RMUL2025/lib/cmsis_5/CMSIS/DSP/Testing/Source/Tests/QuaternionTestsF32.cpp

235 lines
6.4 KiB
C++
Executable File

#include "QuaternionTestsF32.h"
#include <stdio.h>
#include "Error.h"
#define SNR_THRESHOLD 120
/*
Reference patterns are generated with
a double precision computation.
*/
#define REL_ERROR (1.0e-6)
#define ABS_ERROR (1.0e-7)
void QuaternionTestsF32::test_quaternion_norm_f32()
{
const float32_t *inp1=input1.ptr();
float32_t *outp=output.ptr();
arm_quaternion_norm_f32(inp1,outp,output.nbSamples());
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void QuaternionTestsF32::test_quaternion_inverse_f32()
{
const float32_t *inp1=input1.ptr();
float32_t *outp=output.ptr();
arm_quaternion_inverse_f32(inp1,outp,input1.nbSamples() >> 2);
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void QuaternionTestsF32::test_quaternion_conjugate_f32()
{
const float32_t *inp1=input1.ptr();
float32_t *outp=output.ptr();
arm_quaternion_conjugate_f32(inp1,outp,input1.nbSamples() >> 2);
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void QuaternionTestsF32::test_quaternion_normalize_f32()
{
const float32_t *inp1=input1.ptr();
float32_t *outp=output.ptr();
arm_quaternion_normalize_f32(inp1,outp,input1.nbSamples() >> 2);
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void QuaternionTestsF32::test_quaternion_prod_single_f32()
{
const float32_t *inp1=input1.ptr();
const float32_t *inp2=input2.ptr();
float32_t *outp=output.ptr();
for(uint32_t i=0; i < input1.nbSamples() >> 2; i++)
{
arm_quaternion_product_single_f32(inp1,inp2,outp);
outp += 4;
inp1 += 4;
inp2 += 4;
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void QuaternionTestsF32::test_quaternion_product_f32()
{
const float32_t *inp1=input1.ptr();
const float32_t *inp2=input2.ptr();
float32_t *outp=output.ptr();
arm_quaternion_product_f32(inp1,inp2,outp,input1.nbSamples() >> 2);
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void QuaternionTestsF32::test_quaternion2rotation_f32()
{
const float32_t *inp1=input1.ptr();
float32_t *outp=output.ptr();
arm_quaternion2rotation_f32(inp1,outp,input1.nbSamples() >> 2);
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void QuaternionTestsF32::test_rotation2quaternion_f32()
{
const float32_t *inp1=input1.ptr();
float32_t *outp=output.ptr();
/*
q and -q are representing the same rotation.
To remove the ambiguity we force the real part ot be positive.
Same convention followed in Python script.
*/
arm_rotation2quaternion_f32(inp1,outp,output.nbSamples() >> 2);
/* Remove ambiguity */
for(uint32_t i=0; i < output.nbSamples() >> 2 ; i++)
{
if (outp[0] < 0.0f)
{
outp[0] = -outp[0];
outp[1] = -outp[1];
outp[2] = -outp[2];
outp[3] = -outp[3];
}
outp += 4;
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void QuaternionTestsF32::setUp(Testing::testID_t id,std::vector<Testing::param_t>& params,Client::PatternMgr *mgr)
{
(void)params;
Testing::nbSamples_t nb=MAX_NB_SAMPLES;
switch(id)
{
case QuaternionTestsF32::TEST_QUATERNION_NORM_F32_1:
input1.reload(QuaternionTestsF32::INPUT1_F32_ID,mgr,nb);
ref.reload(QuaternionTestsF32::REF_NORM_F32_ID,mgr,nb);
break;
case QuaternionTestsF32::TEST_QUATERNION_INVERSE_F32_2:
input1.reload(QuaternionTestsF32::INPUT1_F32_ID,mgr,nb);
ref.reload(QuaternionTestsF32::REF_INVERSE_F32_ID,mgr,nb);
break;
case QuaternionTestsF32::TEST_QUATERNION_CONJUGATE_F32_3:
input1.reload(QuaternionTestsF32::INPUT1_F32_ID,mgr,nb);
ref.reload(QuaternionTestsF32::REF_CONJUGATE_F32_ID,mgr,nb);
break;
case QuaternionTestsF32::TEST_QUATERNION_NORMALIZE_F32_4:
input1.reload(QuaternionTestsF32::INPUT1_F32_ID,mgr,nb);
ref.reload(QuaternionTestsF32::REF_NORMALIZE_F32_ID,mgr,nb);
break;
case QuaternionTestsF32::TEST_QUATERNION_PROD_SINGLE_F32_5:
input1.reload(QuaternionTestsF32::INPUT1_F32_ID,mgr,nb);
input2.reload(QuaternionTestsF32::INPUT2_F32_ID,mgr,nb);
ref.reload(QuaternionTestsF32::REF_MULT_F32_ID,mgr,nb);
break;
case QuaternionTestsF32::TEST_QUATERNION_PRODUCT_F32_6:
input1.reload(QuaternionTestsF32::INPUT1_F32_ID,mgr,nb);
input2.reload(QuaternionTestsF32::INPUT2_F32_ID,mgr,nb);
ref.reload(QuaternionTestsF32::REF_MULT_F32_ID,mgr,nb);
break;
case QuaternionTestsF32::TEST_QUATERNION2ROTATION_F32_7:
input1.reload(QuaternionTestsF32::INPUT1_F32_ID,mgr,nb);
ref.reload(QuaternionTestsF32::REF_QUAT2ROT_F32_ID,mgr,nb);
break;
case QuaternionTestsF32::TEST_ROTATION2QUATERNION_F32_8:
input1.reload(QuaternionTestsF32::INPUT7_F32_ID,mgr,nb);
ref.reload(QuaternionTestsF32::REF_ROT2QUAT_F32_ID,mgr,nb);
break;
}
output.create(ref.nbSamples(),QuaternionTestsF32::OUT_SAMPLES_F32_ID,mgr);
}
void QuaternionTestsF32::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
{
(void)id;
output.dump(mgr);
}