RMUL2025/lib/cmsis_5/CMSIS/DSP/Testing/Source/Tests/BIQUADF32.cpp

476 lines
12 KiB
C++
Executable File

#include "BIQUADF32.h"
#include <stdio.h>
#include "Error.h"
#define SNR_THRESHOLD 98
/*
Reference patterns are generated with
a double precision computation.
*/
#define REL_ERROR (1.2e-3)
void BIQUADF32::test_biquad_cascade_df1_ref()
{
float32_t *statep = state.ptr();
float32_t *debugstatep = debugstate.ptr();
const float32_t *coefsp = coefs.ptr();
const float32_t *inputp = inputs.ptr();
float32_t *outp = output.ptr();
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
arm_biquad_mod_coef_f32 *coefsmodp = (arm_biquad_mod_coef_f32*)vecCoefs.ptr();
#endif
int blockSize;
/*
Python script is generating different tests with
different blockSize and numTaps.
We loop on those configs.
*/
blockSize = inputs.nbSamples() >> 1;
/*
The filter is initialized with the coefs, blockSize and numTaps.
*/
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
arm_biquad_cascade_df1_mve_init_f32(&this->Sdf1,3,coefsp,coefsmodp,statep);
#else
arm_biquad_cascade_df1_init_f32(&this->Sdf1,3,coefsp,statep);
#endif
/*
Python script is filtering a 2*blockSize number of samples.
We do the same filtering in two pass to check (indirectly that
the state management of the fir is working.)
*/
arm_biquad_cascade_df1_f32(&this->Sdf1,inputp,outp,blockSize);
memcpy(debugstatep,statep,3*4*sizeof(float32_t));
debugstatep += 3*4;
outp += blockSize;
inputp += blockSize;
arm_biquad_cascade_df1_f32(&this->Sdf1,inputp,outp,blockSize);
outp += blockSize;
memcpy(debugstatep,statep,3*4*sizeof(float32_t));
debugstatep += 3*4;
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_REL_ERROR(output,ref,REL_ERROR);
}
void BIQUADF32::test_biquad_cascade_df2T_ref()
{
float32_t *statep = state.ptr();
const float32_t *coefsp = coefs.ptr();
const float32_t *inputp = inputs.ptr();
float32_t *outp = output.ptr();
int blockSize;
/*
Python script is generating different tests with
different blockSize and numTaps.
We loop on those configs.
*/
blockSize = inputs.nbSamples() >> 1;
/*
The filter is initialized with the coefs, blockSize and numTaps.
*/
#if !defined(ARM_MATH_NEON)
arm_biquad_cascade_df2T_init_f32(&this->Sdf2T,3,coefsp,statep);
#else
float32_t *vecCoefsPtr = vecCoefs.ptr();
// Those Neon coefs must be computed from original coefs
arm_biquad_cascade_df2T_compute_coefs_f32(3,coefsp,vecCoefsPtr);
arm_biquad_cascade_df2T_init_f32(&this->Sdf2T,
3,
vecCoefsPtr,
statep);
#endif
/*
Python script is filtering a 2*blockSize number of samples.
We do the same filtering in two pass to check (indirectly that
the state management of the fir is working.)
*/
arm_biquad_cascade_df2T_f32(&this->Sdf2T,inputp,outp,blockSize);
outp += blockSize;
inputp += blockSize;
arm_biquad_cascade_df2T_f32(&this->Sdf2T,inputp,outp,blockSize);
outp += blockSize;
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_REL_ERROR(output,ref,REL_ERROR);
}
void BIQUADF32::test_biquad_cascade_df1_rand()
{
float32_t *statep = state.ptr();
const float32_t *coefsp = coefs.ptr();
const int16_t *configsp = configs.ptr();
const float32_t *inputp = inputs.ptr();
float32_t *outp = output.ptr();
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
arm_biquad_mod_coef_f32 *coefsmodp = (arm_biquad_mod_coef_f32*)vecCoefs.ptr();
#endif
int blockSize;
int numStages;
unsigned long i;
for(i=0;i < configs.nbSamples(); i+=2)
{
/*
Python script is generating different tests with
different blockSize and numTaps.
We loop on those configs.
*/
numStages = configsp[0];
blockSize = configsp[1];
configsp += 2;
/*
The filter is initialized with the coefs, blockSize and numTaps.
*/
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
arm_biquad_cascade_df1_mve_init_f32(&this->Sdf1,numStages,coefsp,coefsmodp,statep);
#else
arm_biquad_cascade_df1_init_f32(&this->Sdf1,numStages,coefsp,statep);
#endif
/*
Python script is filtering a 2*blockSize number of samples.
We do the same filtering in two pass to check (indirectly that
the state management of the fir is working.)
*/
arm_biquad_cascade_df1_f32(&this->Sdf1,inputp,outp,blockSize);
inputp += blockSize;
outp += blockSize;
coefsp += numStages * 5;
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_REL_ERROR(output,ref,REL_ERROR);
}
void BIQUADF32::test_biquad_cascade_df2T_rand()
{
float32_t *statep = state.ptr();
const int16_t *configsp = configs.ptr();
#if !defined(ARM_MATH_NEON)
const float32_t *coefsp = coefs.ptr();
#else
float32_t *coefsp = coefs.ptr();
#endif
const float32_t *inputp = inputs.ptr();
float32_t *outp = output.ptr();
int blockSize;
int numStages;
unsigned long i;
for(i=0;i < configs.nbSamples(); i+=2)
{
/*
Python script is generating different tests with
different blockSize and numTaps.
We loop on those configs.
