diff --git a/User/module/balance_chassis.c b/User/module/balance_chassis.c index 3bffb46..f353ee5 100644 --- a/User/module/balance_chassis.c +++ b/User/module/balance_chassis.c @@ -1,527 +1,445 @@ +#include "device/motor_lz.h" #define _USE_MATH_DEFINES -#include "module/balance_chassis.h" -#include "bsp/time.h" #include "bsp/can.h" -#include "component/user_math.h" +#include "bsp/time.h" #include "component/kinematics.h" #include "component/limiter.h" +#include "component/user_math.h" +#include "module/balance_chassis.h" #include -#include #include +#include /** * @brief 使能所有电机 * @param c 底盘结构体指针 - * @return + * @return */ static int8_t Chassis_MotorEnable(Chassis_t *c) { - if (c == NULL) return CHASSIS_ERR_NULL; - - for (int i = 0; i < 4; i++) { - MOTOR_LZ_Enable(&c->param->joint_motors[i]); - } - - BSP_TIME_Delay_us(200); - - for (int i = 0; i < 2; i++) { - MOTOR_LK_MotorOn(&c->param->wheel_motors[i]); - } - - return CHASSIS_OK; + if (c == NULL) + return CHASSIS_ERR_NULL; + for (int i = 0; i < 4; i++) { + MOTOR_LZ_Enable(&c->param->joint_motors[i]); + } + BSP_TIME_Delay_us(200); + for (int i = 0; i < 2; i++) { + MOTOR_LK_MotorOn(&c->param->wheel_motors[i]); + } + return CHASSIS_OK; } - -// /** -// * @brief 关闭所有电机 -// * @param c 底盘结构体指针 -// * @return -// */ -// static int8_t Chassis_MotorDisable(Chassis_t *c){ -// if (c == NULL) return CHASSIS_ERR_NULL; - -// for (int i = 0; i < 2; i++) { -// MOTOR_LK_MotorOff(&c->param->wheel_motors[i]); -// } -// for (int i = 0; i < 4; i++) { -// MOTOR_LZ_Disable(&c->param->joint_motors[i], true); -// } - -// return CHASSIS_OK; -// } +static int8_t Chassis_MotorRelax(Chassis_t *c) { + if (c == NULL) + return CHASSIS_ERR_NULL; + for (int i = 0; i < 2; i++) { + MOTOR_LK_Relax(&c->param->wheel_motors[i]); + } + BSP_TIME_Delay_us(200); + for (int i = 0; i < 4; i++) { + MOTOR_LZ_Relax(&c->param->joint_motors[i]); + } + return CHASSIS_OK; +} static int8_t Chassis_SetMode(Chassis_t *c, Chassis_Mode_t mode) { - if (c == NULL) return CHASSIS_ERR_NULL; /* 主结构体不能为空 */ - if (mode == c->mode) return CHASSIS_OK; /* 模式未改变直接返回 */ + if (c == NULL) + return CHASSIS_ERR_NULL; /* 主结构体不能为空 */ + if (mode == c->mode) + return CHASSIS_OK; /* 模式未改变直接返回 */ + Chassis_MotorEnable(c); - Chassis_MotorEnable(c); + PID_Reset(&c->pid.leg_length[0]); + PID_Reset(&c->pid.leg_length[1]); + PID_Reset(&c->pid.yaw); + PID_Reset(&c->pid.roll); + PID_Reset(&c->pid.tp[0]); + PID_Reset(&c->pid.tp[1]); - PID_Reset(&c->pid.leg_length[0]); - PID_Reset(&c->pid.leg_length[1]); - PID_Reset(&c->pid.yaw); - PID_Reset(&c->pid.roll); - PID_Reset(&c->pid.tp[0]); - PID_Reset(&c->pid.tp[1]); - - c->yaw_control.target_yaw = c->feedback.imu.euler.yaw; - - //清空位移 - c->chassis_state.position_x = 0.0f; - c->chassis_state.velocity_x = 0.0f; - c->chassis_state.last_velocity_x = 0.0f; - c->chassis_state.target_x = 0.0f; + c->yaw_control.target_yaw = c->feedback.imu.euler.yaw; + // 清空位移 + c->chassis_state.position_x = 0.0f; + c->chassis_state.velocity_x = 0.0f; + c->chassis_state.last_velocity_x = 0.0f; + c->chassis_state.target_x = 0.0f; LQR_Reset(&c->lqr[0]); LQR_Reset(&c->lqr[1]); c->mode = mode; - c->state = 0; // 重置状态,确保每次切换模式时都重新初始化 + c->state = 0; // 重置状态,确保每次切换模式时都重新初始化 return CHASSIS_OK; } /* 更新机体状态估计 */ static void Chassis_UpdateChassisState(Chassis_t *c) { - if (c == NULL) return; - - // 从轮子编码器估计机体速度 (参考C++代码) - float left_wheel_speed_dps = c->feedback.wheel[0].rotor_speed; // dps (度每秒) - float right_wheel_speed_dps = c->feedback.wheel[1].rotor_speed; // dps (度每秒) - - // 将dps转换为rad/s - float left_wheel_speed = left_wheel_speed_dps * M_PI / 180.0f; // rad/s - float right_wheel_speed = right_wheel_speed_dps * M_PI / 180.0f; // rad/s - - float wheel_radius = 0.072f; - - float left_wheel_linear_vel = left_wheel_speed * wheel_radius; - float right_wheel_linear_vel = right_wheel_speed * wheel_radius; - - // 机体x方向速度 (轮子中心速度) - c->chassis_state.last_velocity_x = c->chassis_state.velocity_x; - c->chassis_state.velocity_x = (left_wheel_linear_vel + right_wheel_linear_vel) / 2.0f; - - // 积分得到位置 - c->chassis_state.position_x += c->chassis_state.velocity_x * c->dt; + if (c == NULL) + return; + + // 从轮子编码器估计机体速度 (参考C++代码) + float left_wheel_speed_dps = c->feedback.wheel[0].rotor_speed; // dps (度每秒) + float right_wheel_speed_dps = + c->feedback.wheel[1].rotor_speed; // dps (度每秒) + + // 将dps转换为rad/s + float left_wheel_speed = left_wheel_speed_dps * M_PI / 180.0f; // rad/s + float right_wheel_speed = right_wheel_speed_dps * M_PI / 180.0f; // rad/s + + float wheel_radius = 0.072f; + + float left_wheel_linear_vel = left_wheel_speed * wheel_radius; + float right_wheel_linear_vel = right_wheel_speed * wheel_radius; + + // 机体x方向速度 (轮子中心速度) + c->chassis_state.last_velocity_x = c->chassis_state.velocity_x; + c->chassis_state.velocity_x = + (left_wheel_linear_vel + right_wheel_linear_vel) / 2.0f; + + // 积分得到位置 + c->chassis_state.position_x += c->chassis_state.velocity_x * c->dt; } +int8_t Chassis_Init(Chassis_t *c, Chassis_Params_t *param, float target_freq) { + if (c == NULL || param == NULL || target_freq <= 0.0f) { + return -1; // 参数错误 + } + c->param = param; -int8_t Chassis_Init(Chassis_t *c, Chassis_Params_t *param, float target_freq){ - if (c == NULL || param == NULL || target_freq <= 0.0f) { - return -1; // 参数错误 + /*初始化can*/ + BSP_CAN_Init(); + + /*初始化和注册所有电机*/ + MOTOR_LZ_Init(); + + for (int i = 0; i < 4; i++) { + MOTOR_LZ_Register(&c->param->joint_motors[i]); + } + for (int i = 0; i < 2; i++) { + MOTOR_LK_Register(&c->param->wheel_motors[i]); + } + MOTOR_DM_Register(&c->param->yaw_motor); + + /*初始化VMC控制器*/ + VMC_Init(&c->vmc_[0], ¶m->vmc_param[0], target_freq); + VMC_Init(&c->vmc_[1], ¶m->vmc_param[1], target_freq); + + /*初始化pid*/ + PID_Init(&c->pid.leg_length[0], KPID_MODE_CALC_D, target_freq, + ¶m->leg_length); + PID_Init(&c->pid.leg_length[1], KPID_MODE_CALC_D, target_freq, + ¶m->leg_length); + PID_Init(&c->pid.yaw, KPID_MODE_CALC_D, target_freq, ¶m->yaw); + PID_Init(&c->pid.roll, KPID_MODE_CALC_D, target_freq, ¶m->roll); + PID_Init(&c->pid.tp[0], KPID_MODE_CALC_D, target_freq, ¶m->tp); + PID_Init(&c->pid.tp[1], KPID_MODE_CALC_D, target_freq, ¶m->tp); + + /*初始化LQR控制器*/ + LQR_Init(&c->lqr[0], ¶m->lqr_gains); + LQR_Init(&c->lqr[1], ¶m->lqr_gains); + + /*初始化机体状态*/ + c->chassis_state.position_x = 0.0f; + c->chassis_state.velocity_x = 0.0f; + c->chassis_state.last_velocity_x = 0.0f; + c->chassis_state.target_x = 0.0f; + + /*初始化yaw控制状态*/ + c->yaw_control.target_yaw = 0.0f; + c->yaw_control.current_yaw = 0.0f; + c->yaw_control.yaw_force = 0.0f; + + return CHASSIS_OK; +} + +int8_t Chassis_UpdateFeedback(Chassis_t *c) { + if (c == NULL) { + return -1; // 参数错误 + } + /*更新电机反馈*/ + for (int i = 0; i < 4; i++) { + MOTOR_LZ_Update(&c->param->joint_motors[i]); + } + MOTOR_LK_Update(&c->param->wheel_motors[0]); + MOTOR_LK_Update(&c->param->wheel_motors[1]); + + /*将电机反馈数据赋值到标准反馈结构体,并检查是否离线*/ + // 更新关节电机反馈并检查离线状态 + for (int i = 0; i < 4; i++) { + MOTOR_LZ_t *joint_motor = MOTOR_LZ_GetMotor(&c->param->joint_motors[i]); + if (joint_motor != NULL) { + if (joint_motor->motor.feedback.rotor_abs_angle > M_PI) { + joint_motor->motor.feedback.rotor_abs_angle -= M_2PI; + } + joint_motor->motor.feedback.rotor_abs_angle = + -joint_motor->motor.feedback.rotor_abs_angle; // 机械零点调整 + + c->feedback.joint[i] = joint_motor->motor.feedback; } - c->param = param; - - /*初始化can*/ - BSP_CAN_Init(); + } - /*初始化和注册所有电机*/ - MOTOR_LZ_Init(); - - for (int i = 0; i < 4; i++) { - MOTOR_LZ_Register(&c->param->joint_motors[i]); + // 更新轮子电机反馈并检查离线状态 + for (int i = 0; i < 2; i++) { + MOTOR_LK_t *wheel_motor = MOTOR_LK_GetMotor(&c->param->wheel_motors[i]); + if (wheel_motor != NULL) { + c->feedback.wheel[i] = wheel_motor->motor.feedback; } - for (int i = 0; i < 2; i++) { - MOTOR_LK_Register(&c->param->wheel_motors[i]); - } - MOTOR_DM_Register(&c->param->yaw_motor); + } + /* 更新云台电机反馈数据(yaw轴) */ + MOTOR_DM_Update(&(c->param->yaw_motor)); + MOTOR_DM_t *dm_motor = MOTOR_DM_GetMotor(&(c->param->yaw_motor)); + if (dm_motor != NULL) { + c->feedback.yaw = dm_motor->motor.feedback; + } + + // 更新机体状态估计 + Chassis_UpdateChassisState(c); + + return 0; +} + +int8_t Chassis_UpdateIMU(Chassis_t *c, const Chassis_IMU_t imu) { + if (c == NULL) { + return -1; // 参数错误 + } + c->feedback.imu = imu; + return 0; +} + +int8_t Chassis_Control(Chassis_t *c, const Chassis_CMD_t *c_cmd) { + if (c == NULL || c_cmd == NULL) { + return CHASSIS_ERR_NULL; // 参数错误 + } + c->dt = (BSP_TIME_Get_us() - c->lask_wakeup) / + 1000000.0f; /* 计算两次调用的时间间隔,单位秒 */ + c->lask_wakeup = BSP_TIME_Get_us(); + + /*设置底盘模式*/ + if (Chassis_SetMode(c, c_cmd->mode) != CHASSIS_OK) { + return CHASSIS_ERR_MODE; // 设置模式失败 + } + + VMC_ForwardSolve(&c->vmc_[0], c->feedback.joint[0].rotor_abs_angle, + c->feedback.joint[1].rotor_abs_angle, + c->feedback.imu.euler.pit, c->feedback.imu.gyro.y); + VMC_ForwardSolve(&c->vmc_[1], c->feedback.joint[3].rotor_abs_angle, + c->feedback.joint[2].rotor_abs_angle, + c->feedback.imu.euler.pit, c->feedback.imu.gyro.y); + + /*根据底盘模式执行不同的控制逻辑*/ + switch (c->mode) { + case CHASSIS_MODE_RELAX: + // 放松模式,电机不输出 + Chassis_MotorRelax(c); + + Chassis_LQRControl(c, c_cmd); + + break; + + case CHASSIS_MODE_RECOVER: { + float fn; + fn = -25.0f; + + VMC_InverseSolve(&c->vmc_[0], fn, 0.0f); + VMC_GetJointTorques(&c->vmc_[0], &c->output.joint[0].torque, + &c->output.joint[1].torque); + VMC_InverseSolve(&c->vmc_[1], fn, 0.0f); + VMC_GetJointTorques(&c->vmc_[1], &c->output.joint[3].torque, + &c->output.joint[2].torque); // Chassis_MotorEnable(c); - - /*初始化VMC控制器*/ - VMC_Init(&c->vmc_[0], ¶m->vmc_param[0], target_freq); - VMC_Init(&c->vmc_[1], ¶m->vmc_param[1], target_freq); + c->output.wheel[0] = 0.0f; + c->output.wheel[1] = 0.0f; + Chassis_Output(c); // 统一输出 - /*初始化pid*/ - PID_Init(&c->pid.leg_length[0], KPID_MODE_CALC_D, target_freq, ¶m->leg_length); - PID_Init(&c->pid.leg_length[1], KPID_MODE_CALC_D, target_freq, ¶m->leg_length); - PID_Init(&c->pid.yaw, KPID_MODE_CALC_D, target_freq, ¶m->yaw); - PID_Init(&c->pid.roll, KPID_MODE_CALC_D, target_freq, ¶m->roll); - PID_Init(&c->pid.tp[0], KPID_MODE_CALC_D, target_freq, ¶m->tp); - PID_Init(&c->pid.tp[1], KPID_MODE_CALC_D, target_freq, ¶m->tp); + } break; - /*初始化LQR控制器*/ - LQR_Init(&c->lqr[0], ¶m->lqr_gains); - LQR_Init(&c->lqr[1], ¶m->lqr_gains); - - /*初始化机体状态*/ - c->chassis_state.position_x = 0.0f; - c->chassis_state.velocity_x = 0.0f; - c->chassis_state.last_velocity_x = 0.0f; - c->chassis_state.target_x = 0.0f; - - /*初始化yaw控制状态*/ - c->yaw_control.target_yaw = 0.0f; - c->yaw_control.current_yaw = 0.0f; - c->yaw_control.yaw_force = 0.0f; - return CHASSIS_OK; -} + case CHASSIS_MODE_WHELL_LEG_BALANCE: + // 执行LQR控制(包含PID腿长控制) + Chassis_LQRControl(c, c_cmd); -int8_t Chassis_UpdateFeedback(Chassis_t *c){ - if (c == NULL) { - return -1; // 参数错误 - } - /*更新电机反馈*/ - for (int i = 0; i < 4; i++) { - MOTOR_LZ_Update(&c->param->joint_motors[i]); - } - MOTOR_LK_Update(&c->param->wheel_motors[0]); - MOTOR_LK_Update(&c->param->wheel_motors[1]); - - /*将电机反馈数据赋值到标准反馈结构体,并检查是否离线*/ - // 更新关节电机反馈并检查离线状态 - for (int i = 0; i < 4; i++) { - MOTOR_LZ_t *joint_motor = MOTOR_LZ_GetMotor(&c->param->joint_motors[i]); - if (joint_motor != NULL) { - if (joint_motor->motor.feedback.rotor_abs_angle > M_PI ){ - joint_motor->motor.feedback.rotor_abs_angle -= M_2PI; - } - joint_motor->motor.feedback.rotor_abs_angle = - joint_motor->motor.feedback.rotor_abs_angle; // 机械零点调整 + Chassis_Output(c); // 统一输出 + break; - c->feedback.joint[i] = joint_motor->motor.feedback; - } - } - - // 更新轮子电机反馈并检查离线状态 - for (int i = 0; i < 2; i++) { - MOTOR_LK_t *wheel_motor = MOTOR_LK_GetMotor(&c->param->wheel_motors[i]); - if (wheel_motor != NULL) { - c->feedback.wheel[i] = wheel_motor->motor.feedback; - } - } + default: + return CHASSIS_ERR_MODE; + } - /* 更新云台电机反馈数据(yaw轴) */ - MOTOR_DM_Update(&(c->param->yaw_motor)); - MOTOR_DM_t *dm_motor = MOTOR_DM_GetMotor(&(c->param->yaw_motor)); - if (dm_motor != NULL) { - c->feedback.yaw = dm_motor->motor.feedback; - } - - // 更新机体状态估计 - Chassis_UpdateChassisState(c); - - return 0; -} - -int8_t Chassis_UpdateIMU(Chassis_t *c, const Chassis_IMU_t imu){ - if (c == NULL) { - return -1; // 参数错误 - } - c->feedback.imu = imu; - // c->feedback.imu.euler.pit = - c->feedback.imu.euler.pit; - return 0; -} - -int8_t Chassis_Control(Chassis_t *c, const Chassis_CMD_t *c_cmd){ - if (c == NULL || c_cmd == NULL) { - return CHASSIS_ERR_NULL; // 参数错误 - } - c->dt = (BSP_TIME_Get_us() - c->lask_wakeup) / 1000000.0f; /* 计算两次调用的时间间隔,单位秒 */ - c->lask_wakeup = BSP_TIME_Get_us(); - - /*设置底盘模式*/ - if (Chassis_SetMode(c, c_cmd->mode) != CHASSIS_OK) { - return CHASSIS_ERR_MODE; // 设置模式失败 - } - - /*根据底盘模式执行不同的控制逻辑*/ - switch (c->mode) { - case CHASSIS_MODE_RELAX: - // 放松模式,电机不输出 - - // BSP_CAN_WaitForEmptyMailbox(BSP_CAN_1, 10); - MOTOR_LZ_Relax(&c->param->joint_motors[0]); - // BSP_CAN_WaitForEmptyMailbox(BSP_CAN_1, 10); - MOTOR_LZ_Relax(&c->param->joint_motors[1]); - // BSP_CAN_WaitForEmptyMailbox(BSP_CAN_1, 10); - MOTOR_LZ_Relax(&c->param->joint_motors[2]); - // BSP_CAN_WaitForEmptyMailbox(BSP_CAN_1, 10); - MOTOR_LZ_Relax(&c->param->joint_motors[3]); - BSP_TIME_Delay_us(200); // 等待CAN总线空闲,确保前面的命令发送完成 - // BSP_CAN_WaitForEmptyMailbox(BSP_CAN_1, 10); - MOTOR_LK_Relax(&c->param->wheel_motors[0]); - // BSP_CAN_WaitForEmptyMailbox(BSP_CAN_1, 10); - MOTOR_LK_Relax(&c->param->wheel_motors[1]); - - // 更新VMC正解算用于状态估计 - VMC_ForwardSolve(&c->vmc_[0], c->feedback.joint[0].rotor_abs_angle, c->feedback.joint[1].rotor_abs_angle, - c->feedback.imu.euler.pit, c->feedback.imu.gyro.y); - VMC_ForwardSolve(&c->vmc_[1], c->feedback.joint[3].rotor_abs_angle, c->feedback.joint[2].rotor_abs_angle, - c->feedback.imu.euler.pit, c->feedback.imu.gyro.y); - - Chassis_LQRControl(c, c_cmd); - - break; - - case CHASSIS_MODE_RECOVER: - { - VMC_ForwardSolve(&c->vmc_[0], c->feedback.joint[0].rotor_abs_angle, c->feedback.joint[1].rotor_abs_angle, - c->feedback.imu.euler.pit, c->feedback.imu.gyro.y); - VMC_ForwardSolve(&c->vmc_[1], c->feedback.joint[3].rotor_abs_angle, c->feedback.joint[2].rotor_abs_angle, - c->feedback.imu.euler.pit, c->feedback.imu.gyro.y); - - float fn; - fn = -25.0f; - - VMC_InverseSolve(&c->vmc_[0], fn, 0.0f); - VMC_GetJointTorques(&c->vmc_[0], &c->output.joint[0].torque, &c->output.joint[1].torque); - VMC_InverseSolve(&c->vmc_[1], fn, 0.0f); - VMC_GetJointTorques(&c->vmc_[1], &c->output.joint[3].torque, &c->output.joint[2].torque); - // Chassis_MotorEnable(c); - c->output.wheel[0] = 0.0f; - c->output.wheel[1] = 0.0f; - Chassis_Output(c); // 统一输出 - } - break; - - case CHASSIS_MODE_WHELL_BALANCE: - // 更新VMC正解算用于状态估计 - for (int i = 0; i < 4; i++) { - c->output.joint[i].torque = 0.0f; - } - for (int i = 0; i < 2; i++) { - c->output.wheel[i] = 0.0f; - } - - // 更新VMC正解算用于状态估计 - VMC_ForwardSolve(&c->vmc_[0], c->feedback.joint[0].rotor_abs_angle, c->feedback.joint[1].rotor_abs_angle, - c->feedback.imu.euler.pit, c->feedback.imu.gyro.y); - VMC_ForwardSolve(&c->vmc_[1], c->feedback.joint[3].rotor_abs_angle, c->feedback.joint[2].rotor_abs_angle, - c->feedback.imu.euler.pit, c->feedback.imu.gyro.y); - - // VMC_InverseSolve(&c->vmc_[1], fn, tp); - // VMC_GetJointTorques(&c->vmc_[1], &t1, &t2); - - // c->output.joint[3].torque = t1; - // c->output.joint[2].torque = t2; - - Chassis_LQRControl(c, c_cmd); // 即使在放松模式下也执行LQR以保持状态更新 - // c->output.wheel[0] = 0.2f; - // c->output.wheel[1] = 0.2f; - Chassis_Output(c); // 统一输出 - break; - - case CHASSIS_MODE_WHELL_LEG_BALANCE: - // 轮腿平衡模式,使用LQR控制和PID腿长控制 - - // 更新VMC正解算 - VMC_ForwardSolve(&c->vmc_[0], c->feedback.joint[0].rotor_abs_angle, c->feedback.joint[1].rotor_abs_angle, - c->feedback.imu.euler.pit, c->feedback.imu.gyro.y); - VMC_ForwardSolve(&c->vmc_[1], c->feedback.joint[3].rotor_abs_angle, c->feedback.joint[2].rotor_abs_angle, - c->feedback.imu.euler.pit, c->feedback.imu.gyro.y); - - // 执行LQR控制(包含PID腿长控制) - if (Chassis_LQRControl(c, c_cmd) != 0) { - // LQR控制失败,切换到安全模式 - return CHASSIS_ERR; - } - - Chassis_Output(c); // 统一输出 - break; - - default: - return CHASSIS_ERR_MODE; - } - - return CHASSIS_OK; + return CHASSIS_OK; } void Chassis_Output(Chassis_t *c) { - if (c == NULL) return; - for (int i = 0; i < 4; i++) { - MOTOR_LZ_MotionParam_t param = {0}; - param.torque = c->output.joint[i].torque; - MOTOR_LZ_MotionControl(&c->param->joint_motors[i], ¶m); - } - BSP_TIME_Delay_us(400); // 等待CAN总线空闲,确保前面的命令发送完成 - for (int i = 0; i < 2; i++) { - MOTOR_LK_SetOutput(&c->param->wheel_motors[i], c->output.wheel[i]); - // MOTOR_LK_SetOutput(&c->param->wheel_motors[i], 0.0f); - } - + if (c == NULL) + return; + for (int i = 0; i < 4; i++) { + MOTOR_LZ_MotionParam_t param = {0}; + param.torque = c->output.joint[i].torque; + MOTOR_LZ_MotionControl(&c->param->joint_motors[i], ¶m); + } + BSP_TIME_Delay_us(400); // 等待CAN总线空闲,确保前面的命令发送完成 + for (int i = 0; i < 2; i++) { + MOTOR_LK_SetOutput(&c->param->wheel_motors[i], c->output.wheel[i]); + // MOTOR_LK_SetOutput(&c->param->wheel_motors[i], 0.0f); + } } int8_t Chassis_LQRControl(Chassis_t *c, const Chassis_CMD_t *c_cmd) { - if (c == NULL || c_cmd == NULL) { - return CHASSIS_ERR_NULL; - } + if (c == NULL || c_cmd == NULL) { + return CHASSIS_ERR_NULL; + } - /* 参考C++版本实现的LQR控制 */ - - /* 地面接触检测(参考C++版本) */ - float leg_fn[2]; - bool onground_flag[2]; - - // 暂时关闭离地监测,强制设置为着地状态 - leg_fn[0] = VMC_GroundContactDetection(&c->vmc_[0]); - leg_fn[1] = VMC_GroundContactDetection(&c->vmc_[1]); - onground_flag[0] = true; // 强制设置左腿着地 - onground_flag[1] = true; // 强制设置右腿着地 - - /* 获取VMC状态(等效摆杆参数) */ - float leg_L0[2], leg_theta[2], leg_d_theta[2]; - VMC_GetVirtualLegState(&c->vmc_[0], &leg_L0[0], &leg_theta[0], NULL, &leg_d_theta[0]); - VMC_GetVirtualLegState(&c->vmc_[1], &leg_L0[1], &leg_theta[1], NULL, &leg_d_theta[1]); - - /* 运动参数(参考C++版本的状态估计) */ - static float xhat = 0.0f, x_dot_hat = 0.0f; - float target_dot_x = 0.0f; - - // 简化的速度估计(后续可以改进为C++版本的复杂滤波) - x_dot_hat = c->chassis_state.velocity_x; - xhat = c->chassis_state.position_x; - - // 目标设定 - target_dot_x = c_cmd->move_vec.vx*2; - // target_dot_x = SpeedLimit_TargetSpeed(300.0f, c->chassis_state.velocity_x, target_dot_x, c->dt); // 速度限制器,假设最大加速度为1 m/s² - c->chassis_state.target_x += target_dot_x * c->dt; - - /* 分别计算左右腿的LQR控制 */ - float Tw[2] = {0.0f, 0.0f}; // 轮毂力矩 - float Tp[2] = {0.0f, 0.0f}; // 髋关节力矩 - - for (int leg = 0; leg < 2; leg++) { - /* 构建当前状态 */ - LQR_State_t current_state = {0}; - current_state.theta = leg_theta[leg]; - current_state.d_theta = leg_d_theta[leg]; - current_state.x = xhat; - current_state.d_x = x_dot_hat; - current_state.phi = -c->feedback.imu.euler.pit; - current_state.d_phi = -c->feedback.imu.gyro.y; - - /* 构建目标状态 */ - LQR_State_t target_state = {0}; - target_state.theta = 0.0f; // 目标摆杆角度 - target_state.d_theta = 0.0f; // 目标摆杆角速度 - // target_state.x = 0; // 目标位置 - // target_state.d_x = 0.0f; // 目标速度 - target_state.phi = -0.1f; // 目标俯仰角 - target_state.d_phi = 0.0f; // 目标俯仰角速度 - // target_state.theta = -0.8845f * leg_L0[leg] + 0.40663f; // 目标摆杆角度 - // target_state.d_theta = 0.0f; // 目标摆杆角速度 - target_state.x = c->chassis_state.target_x; // 目标位置 - target_state.d_x = target_dot_x; // 目标速度 - // target_state.phi = 0.16f; // 目标俯仰角 - // target_state.d_phi = 0.0f; // 目标俯仰角速度 - - /* 根据当前腿长更新增益矩阵 */ - LQR_CalculateGainMatrix(&c->lqr[leg], leg_L0[leg]); - - /* 更新LQR状态 */ - LQR_SetTargetState(&c->lqr[leg], &target_state); - LQR_UpdateState(&c->lqr[leg], ¤t_state); - - if (onground_flag[leg]) { - /* 接地状态:使用LQR控制器计算输出 */ - if (LQR_Control(&c->lqr[leg]) == 0) { - Tw[leg] = c->lqr[leg].control_output.T; - Tp[leg] = c->lqr[leg].control_output.Tp; - // Tw[leg] = 0.0f; // 暂时屏蔽轮毂力矩输出 - // Tp[leg] = -2.5f; // 暂时屏蔽腿部力矩输出 - } else { - Tw[leg] = 0.0f; - Tp[leg] = 0.0f; - } - } else { - /* 离地状态:简化控制,只控制腿部摆动 */ - Tw[leg] = 0.0f; - // 只控制摆杆角度 - float theta_error = current_state.theta - target_state.theta; - float d_theta_error = current_state.d_theta - target_state.d_theta; - Tp[leg] = -(c->lqr[leg].K_matrix[1][0] * theta_error + c->lqr[leg].K_matrix[1][1] * d_theta_error); - } - } - // c->yaw_control.current_yaw = c->feedback.imu.euler.yaw; + /* 运动参数(参考C++版本的状态估计) */ + static float xhat = 0.0f, x_dot_hat = 0.0f; + float target_dot_x = 0.0f; - // c->yaw_control.target_yaw -= c_cmd->move_vec.vy * 0.005f; // 目标偏航角,假设遥控器输入范围为[-10, 10],映射到[-0.02, 0.02] rad/s + // 简化的速度估计(后续可以改进为C++版本的复杂滤波) + x_dot_hat = c->chassis_state.velocity_x; + xhat = c->chassis_state.position_x; - // // 修正目标yaw角度到[-pi, pi] - // if (c->yaw_control.target_yaw > M_PI) { - // c->yaw_control.target_yaw -= M_2PI; - // } else if (c->yaw_control.target_yaw < -M_PI) { - // c->yaw_control.target_yaw += M_2PI; - // } + // 目标设定 + target_dot_x = c_cmd->move_vec.vx * 2; + // target_dot_x = SpeedLimit_TargetSpeed(300.0f, c->chassis_state.velocity_x, + // target_dot_x, c->dt); // 速度限制器,假设最大加速度为1 m/s² + c->chassis_state.target_x += target_dot_x * c->dt; - // c->yaw_control.yaw_force = PID_Calc(&c->pid.yaw, c->yaw_control.target_yaw, c->feedback.imu.euler.yaw, c->feedback.imu.gyro.z, c->dt); - c->yaw_control.current_yaw = c->feedback.yaw.rotor_abs_angle; - c->yaw_control.target_yaw = c->param->mech_zero_yaw; - c->yaw_control.yaw_force = PID_Calc(&c->pid.yaw, c->yaw_control.target_yaw, c->feedback.yaw.rotor_abs_angle, 0.0f, c->dt); + /* 分别计算左右腿的LQR控制 */ + /* 构建当前状态 */ + LQR_State_t current_state = {0}; + current_state.theta = c->vmc_[0].leg.theta; + current_state.d_theta = c->vmc_[0].leg.d_theta; + current_state.x = xhat; + current_state.d_x = x_dot_hat; + current_state.phi = -c->feedback.imu.euler.pit; + current_state.d_phi = -c->feedback.imu.gyro.y; + + LQR_UpdateState(&c->lqr[0], ¤t_state); + + current_state.theta = c->vmc_[1].leg.theta; + current_state.d_theta = c->vmc_[1].leg.d_theta; + LQR_UpdateState(&c->lqr[1], ¤t_state); + + /* 根据当前腿长更新增益矩阵 */ + LQR_CalculateGainMatrix(&c->lqr[0], c->vmc_[0].leg.L0); + LQR_CalculateGainMatrix(&c->lqr[1], c->vmc_[1].leg.L0); + + /* 构建目标状态 */ + LQR_State_t target_state = {0}; + target_state.theta = 0.0f; // 目标摆杆角度 + target_state.d_theta = 0.0f; // 目标摆杆角速度 + target_state.phi = -0.1f; // 目标俯仰角 + target_state.d_phi = 0.0f; // 目标俯仰角速度 + target_state.x = c->chassis_state.target_x; // 目标位置 + target_state.d_x = target_dot_x; // 目标速度 - /* 轮毂力矩输出(参考C++版本的减速比) */ - c->output.wheel[0] = Tw[0] / 4.5f + c->yaw_control.yaw_force; - c->output.wheel[1] = Tw[1] / 4.5f - c->yaw_control.yaw_force; - /* 腿长控制和VMC逆解算(使用PID控制) */ - float virtual_force[2]; - float target_L0[2]; - float leg_d_length[2]; // 腿长变化率 - - /* 横滚角PID补偿计算 */ - float roll_compensation = PID_Calc(&c->pid.roll, 0.0f, c->feedback.imu.euler.rol, c->feedback.imu.gyro.x, c->dt); - - // 目标腿长设定 - target_L0[0] = 0.15f + c_cmd->height * 0.2f + roll_compensation; // 左腿:基础腿长 + 高度调节 + 横滚角补偿 - target_L0[1] = 0.15f + c_cmd->height * 0.2f - roll_compensation; // 右腿:基础腿长 + 高度调节 - 横滚角补偿 - - // 获取腿长变化率 - VMC_GetVirtualLegState(&c->vmc_[0], NULL, NULL, &leg_d_length[0], NULL); - VMC_GetVirtualLegState(&c->vmc_[1], NULL, NULL, &leg_d_length[1], NULL); - - /* 左右腿摆角相互补偿(参考C++版本的Delta_Tp机制) */ - float Delta_Tp[2]; - // 使用tp_pid进行左右腿摆角同步控制 - // 左腿补偿力矩:使左腿theta向右腿theta靠拢 - Delta_Tp[0] = leg_L0[0] * 10.0f * PID_Calc(&c->pid.tp[0], leg_theta[1], leg_theta[0], leg_d_theta[0], c->dt); - // 右腿补偿力矩:使右腿theta向左腿theta靠拢(符号相反) - Delta_Tp[1] = leg_L0[1] * 10.0f * PID_Calc(&c->pid.tp[1], leg_theta[0], leg_theta[1], leg_d_theta[1], c->dt); - - for (int leg = 0; leg < 2; leg++) { - // 使用PID进行腿长控制 - float pid_output = PID_Calc(&c->pid.leg_length[leg], target_L0[leg], leg_L0[leg], leg_d_length[leg], c->dt); - - // 腿长控制力 = LQR摆杆力矩的径向分量 + PID腿长控制输出 + 基础支撑力 - virtual_force[leg] = (Tp[leg]) * sinf(leg_theta[leg]) + - pid_output + 30.0f; - // + // PID腿长控制输出 - // 45.0f; // 基础支撑力 - - // VMC逆解算(包含摆角补偿) - // virtual_force[leg] = 0.0f; // 暂时屏蔽虚拟力输出,避免VMC逆解算失败 - // Tp[leg] = 0.0f; // 暂时屏蔽腿部力矩输出,避免VMC逆解算失败 - // Delta_Tp[leg] = 0.0f; // 暂时屏蔽腿部力矩输出,避免VMC逆解算失败 - if (VMC_InverseSolve(&c->vmc_[leg], virtual_force[leg], Tp[leg] + Delta_Tp[leg]) == 0) { - // if (VMC_InverseSolve(&c->vmc_[leg], 0.0, Tp[leg] + Delta_Tp[leg]) == 0) { - if (leg == 0) { - VMC_GetJointTorques(&c->vmc_[0], &c->output.joint[0].torque, &c->output.joint[1].torque); - } else { - VMC_GetJointTorques(&c->vmc_[1], &c->output.joint[3].torque, &c->output.joint[2].torque); - } - } else { - // VMC失败,设为0力矩 - if (leg == 0) { - c->output.joint[0].torque = 0.0f; - c->output.joint[1].torque = 0.0f; - } else { - c->output.joint[2].torque = 0.0f; - c->output.joint[3].torque = 0.0f; - } - } + /* 更新LQR状态 */ + LQR_SetTargetState(&c->lqr[0], &target_state); + LQR_SetTargetState(&c->lqr[1], &target_state); + + LQR_Control(&c->lqr[0]); + LQR_Control(&c->lqr[1]); + + + + c->yaw_control.current_yaw = c->feedback.yaw.rotor_abs_angle; + c->yaw_control.target_yaw = c->param->mech_zero_yaw; + c->yaw_control.yaw_force = PID_Calc(&c->pid.yaw, c->yaw_control.target_yaw, + c->feedback.yaw.rotor_abs_angle, 