from collections import defaultdict import cv2 import numpy as np from ultralytics import YOLO # Load the YOLO model model = YOLO("yolo11n.pt") # model = YOLO("yolov8n.pt") # model = YOLO("your_yolo_model.pt") # Open the video file # video_path = "path/to/video.mp4" cap = cv2.VideoCapture(0) # Store the track history track_history = defaultdict(lambda: []) # Loop through the video frames while cap.isOpened(): # Read a frame from the video success, frame = cap.read() if success: results = model.track(frame, persist=True) # print(results) boxes = results[0].boxes.xywh.cpu() track_ids = results[0].boxes.id if track_ids is not None: track_ids = track_ids.int().cpu().tolist() # Visualize the results on the frame annotated_frame = results[0].plot() # Plot the tracks for box, track_id in zip(boxes, track_ids): x, y, w, h = box track = track_history[track_id] track.append((float(x), float(y))) # x, y center point if len(track) > 30: # retain 90 tracks for 90 frames track.pop(0) # Draw the tracking lines points = np.hstack(track).astype(np.int32).reshape((-1, 1, 2)) cv2.polylines(annotated_frame, [points], isClosed=False, color=(230, 230, 230), thickness=10) else: annotated_frame = frame # Display the annotated frame cv2.imshow("YOLO11 Tracking", annotated_frame) # Break the loop if 'q' is pressed if cv2.waitKey(1) & 0xFF == ord("q"): break else: # Break the loop if the end of the video is reached break # Release the video capture object and close the display window cap.release() cv2.destroyAllWindows()