189 lines
4.0 KiB
C++
Executable File
189 lines
4.0 KiB
C++
Executable File
#include "BIQUADF64.h"
|
|
#include <stdio.h>
|
|
#include "Error.h"
|
|
|
|
#define SNR_THRESHOLD 98
|
|
|
|
/*
|
|
|
|
Reference patterns are generated with
|
|
a double precision computation.
|
|
|
|
*/
|
|
#define REL_ERROR (1.2e-3)
|
|
|
|
void BIQUADF64::test_biquad_cascade_df2T_ref()
|
|
{
|
|
|
|
|
|
float64_t *statep = state.ptr();
|
|
|
|
|
|
float64_t *coefsp = coefs.ptr();
|
|
|
|
|
|
float64_t *inputp = inputs.ptr();
|
|
float64_t *outp = output.ptr();
|
|
|
|
int blockSize;
|
|
|
|
|
|
|
|
/*
|
|
|
|
Python script is generating different tests with
|
|
different blockSize and numTaps.
|
|
|
|
We loop on those configs.
|
|
|
|
*/
|
|
|
|
blockSize = inputs.nbSamples() >> 1;
|
|
|
|
/*
|
|
|
|
The filter is initialized with the coefs, blockSize and numTaps.
|
|
|
|
*/
|
|
arm_biquad_cascade_df2T_init_f64(&this->Sdf2T,3,coefsp,statep);
|
|
|
|
|
|
/*
|
|
|
|
Python script is filtering a 2*blockSize number of samples.
|
|
We do the same filtering in two pass to check (indirectly that
|
|
the state management of the fir is working.)
|
|
|
|
*/
|
|
|
|
arm_biquad_cascade_df2T_f64(&this->Sdf2T,inputp,outp,blockSize);
|
|
outp += blockSize;
|
|
|
|
|
|
inputp += blockSize;
|
|
arm_biquad_cascade_df2T_f64(&this->Sdf2T,inputp,outp,blockSize);
|
|
outp += blockSize;
|
|
|
|
|
|
ASSERT_EMPTY_TAIL(output);
|
|
|
|
ASSERT_SNR(output,ref,(float64_t)SNR_THRESHOLD);
|
|
|
|
ASSERT_REL_ERROR(output,ref,REL_ERROR);
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
void BIQUADF64::test_biquad_cascade_df2T_rand()
|
|
{
|
|
|
|
|
|
float64_t *statep = state.ptr();
|
|
const int16_t *configsp = configs.ptr();
|
|
|
|
float64_t *coefsp = coefs.ptr();
|
|
|
|
|
|
float64_t *inputp = inputs.ptr();
|
|
float64_t *outp = output.ptr();
|
|
|
|
int blockSize;
|
|
int numStages;
|
|
|
|
unsigned long i;
|
|
|
|
|
|
|
|
for(i=0;i < configs.nbSamples(); i+=2)
|
|
{
|
|
|
|
/*
|
|
|
|
Python script is generating different tests with
|
|
different blockSize and numTaps.
|
|
|
|
We loop on those configs.
|
|
|
|
*/
|
|
|
|
numStages = configsp[0];
|
|
blockSize = configsp[1];
|
|
|
|
configsp += 2;
|
|
|
|
|
|
|
|
/*
|
|
|
|
The filter is initialized with the coefs, blockSize and numTaps.
|
|
|
|
*/
|
|
arm_biquad_cascade_df2T_init_f64(&this->Sdf2T,numStages,coefsp,statep);
|
|
|
|
coefsp += numStages * 5;
|
|
|
|
/*
|
|
|
|
Python script is filtering a 2*blockSize number of samples.
|
|
We do the same filtering in two pass to check (indirectly that
|
|
the state management of the fir is working.)
|
|
|
|
*/
|
|
|
|
arm_biquad_cascade_df2T_f64(&this->Sdf2T,inputp,outp,blockSize);
|
|
outp += blockSize;
|
|
inputp += blockSize;
|
|
|
|
}
|
|
|
|
ASSERT_EMPTY_TAIL(output);
|
|
|
|
ASSERT_SNR(output,ref,(float64_t)SNR_THRESHOLD);
|
|
|
|
ASSERT_REL_ERROR(output,ref,REL_ERROR);
|
|
|
|
|
|
}
|
|
|
|
void BIQUADF64::setUp(Testing::testID_t id,std::vector<Testing::param_t>& params,Client::PatternMgr *mgr)
|
|
{
|
|
|
|
(void)params;
|
|
switch(id)
|
|
{
|
|
case BIQUADF64::TEST_BIQUAD_CASCADE_DF2T_REF_1:
|
|
|
|
inputs.reload(BIQUADF64::BIQUADINPUTS_F64_ID,mgr);
|
|
coefs.reload(BIQUADF64::BIQUADCOEFS_F64_ID,mgr);
|
|
ref.reload(BIQUADF64::BIQUADREFS_F64_ID,mgr);
|
|
break;
|
|
|
|
case BIQUADF64::TEST_BIQUAD_CASCADE_DF2T_RAND_2:
|
|
|
|
inputs.reload(BIQUADF64::ALLBIQUADINPUTS_F64_ID,mgr);
|
|
coefs.reload(BIQUADF64::ALLBIQUADCOEFS_F64_ID,mgr);
|
|
ref.reload(BIQUADF64::ALLBIQUADREFS_F64_ID,mgr);
|
|
configs.reload(BIQUADF64::ALLBIQUADCONFIGS_S16_ID,mgr);
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
output.create(ref.nbSamples(),BIQUADF64::OUT_F64_ID,mgr);
|
|
|
|
state.create(128,BIQUADF64::STATE_F64_ID,mgr);
|
|
|
|
|
|
}
|
|
|
|
void BIQUADF64::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
|
|
{
|
|
(void)id;
|
|
output.dump(mgr);
|
|
|
|
}
|