*/
numStages = configsp[0];
blockSize = configsp[1];
configsp += 2;
/*
The filter is initialized with the coefs, blockSize and numTaps.
*/
#if !defined(ARM_MATH_NEON)
arm_biquad_cascade_df2T_init_f32(&this->Sdf2T,numStages,coefsp,statep);
#else
float32_t *vecCoefsPtr = vecCoefs.ptr();
// Those Neon coefs must be computed from original coefs
arm_biquad_cascade_df2T_compute_coefs_f32(numStages,coefsp,vecCoefsPtr);
arm_biquad_cascade_df2T_init_f32(&this->Sdf2T,
numStages,
vecCoefsPtr,
statep);
#endif
coefsp += numStages * 5;
/*
Python script is filtering a 2*blockSize number of samples.
We do the same filtering in two pass to check (indirectly that
the state management of the fir is working.)
*/
arm_biquad_cascade_df2T_f32(&this->Sdf2T,inputp,outp,blockSize);
outp += blockSize;
inputp += blockSize;
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_REL_ERROR(output,ref,REL_ERROR);
}
void BIQUADF32::test_biquad_cascade_stereo_df2T_rand()
{
float32_t *statep = state.ptr();
const int16_t *configsp = configs.ptr();
const float32_t *coefsp = coefs.ptr();
const float32_t *inputp = inputs.ptr();
float32_t *outp = output.ptr();
int blockSize;
int numStages;
unsigned long i;
for(i=0;i < configs.nbSamples(); i+=2)
{
/*
Python script is generating different tests with
different blockSize and numTaps.
We loop on those configs.
*/
numStages = configsp[0];
blockSize = configsp[1];
configsp += 2;
/*
The filter is initialized with the coefs, blockSize and numTaps.
*/
arm_biquad_cascade_stereo_df2T_init_f32(&this->SStereodf2T,numStages,coefsp,statep);
coefsp += numStages * 5;
/*
Python script is filtering a 2*blockSize number of samples.
We do the same filtering in two pass to check (indirectly that
the state management of the fir is working.)
*/
arm_biquad_cascade_stereo_df2T_f32(&this->SStereodf2T,inputp,outp,blockSize);
outp += 2*blockSize;
inputp += 2*blockSize;
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_REL_ERROR(output,ref,REL_ERROR);
}
void BIQUADF32::setUp(Testing::testID_t id,std::vector<Testing::param_t>& params,Client::PatternMgr *mgr)
{
(void)params;
switch(id)
{
case BIQUADF32::TEST_BIQUAD_CASCADE_DF1_REF_1:
debugstate.create(2*64,BIQUADF32::STATE_F32_ID,mgr);
inputs.reload(BIQUADF32::BIQUADINPUTS_F32_ID,mgr);
coefs.reload(BIQUADF32::BIQUADCOEFS_F32_ID,mgr);
ref.reload(BIQUADF32::BIQUADREFS_F32_ID,mgr);
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
/* Max num stages is 47 in Python script */
vecCoefs.create(32*47,BIQUADF32::OUT_F32_ID,mgr);
#endif
break;
case BIQUADF32::TEST_BIQUAD_CASCADE_DF2T_REF_2:
vecCoefs.create(64,BIQUADF32::OUT_F32_ID,mgr);
inputs.reload(BIQUADF32::BIQUADINPUTS_F32_ID,mgr);
coefs.reload(BIQUADF32::BIQUADCOEFS_F32_ID,mgr);
ref.reload(BIQUADF32::BIQUADREFS_F32_ID,mgr);
break;
case BIQUADF32::TEST_BIQUAD_CASCADE_DF1_RAND_3:
inputs.reload(BIQUADF32::ALLBIQUADINPUTS_F32_ID,mgr);
coefs.reload(BIQUADF32::ALLBIQUADCOEFS_F32_ID,mgr);
ref.reload(BIQUADF32::ALLBIQUADREFS_F32_ID,mgr);
configs.reload(BIQUADF32::ALLBIQUADCONFIGS_S16_ID,mgr);
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
/* Max num stages is 47 in Python script */
vecCoefs.create(32*47,BIQUADF32::OUT_F32_ID,mgr);
#endif
break;
case BIQUADF32::TEST_BIQUAD_CASCADE_DF2T_RAND_4:
vecCoefs.create(512,BIQUADF32::OUT_F32_ID,mgr);
inputs.reload(BIQUADF32::ALLBIQUADINPUTS_F32_ID,mgr);
coefs.reload(BIQUADF32::ALLBIQUADCOEFS_F32_ID,mgr);
ref.reload(BIQUADF32::ALLBIQUADREFS_F32_ID,mgr);
configs.reload(BIQUADF32::ALLBIQUADCONFIGS_S16_ID,mgr);
break;
case BIQUADF32::TEST_BIQUAD_CASCADE_STEREO_DF2T_RAND_5:
inputs.reload(BIQUADF32::ALLBIQUADSTEREOINPUTS_F32_ID,mgr);
coefs.reload(BIQUADF32::ALLBIQUADCOEFS_F32_ID,mgr);
ref.reload(BIQUADF32::ALLBIQUADSTEREOREFS_F32_ID,mgr);
configs.reload(BIQUADF32::ALLBIQUADCONFIGS_S16_ID,mgr);
break;
}
output.create(ref.nbSamples(),BIQUADF32::OUT_F32_ID,mgr);
state.create(128,BIQUADF32::STATE_F32_ID,mgr);
}
void BIQUADF32::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
{
(void)id;
output.dump(mgr);
switch(id)
{
case BIQUADF32::TEST_BIQUAD_CASCADE_DF1_REF_1:
debugstate.dump(mgr);
break;
}
}