RMUL2025/lib/cmsis_5/CMSIS/DSP/Testing/Source/Tests/UnaryTestsF64.cpp

630 lines
20 KiB
C++
Executable File

#include "UnaryTestsF64.h"
#include "Error.h"
#define SNR_THRESHOLD 120
/*
Reference patterns are generated with
a double precision computation.
*/
#define REL_ERROR (1.0e-6)
#define ABS_ERROR (1.0e-5)
/*
Comparison for Cholesky
*/
#define SNR_THRESHOLD_CHOL 270
#define REL_ERROR_CHOL (1.0e-9)
#define ABS_ERROR_CHOL (1.0e-9)
/* LDLT comparison */
#define REL_ERROR_LDLT (1e-5)
#define ABS_ERROR_LDLT (1e-5)
/* Upper bound of maximum matrix dimension used by Python */
#define MAXMATRIXDIM 40
#define LOADDATA2() \
const float64_t *inp1=input1.ptr(); \
const float64_t *inp2=input2.ptr(); \
\
float64_t *ap=a.ptr(); \
float64_t *bp=b.ptr(); \
\
float64_t *outp=output.ptr(); \
int16_t *dimsp = dims.ptr(); \
int nbMatrixes = dims.nbSamples() >> 1;\
int rows,columns; \
int i;
#define LOADDATA1() \
const float64_t *inp1=input1.ptr(); \
\
float64_t *ap=a.ptr(); \
\
float64_t *outp=output.ptr(); \
int16_t *dimsp = dims.ptr(); \
int nbMatrixes = dims.nbSamples() >> 1;\
int rows,columns; \
int i;
#define PREPAREDATA2() \
in1.numRows=rows; \
in1.numCols=columns; \
memcpy((void*)ap,(const void*)inp1,sizeof(float64_t)*rows*columns);\
in1.pData = ap; \
\
in2.numRows=rows; \
in2.numCols=columns; \
memcpy((void*)bp,(const void*)inp2,sizeof(float64_t)*rows*columns);\
in2.pData = bp; \
\
out.numRows=rows; \
out.numCols=columns; \
out.pData = outp;
#define PREPAREDATALT() \
in1.numRows=rows; \
in1.numCols=rows; \
memcpy((void*)ap,(const void*)inp1,sizeof(float64_t)*rows*rows); \
in1.pData = ap; \
\
in2.numRows=rows; \
in2.numCols=columns; \
memcpy((void*)bp,(const void*)inp2,sizeof(float64_t)*rows*columns);\
in2.pData = bp; \
\
out.numRows=rows; \
out.numCols=columns; \
out.pData = outp;
#define PREPAREDATA1(TRANSPOSED) \
in1.numRows=rows; \
in1.numCols=columns; \
memcpy((void*)ap,(const void*)inp1,sizeof(float64_t)*rows*columns);\
in1.pData = ap; \
\
if (TRANSPOSED) \
{ \
out.numRows=columns; \
out.numCols=rows; \
} \
else \
{ \
out.numRows=rows; \
out.numCols=columns; \
} \
out.pData = outp;
#define PREPAREDATALL1() \
in1.numRows=rows; \
in1.numCols=columns; \
memcpy((void*)ap,(const void*)inp1,sizeof(float64_t)*rows*columns);\
in1.pData = ap; \
\
outll.numRows=rows; \
outll.numCols=columns; \
\
outll.pData = outllp;
#define SWAP_ROWS(A,i,j) \
for(int w=0;w < n; w++) \
{ \
float64_t tmp; \
tmp = A[i*n + w]; \
A[i*n + w] = A[j*n + w];\
A[j*n + w] = tmp; \
}
void UnaryTestsF64::test_mat_add_f64()
{
}
void UnaryTestsF64::test_mat_sub_f64()
{
LOADDATA2();
arm_status status;
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = *dimsp++;
PREPAREDATA2();
status=arm_mat_sub_f64(&this->in1,&this->in2,&this->out);
ASSERT_TRUE(status==ARM_MATH_SUCCESS);
outp += (rows * columns);
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float64_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void UnaryTestsF64::test_mat_scale_f64()
{
}
void UnaryTestsF64::test_mat_trans_f64()
{
LOADDATA1();
arm_status status;
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = *dimsp++;
PREPAREDATA1(true);
status=arm_mat_trans_f64(&this->in1,&this->out);
ASSERT_TRUE(status==ARM_MATH_SUCCESS);
outp += (rows * columns);
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
/*
Test framework is only adding 16 bytes of free memory after the end of a buffer.
