108 lines
3.0 KiB
C
108 lines
3.0 KiB
C
|
/*
|
||
|
限制器
|
||
|
*/
|
||
|
|
||
|
#include "limiter.h"
|
||
|
|
||
|
#include <math.h>
|
||
|
#include <stddef.h>
|
||
|
|
||
|
#define POWER_BUFF_THRESHOLD 20
|
||
|
#define CHASSIS_POWER_CHECK_FREQ 10
|
||
|
#define CHASSIS_POWER_FACTOR_PASS 0.9f
|
||
|
#define CHASSIS_POWER_FACTOR_NO_PASS 1.5f
|
||
|
|
||
|
#define CHASSIS_MOTOR_CIRCUMFERENCE 0.12f
|
||
|
|
||
|
/**
|
||
|
* @brief 限制底盘功率不超过power_limit
|
||
|
*
|
||
|
* @param power_limit 最大功率
|
||
|
* @param motor_out 电机输出值
|
||
|
* @param speed 电机转速
|
||
|
* @param len 电机数量
|
||
|
* @return int8_t 0对应没有错误
|
||
|
*/
|
||
|
int8_t PowerLimit_ChassicOutput(float power_limit, float *motor_out,
|
||
|
float *speed, uint32_t len) {
|
||
|
/* power_limit小于0时不进行限制 */
|
||
|
if (motor_out == NULL || speed == NULL || power_limit < 0) return -1;
|
||
|
|
||
|
float sum_motor_out = 0.0f;
|
||
|
for (uint32_t i = 0; i < len; i++) {
|
||
|
/* 总功率计算 P=F(由转矩电流表示)*V(由转速表示) */
|
||
|
sum_motor_out +=
|
||
|
fabsf(motor_out[i]) * fabsf(speed[i]) * CHASSIS_MOTOR_CIRCUMFERENCE;
|
||
|
}
|
||
|
|
||
|
/* 保持每个电机输出值缩小时比例不变 */
|
||
|
if (sum_motor_out > power_limit) {
|
||
|
for (uint32_t i = 0; i < len; i++) {
|
||
|
motor_out[i] *= power_limit / sum_motor_out;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief 电容输入功率计算
|
||
|
*
|
||
|
* @param power_in 底盘当前功率
|
||
|
* @param power_limit 裁判系统功率限制值
|
||
|
* @param power_buffer 缓冲能量
|
||
|
* @return float 裁判系统输出最大值
|
||
|
*/
|
||
|
float PowerLimit_CapInput(float power_in, float power_limit,
|
||
|
float power_buffer) {
|
||
|
float target_power = 0.0f;
|
||
|
|
||
|
/* 计算下一个检测周期的剩余缓冲能量 */
|
||
|
float heat_buff = power_buffer - (float)(power_in - power_limit) /
|
||
|
(float)CHASSIS_POWER_CHECK_FREQ;
|
||
|
if (heat_buff < POWER_BUFF_THRESHOLD) { /* 功率限制 */
|
||
|
target_power = power_limit * CHASSIS_POWER_FACTOR_PASS;
|
||
|
} else {
|
||
|
target_power = power_limit * CHASSIS_POWER_FACTOR_NO_PASS;
|
||
|
}
|
||
|
|
||
|
return target_power;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief 使用缓冲能量计算底盘最大功率
|
||
|
*
|
||
|
* @param power_limit 裁判系统功率限制值
|
||
|
* @param power_buffer 缓冲能量
|
||
|
* @return float 底盘输出最大值
|
||
|
*/
|
||
|
float PowerLimit_TargetPower(float power_limit, float power_buffer) {
|
||
|
float target_power = 0.0f;
|
||
|
|
||
|
/* 根据剩余缓冲能量计算输出功率 */
|
||
|
target_power = power_limit * (power_buffer - 10.0f) / 20.0f;
|
||
|
if (target_power < 0.0f) target_power = 0.0f;
|
||
|
|
||
|
return target_power;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief 射击频率控制
|
||
|
*
|
||
|
* @param heat 当前热量
|
||
|
* @param heat_limit 热量上限
|
||
|
* @param cooling_rate 冷却速率
|
||
|
* @param heat_increase 冷却增加
|
||
|
* @param shoot_freq 经过热量限制后的射击频率
|
||
|
* @return float 射击频率
|
||
|
*/
|
||
|
float HeatLimit_ShootFreq(float heat, float heat_limit, float cooling_rate,
|
||
|
float heat_increase, bool is_big) {
|
||
|
float heat_percent = heat / heat_limit;
|
||
|
float stable_freq = cooling_rate / heat_increase;
|
||
|
if (is_big)
|
||
|
return stable_freq;
|
||
|
else
|
||
|
return (heat_percent > 0.7f) ? stable_freq : 3.0f * stable_freq;
|
||
|
}
|