->feedback.imu.euler.rol, c->feedback.imu.gyro.x, c->dt); // 目标腿长设定 target_L0[0] = 0.15f + c_cmd->height * 0.2f + roll_compensation; // 左腿:基础腿长 + 高度调节 + 横滚角补偿 target_L0[1] = 0.15f + c_cmd->height * 0.2f - roll_compensation; // 右腿:基础腿长 + 高度调节 - 横滚角补偿 // 获取腿长变化率 VMC_GetVirtualLegState(&c->vmc_[0], NULL, NULL, &leg_d_length[0], NULL); VMC_GetVirtualLegState(&c->vmc_[1], NULL, NULL, &leg_d_length[1], NULL); /* 左右腿摆角相互补偿(参考C++版本的Delta_Tp机制) */ float Delta_Tp[2]; // 使用tp_pid进行左右腿摆角同步控制 // 左腿补偿力矩:使左腿theta向右腿theta靠拢 Delta_Tp[0] = c->vmc_[0].leg.L0 * 10.0f * PID_Calc(&c->pid.tp[0], c->vmc_[1].leg.theta, c->vmc_[0].leg.theta, 0, c->dt); // 右腿补偿力矩:使右腿theta向左腿theta靠拢(符号相反) Delta_Tp[1] = -Delta_Tp[0]; float out = PID_Calc(&c->pid.leg_length[0], target_L0[0], c->vmc_[0].leg.L0, leg_d_length[0], c->dt); c->vmc_[0].leg.F_virtual = out; out = PID_Calc(&c->pid.leg_length[1], target_L0[1], c->vmc_[1].leg.L0, leg_d_length[1], c->dt); c->vmc_[1].leg.F_virtual = out; c->vmc_[0].leg.T_virtual = c->lqr[0].control_output.Tp + Delta_Tp[0]; c->vmc_[1].leg.T_virtual = c->lqr[1].control_output.Tp + Delta_Tp[1]; VMC_InverseSolve(&c->vmc_[0], c->vmc_[0].leg.F_virtual, c->vmc_[0].leg.T_virtual); VMC_InverseSolve(&c->vmc_[1], c->vmc_[1].leg.F_virtual, c->vmc_[1].leg.T_virtual); VMC_GetJointTorques(&c->vmc_[0], &c->output.joint[0].torque, &c->output.joint[1].torque); VMC_GetJointTorques(&c->vmc_[1], &c->output.joint[3].torque, &c->output.joint[2].torque); /* 安全限制 */ for (int i = 0; i < 2; i++) { if (fabsf(c->output.wheel[i]) > 0.8f) { c->output.wheel[i] = (c->output.wheel[i] > 0) ? 0.8f : -0.8f; } } for (int i = 0; i < 4; i++) { if (fabsf(c->output.joint[i].torque) > 20.0f) { c->output.joint[i].torque = (c->output.joint[i].torque > 0) ? 20.0f : -20.0f; } } return CHASSIS_OK; >>>>>>> main }