So, we limit to 2 float64 for checking out of buffer write.
*/
static void refInnerTail(float64_t *b)
{
b[0] = 1.0;
b[1] = -2.0;
}
static void checkInnerTail(float64_t *b)
{
ASSERT_TRUE(b[0] == 1.0);
ASSERT_TRUE(b[1] == -2.0);
}
void UnaryTestsF64::test_mat_inverse_f64()
{
const float64_t *inp1=input1.ptr();
float64_t *ap=a.ptr();
float64_t *outp=output.ptr();
int16_t *dimsp = dims.ptr();
int nbMatrixes = dims.nbSamples();
int rows,columns;
int i;
arm_status status;
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = rows;
PREPAREDATA1(false);
refInnerTail(outp+(rows * columns));
status=arm_mat_inverse_f64(&this->in1,&this->out);
ASSERT_TRUE(status==ARM_MATH_SUCCESS);
outp += (rows * columns);
inp1 += (rows * columns);
checkInnerTail(outp);
}
ASSERT_SNR(output,ref,(float64_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void UnaryTestsF64::test_mat_cholesky_dpo_f64()
{
float64_t *ap=a.ptr();
const float64_t *inp1=input1.ptr();
float64_t *outp=output.ptr();
int16_t *dimsp = dims.ptr();
int nbMatrixes = dims.nbSamples();
int rows,columns;
int i;
arm_status status;
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = rows;
PREPAREDATA1(false);
status=arm_mat_cholesky_f64(&this->in1,&this->out);
ASSERT_TRUE(status==ARM_MATH_SUCCESS);
outp += (rows * columns);
inp1 += (rows * columns);
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float64_t)SNR_THRESHOLD_CHOL);
ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR_CHOL,REL_ERROR_CHOL);
}
void UnaryTestsF64::test_solve_upper_triangular_f64()
{
float64_t *ap=a.ptr();
const float64_t *inp1=input1.ptr();
float64_t *bp=b.ptr();
const float64_t *inp2=input2.ptr();
float64_t *outp=output.ptr();
int16_t *dimsp = dims.ptr();
int nbMatrixes = dims.nbSamples()>>1;
int rows,columns;
int i;
arm_status status;
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = *dimsp++;
PREPAREDATALT();
status=arm_mat_solve_upper_triangular_f64(&this->in1,&this->in2,&this->out);
ASSERT_TRUE(status==ARM_MATH_SUCCESS);
outp += (rows * columns);
inp1 += (rows * rows);
inp2 += (rows * columns);
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float64_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR);
}
void UnaryTestsF64::test_solve_lower_triangular_f64()
{
float64_t *ap=a.ptr();
const float64_t *inp1=input1.ptr();
float64_t *bp=b.ptr();
const float64_t *inp2=input2.ptr();
float64_t *outp=output.ptr();
int16_t *dimsp = dims.ptr();
int nbMatrixes = dims.nbSamples()>>1;
int rows,columns;
int i;
arm_status status;
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = *dimsp++;
PREPAREDATALT();
status=arm_mat_solve_lower_triangular_f64(&this->in1,&this->in2,&this->out);
ASSERT_TRUE(status==ARM_MATH_SUCCESS);
outp += (rows * columns);
inp1 += (rows * rows);
inp2 += (rows * columns);
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float64_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR);
}
static void trans_f64(const float64_t *src, float64_t *dst, int n)
{
for(int r=0; r<n ; r++)
{
for(int c=0; c<n ; c++)
{
dst[c*n+r] = src[r*n+c];
}
}
}
static void mult_f64_f64(const float64_t *srcA, const float64_t *srcB, float64_t *dst,int n)