0.0f, c->dt); + + /* 轮毂力矩输出(参考C++版本的减速比) */ + c->output.wheel[0] = c->lqr[0].control_output.T / 4.5f + c->yaw_control.yaw_force; + c->output.wheel[1] = c->lqr[1].control_output.T / 4.5f - c->yaw_control.yaw_force; + /* 腿长控制和VMC逆解算(使用PID控制) */ + float virtual_force[2]; + float target_L0[2]; + float leg_d_length[2]; // 腿长变化率 + + /* 横滚角PID补偿计算 */ + // 使用PID控制器计算横滚角补偿力,目标横滚角为0 + float roll_compensation_force = PID_Calc(&c->pid.roll, 0.0f, + c->feedback.imu.euler.rol, + c->feedback.imu.gyro.x, + c->dt); + + // 限制补偿力范围,防止过度补偿 + if (roll_compensation_force > 20.0f) roll_compensation_force = 20.0f; + if (roll_compensation_force < -20.0f) roll_compensation_force = -20.0f; + + // 目标腿长设定(移除横滚角补偿) + target_L0[0] = 0.15f + c_cmd->height * 0.2f; // 左腿:基础腿长 + 高度调节 + target_L0[1] = 0.15f + c_cmd->height * 0.2f; // 右腿:基础腿长 + 高度调节 + + // 获取腿长变化率 + VMC_GetVirtualLegState(&c->vmc_[0], NULL, NULL, &leg_d_length[0], NULL); + VMC_GetVirtualLegState(&c->vmc_[1], NULL, NULL, &leg_d_length[1], NULL); + + /* 左右腿摆角相互补偿(参考C++版本的Delta_Tp机制) */ + float Delta_Tp[2]; + // 使用tp_pid进行左右腿摆角同步控制 + // 左腿补偿力矩:使左腿theta向右腿theta靠拢 + Delta_Tp[0] = c->vmc_[0].leg.L0 * 10.0f * + PID_Calc(&c->pid.tp[0], c->vmc_[1].leg.theta, c->vmc_[0].leg.theta, + c->vmc_[0].leg.d_theta, c->dt); + // 右腿补偿力矩:使右腿theta向左腿theta靠拢(符号相反) + Delta_Tp[1] = -Delta_Tp[0]; + + + // 左腿控制 + { + // 使用PID进行腿长控制 + float pid_output = PID_Calc(&c->pid.leg_length[0], target_L0[0], + c->vmc_[0].leg.L0, leg_d_length[0], c->dt); + + // 腿长控制力 = LQR摆杆力矩的径向分量 + PID腿长控制输出 + 基础支撑力 - 横滚角补偿力(左腿减少支撑力) + virtual_force[0] = (c->lqr[0].control_output.Tp) * sinf(c->vmc_[0].leg.theta) + pid_output + 50.0f - roll_compensation_force; + + // VMC逆解算(包含摆角补偿) + if (VMC_InverseSolve(&c->vmc_[0], virtual_force[0], + c->lqr[0].control_output.Tp + Delta_Tp[0]) == 0) { + VMC_GetJointTorques(&c->vmc_[0], &c->output.joint[0].torque, + &c->output.joint[1].torque); + } else { + // VMC失败,设为0力矩 + c->output.joint[0].torque = 0.0f; + c->output.joint[1].torque = 0.0f; } - - /* 安全限制 */ - for (int i = 0; i < 2; i++) { - if (fabsf(c->output.wheel[i]) > 0.8f) { - c->output.wheel[i] = (c->output.wheel[i] > 0) ? 0.8f : -0.8f; - } + } + + // 右腿控制 + { + // 使用PID进行腿长控制 + float pid_output = PID_Calc(&c->pid.leg_length[1], target_L0[1], + c->vmc_[1].leg.L0, leg_d_length[1], c->dt); + + // 腿长控制力 = LQR摆杆力矩的径向分量 + PID腿长控制输出 + 基础支撑力 + 横滚角补偿力(右腿增加支撑力) + virtual_force[1] = (c->lqr[1].control_output.Tp) * sinf(c->vmc_[1].leg.theta) + pid_output + 50.0f + roll_compensation_force; + + // VMC逆解算(包含摆角补偿) + if (VMC_InverseSolve(&c->vmc_[1], virtual_force[1], + c->lqr[1].control_output.Tp + Delta_Tp[1]) == 0) { + VMC_GetJointTorques(&c->vmc_[1], &c->output.joint[3].torque, + &c->output.joint[2].torque); + } else { + // VMC失败,设为0力矩 + c->output.joint[2].torque = 0.0f; + c->output.joint[3].torque = 0.0f; } - - for (int i = 0; i < 4; i++) { - if (fabsf(c->output.joint[i].torque) > 20.0f) { - c->output.joint[i].torque = (c->output.joint[i].torque > 0) ? 20.0f : -20.0f; - } + } + + /* 安全限制 */ + for (int i = 0; i < 2; i++) { + if (fabsf(c->output.wheel[i]) > 0.8f) { + c->output.wheel[i] = (c->output.wheel[i] > 0) ? 0.8f : -0.8f; } - - return CHASSIS_OK; + } + + for (int i = 0; i < 4; i++) { + if (fabsf(c->output.joint[i].torque) > 20.0f) { + c->output.joint[i].torque = + (c->output.joint[i].torque > 0) ? 20.0f : -20.0f; + } + } + + return CHASSIS_OK; } diff --git a/User/module/balance_chassis.h b/User/module/balance_chassis.h index 64669fa..a2313be 100644 --- a/User/module/balance_chassis.h +++ b/User/module/balance_chassis.h @@ -38,7 +38,6 @@ extern "C" { typedef enum { CHASSIS_MODE_RELAX, /* 放松模式,电机不输出。