{
for(int r=0; r<n ; r++)
{
for(int c=0; c<n ; c++)
{
float64_t sum=0.0;
for(int k=0; k < n ; k++)
{
sum += srcA[r*n+k] * srcB[k*n+c];
}
dst[r*n+c] = sum;
}
}
}
void UnaryTestsF64::compute_ldlt_error(const int n,const int16_t *outpp)
{
float64_t *tmpa = tmpapat.ptr() ;
float64_t *tmpb = tmpbpat.ptr() ;
float64_t *tmpc = tmpcpat.ptr() ;
/* Compute P A P^t */
// Create identiy matrix
for(int r=0; r < n; r++)
{
for(int c=0; c < n; c++)
{
if (r == c)
{
tmpa[r*n+c] = 1.0;
}
else
{
tmpa[r*n+c] = 0.0;
}
}
}
// Create permutation matrix
for(int r=0;r < n; r++)
{
SWAP_ROWS(tmpa,r,outpp[r]);
}
trans_f64((const float64_t*)tmpa,tmpb,n);
mult_f64_f64((const float64_t*)this->in1.pData,(const float64_t*)tmpb,tmpc,n);
mult_f64_f64((const float64_t*)tmpa,(const float64_t*)tmpc,outa,n);
/* Compute L D L^t */
trans_f64((const float64_t*)this->outll.pData,tmpc,n);
mult_f64_f64((const float64_t*)this->outd.pData,(const float64_t*)tmpc,tmpa,n);
mult_f64_f64((const float64_t*)this->outll.pData,(const float64_t*)tmpa,outb,n);
}
void UnaryTestsF64::test_mat_ldl_f64()
{
float64_t *ap=a.ptr();
const float64_t *inp1=input1.ptr();
float64_t *outllp=outputll.ptr();
float64_t *outdp=outputd.ptr();
int16_t *outpp=outputp.ptr();
outa=outputa.ptr();
outb=outputb.ptr();
int16_t *dimsp = dims.ptr();
int nbMatrixes = dims.nbSamples();
int rows,columns;
int i;
arm_status status;
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = rows;
PREPAREDATALL1();
outd.numRows=rows;
outd.numCols=columns;
outd.pData=outdp;
memset(outpp,0,rows*sizeof(uint16_t));
memset(outdp,0,columns*rows*sizeof(float64_t));
status=arm_mat_ldlt_f64(&this->in1,&this->outll,&this->outd,(uint16_t*)outpp);
ASSERT_TRUE(status==ARM_MATH_SUCCESS);
compute_ldlt_error(rows,outpp);
outllp += (rows * columns);
outdp += (rows * columns);
outpp += rows;
outa += (rows * columns);
outb +=(rows * columns);
inp1 += (rows * columns);
}
ASSERT_EMPTY_TAIL(outputll);
ASSERT_EMPTY_TAIL(outputd);
ASSERT_EMPTY_TAIL(outputp);
ASSERT_EMPTY_TAIL(outputa);
ASSERT_EMPTY_TAIL(outputb);
ASSERT_CLOSE_ERROR(outputa,outputb,ABS_ERROR_LDLT,REL_ERROR_LDLT);
}
void UnaryTestsF64::setUp(Testing::testID_t id,std::vector<Testing::param_t>& params,Client::PatternMgr *mgr)
{
(void)params;
switch(id)
{
case TEST_MAT_SUB_F64_2:
input1.reload(UnaryTestsF64::INPUTS1_F64_ID,mgr);
input2.reload(UnaryTestsF64::INPUTS2_F64_ID,mgr);
dims.reload(UnaryTestsF64::DIMSUNARY1_S16_ID,mgr);
ref.reload(UnaryTestsF64::REFSUB1_F64_ID,mgr);
output.create(ref.nbSamples(),UnaryTestsF64::OUT_F64_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPA_F64_ID,mgr);
b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPB_F64_ID,mgr);
break;
case TEST_MAT_TRANS_F64_4:
input1.reload(UnaryTestsF64::INPUTS1_F64_ID,mgr);
dims.reload(UnaryTestsF64::DIMSUNARY1_S16_ID,mgr);
ref.reload(UnaryTestsF64::REFTRANS1_F64_ID,mgr);
output.create(ref.nbSamples(),UnaryTestsF64::OUT_F64_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPA_F64_ID,mgr);
break;
case TEST_MAT_INVERSE_F64_5:
input1.reload(UnaryTestsF64::INPUTSINV_F64_ID,mgr);
dims.reload(UnaryTestsF64::DIMSINVERT1_S16_ID,mgr);
ref.reload(UnaryTestsF64::REFINV1_F64_ID,mgr);
output.create(ref.nbSamples(),UnaryTestsF64::OUT_F64_ID,mgr);
a.create(ref.nbSamples(),UnaryTestsF64::TMPA_F64_ID,mgr);
break;
case TEST_MAT_CHOLESKY_DPO_F64_6:
input1.reload(UnaryTestsF64::INPUTSCHOLESKY1_DPO_F64_ID,mgr);
dims.reload(UnaryTestsF64::DIMSCHOLESKY1_DPO_S16_ID,mgr);
ref.reload(UnaryTestsF64::REFCHOLESKY1_DPO_F64_ID,mgr);
output.create(ref.nbSamples(),UnaryTestsF64::OUT_F64_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPA_F64_ID,mgr);
break;
case TEST_SOLVE_UPPER_TRIANGULAR_F64_7:
input1.reload(UnaryTestsF64::INPUT_MAT_UTSOLVE_F64_ID,mgr);
input2.reload(UnaryTestsF64::INPUT_VEC_LTSOLVE_F64_ID,mgr);
dims.reload(UnaryTestsF64::DIM_LTSOLVE_F64_ID,mgr);
ref.reload(UnaryTestsF64::REF_UT_SOLVE_F64_ID,mgr);
output.create(ref.nbSamples(),UnaryTestsF64::OUT_F64_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPA_F64_ID,mgr);
b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPB_F64_ID,mgr);
break;
case TEST_SOLVE_LOWER_TRIANGULAR_F64_8:
input1.reload(UnaryTestsF64::INPUT_MAT_LTSOLVE_F64_ID,mgr);
input2.reload(UnaryTestsF64::INPUT_VEC_LTSOLVE_F64_ID,mgr);
dims.reload(UnaryTestsF64::DIM_LTSOLVE_F64_ID,mgr);
ref.reload(UnaryTestsF64::REF_LT_SOLVE_F64_ID,mgr);
output.create(ref.nbSamples(),UnaryTestsF64::OUT_F64_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPA_F64_ID,mgr);
b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPB_F64_ID,mgr);
break;
case TEST_MAT_LDL_F64_9:
// Definite positive test
input1.reload(UnaryTestsF64::INPUTSCHOLESKY1_DPO_F64_ID,mgr);
dims.reload(UnaryTestsF64::DIMSCHOLESKY1_DPO_S16_ID,mgr);
outputll.create(input1.nbSamples(),UnaryTestsF64::LL_F64_ID,mgr);
outputd.create(input1.nbSamples(),UnaryTestsF64::D_F64_ID,mgr);
outputp.create(input1.nbSamples(),UnaryTestsF64::PERM_S16_ID,mgr);
outputa.create(input1.nbSamples(),UnaryTestsF64::OUTA_F64_ID,mgr);
outputb.create(input1.nbSamples(),UnaryTestsF64::OUTA_F64_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPA_F64_ID,mgr);
tmpapat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPDB_F64_ID,mgr);
tmpbpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPDC_F64_ID,mgr);
tmpcpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPDD_F64_ID,mgr);
break;
case TEST_MAT_LDL_F64_10:
// Semi definite positive test
input1.reload(UnaryTestsF64::INPUTSCHOLESKY1_SDPO_F64_ID,mgr);
dims.reload(UnaryTestsF64::DIMSCHOLESKY1_SDPO_S16_ID,mgr);
outputll.create(input1.nbSamples(),UnaryTestsF64::LL_F64_ID,mgr);
outputd.create(input1.nbSamples(),UnaryTestsF64::D_F64_ID,mgr);
outputp.create(input1.nbSamples(),UnaryTestsF64::PERM_S16_ID,mgr);
outputa.create(input1.nbSamples(),UnaryTestsF64::OUTA_F64_ID,mgr);
outputb.create(input1.nbSamples(),UnaryTestsF64::OUTA_F64_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPA_F64_ID,mgr);
tmpapat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPDB_F64_ID,mgr);
tmpbpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPDC_F64_ID,mgr);
tmpcpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPDD_F64_ID,mgr);
break;
}
}
void UnaryTestsF64::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
{
(void)id;
//output.dump(mgr);
(void)mgr;
}