一般情况底盘初始化之后的模式 */ CHASSIS_MODE_RECOVER, /* 复位模式 */ - CHASSIS_MODE_WHELL_BALANCE, /* 平衡模式,底盘自我平衡 */ CHASSIS_MODE_WHELL_LEG_BALANCE, /* 轮子+腿平衡模式,底盘自我平衡 */ } Chassis_Mode_t; diff --git a/User/module/config.c b/User/module/config.c index 46b8685..d330e91 100644 --- a/User/module/config.c +++ b/User/module/config.c @@ -38,21 +38,21 @@ Config_RobotParam_t robot_config = { }, .roll={ - .k=1.0f, + .k=10.0f, .p=5.0f, /* 横滚角比例系数 */ .i=0.0f, /* 横滚角积分系数 */ .d=0.2f, /* 横滚角微分系数 */ .i_limit=0.0f, /* 积分限幅 */ - .out_limit=0.05f, /* 输出限幅,腿长差值限制 */ + .out_limit=50.0f, /* 输出限幅,腿长差值限制 */ .d_cutoff_freq=30.0f, /* 微分截止频率 */ .range=-1.0f, /* 不使用循环误差处理 */ }, .leg_length={ - .k = 20.0f, - .p = 10.0f, + .k = 40.0f, + .p = 5.0f, .i = 0.0f, - .d = 0.0f, + .d = 1.0f, .i_limit = 0.0f, .out_limit = 100.0f, .d_cutoff_freq = -1.0f, @@ -160,18 +160,18 @@ Config_RobotParam_t robot_config = { } }, .lqr_gains = { - .k11_coeff = { -1.508572585852218e+02f, 1.764949368139731e+02f, -9.850368126414553e+01f, -1.786139736968997e+00f }, // theta - .k12_coeff = { 6.466280284100411e+00f, -6.582699834130516e+00f, -7.131858380770703e+00f, -2.414590752579311e-01f }, // d_theta - .k13_coeff = { -7.182568574598301e+01f, 7.405968297046749e+01f, -2.690651220502175e+01f, -1.029850390463813e-01f }, // x - .k14_coeff = { -7.645548919162933e+01f, 7.988837668034076e+01f, -3.105733981791483e+01f, -4.296847184537235e-01f }, // d_x - .k15_coeff = { -9.403058188674812e+00f, 2.314767704216332e+01f, -1.651965553704901e+01f, 3.907902082528794e+00f }, // phi - .k16_coeff = { -4.023111056381187e+00f, 6.154951770170482e+00f, -3.705537084098432e+00f, 8.264904615264155e-01f }, // d_phi - .k21_coeff = { 1.254775776629822e+02f, -8.971732439896309e+01f, 4.744038360386896e+00f, 1.088353622361175e+01f }, // theta - .k22_coeff = { 1.061139172689013e+01f, -1.011235824540459e+01f, 3.034478775177782e+00f, 1.254920921163464e+00f }, // d_theta - .k23_coeff = { -2.675556963667067e+01f, 4.511381902505539e+01f, -2.800741296230217e+01f, 7.647205920058282e+00f }, // x - .k24_coeff = { -4.067721095665326e+01f, 6.068996620706580e+01f, -3.488384556019462e+01f, 9.374136714284193e+00f }, // d_x - .k25_coeff = { 7.359316334738203e+01f, -7.896223244854855e+01f, 2.961892943386949e+01f, 4.406632136721399e+00f }, // phi - .k26_coeff = { 1.624843000878248e+01f, -1.680831323767654e+01f, 6.018754311678180e+00f, 2.337719500754984e-01f }, // d_phi + .k11_coeff = { -1.916376919295156e+02f, 2.009487240966917e+02f, -9.481460086781939e+01f, -4.748704486775178e+00f }, // theta + .k12_coeff = { -1.794538872095484e+00f, -1.557720009681701e-02f, -7.253705624763870e+00f, -9.066344876912042e-01f }, // d_theta + .k13_coeff = { -5.530128764310525e+01f, 5.441066051951745e+01f, -1.855725101721958e+01f, -1.532320658646968e+00f }, // x + .k14_coeff = { -5.226956984912729e+01f, 5.134367619659140e+01f, -1.878250555345751e+01f, -2.194040977657715e+00f }, // d_x + .k15_coeff = { -8.041587662748894e+00f, 1.194985309170939e+01f, -6.358536570979702e+00f, 8.475914154881636e-01f }, // phi + .k16_coeff = { -1.171602430557222e+01f, 1.424681188601595e+01f, -6.769563511869035e+00f, 1.358696951640962e+00f }, // d_phi + .k21_coeff = { -1.589916277171124e+01f, 3.688717311486668e+01f, -2.693106123880470e+01f, 8.468880380216705e+00f }, // theta + .k22_coeff = { -4.056650578339882e+00f, 5.627051302682392e+00f, -2.802037254431724e+00f, 1.258712322539219e+00f }, // d_theta + .k23_coeff = { -4.615940205649521e+01f, 5.298830026615487e+01f, -2.321905486010759e+01f, 4.733000143959848e+00f }, // x + .k24_coeff = { -6.198443605956307e+01f, 6.867018097135634e+01f, -2.873375258895661e+01f, 5.632056979434964e+00f }, // d_x + .k25_coeff = { -1.149934231218892e+01f, 9.960303123832579e+00f, -2.826210920406189e+00f, 4.384038656352771e+00f }, // phi + .k26_coeff = { 1.452344963148120e+01f, -1.451377402367933e+01f, 5.020766559053281e+00f, 1.099371055071753e+00f }, // d_phi }, }, diff --git a/utils/Simulation-master/balance/series_legs/get_k_length.m b/utils/Simulation-master/balance/series_legs/get_k_length.m index 6992301..355cb13 100644 --- a/utils/Simulation-master/balance/series_legs/get_k_length.m +++ b/utils/Simulation-master/balance/series_legs/get_k_length.m @@ -48,8 +48,8 @@ function K = get_k_length(leg_length) B=subs(B,[R,L,LM,l,mw,mp,M,Iw,Ip,IM,g],[R1,L1,LM1,l1,mw1,mp1,M1,Iw1,Ip1,IM1,9.8]); B=double(B); - Q=diag([700 100 2000 1500 5000 1]);%theta d_theta x d_x phi d_phi%700 1 600 200 1000 1 - R=[140 0;0 50]; %T Tp + Q=diag([500 200 1500 800 2500 200]);%theta d_theta x d_x phi d_phi%700 1 600 200 1000 1 + R=[100 0;0 80]; %T Tp K=lqr(A,B,Q,R);