RMUL2025/lib/cmsis_5/CMSIS/DSP/Testing/Source/Tests/UnaryTestsF32.cpp

892 lines
27 KiB
C++
Executable File

#include "UnaryTestsF32.h"
#include "Error.h"
#define SNR_THRESHOLD 120
/*
Reference patterns are generated with
a double precision computation.
*/
#define REL_ERROR (1.0e-5)
#define ABS_ERROR (1.0e-5)
/*
Comparisons for inverse
*/
/* Not very accurate for big matrix.
But big matrix needed for checking the vectorized code */
#define SNR_THRESHOLD_INV 67
#define REL_ERROR_INV (1.0e-3)
#define ABS_ERROR_INV (1.0e-3)
/*
Comparison for Cholesky
*/
#define SNR_THRESHOLD_CHOL 92
#define REL_ERROR_CHOL (1.0e-5)
#define ABS_ERROR_CHOL (5.0e-4)
/* LDLT comparison */
#define REL_ERROR_LDLT (1e-5)
#define ABS_ERROR_LDLT (1e-5)
#define REL_ERROR_LDLT_SPDO (1e-5)
#define ABS_ERROR_LDLT_SDPO (2e-1)
/* Upper bound of maximum matrix dimension used by Python */
#define MAXMATRIXDIM 40
static void checkInnerTailOverflow(float32_t *b)
{
ASSERT_TRUE(b[0] == 0);
ASSERT_TRUE(b[1] == 0);
ASSERT_TRUE(b[2] == 0);
ASSERT_TRUE(b[3] == 0);
}
#define LOADDATA2() \
const float32_t *inp1=input1.ptr(); \
const float32_t *inp2=input2.ptr(); \
\
float32_t *ap=a.ptr(); \
float32_t *bp=b.ptr(); \
\
float32_t *outp=output.ptr(); \
int16_t *dimsp = dims.ptr(); \
int nbMatrixes = dims.nbSamples() >> 1;\
int rows,columns; \
int i;
#define LOADDATA1() \
const float32_t *inp1=input1.ptr(); \
\
float32_t *ap=a.ptr(); \
\
float32_t *outp=output.ptr(); \
int16_t *dimsp = dims.ptr(); \
int nbMatrixes = dims.nbSamples() >> 1;\
int rows,columns; \
int i;
#define PREPAREDATA2() \
in1.numRows=rows; \
in1.numCols=columns; \
memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\
in1.pData = ap; \
\
in2.numRows=rows; \
in2.numCols=columns; \
memcpy((void*)bp,(const void*)inp2,sizeof(float32_t)*rows*columns);\
in2.pData = bp; \
\
out.numRows=rows; \
out.numCols=columns; \
out.pData = outp;
#define PREPAREDATALT() \
in1.numRows=rows; \
in1.numCols=rows; \
memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*rows); \
in1.pData = ap; \
\
in2.numRows=rows; \
in2.numCols=columns; \
memcpy((void*)bp,(const void*)inp2,sizeof(float32_t)*rows*columns);\
in2.pData = bp; \
\
out.numRows=rows; \
out.numCols=columns; \
out.pData = outp;
#define PREPAREDATA1(TRANSPOSED) \
in1.numRows=rows; \
in1.numCols=columns; \
memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\
in1.pData = ap; \
\
if (TRANSPOSED) \
{ \
out.numRows=columns; \
out.numCols=rows; \
} \
else \
{ \
out.numRows=rows; \
out.numCols=columns; \
} \
out.pData = outp;
#define PREPAREDATA1C(TRANSPOSED) \
in1.numRows=rows; \
in1.numCols=columns; \
memcpy((void*)ap,(const void*)inp1,2*sizeof(float32_t)*rows*columns);\
in1.pData = ap; \
\
if (TRANSPOSED) \
{ \
out.numRows=columns; \
out.numCols=rows; \
} \
else \
{ \
out.numRows=rows; \
out.numCols=columns; \
} \
out.pData = outp;
#define LOADVECDATA2() \
const float32_t *inp1=input1.ptr(); \
const float32_t *inp2=input2.ptr(); \
\
float32_t *ap=a.ptr(); \
float32_t *bp=b.ptr(); \
\
float32_t *outp=output.ptr(); \
int16_t *dimsp = dims.ptr(); \
int nbMatrixes = dims.nbSamples() / 2;\
int rows,internal; \
int i;
#define PREPAREVECDATA2() \
in1.numRows=rows; \
in1.numCols=internal; \
memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*internal);\
in1.pData = ap; \
\
memcpy((void*)bp,(const void*)inp2,sizeof(float32_t)*internal);
#define PREPAREDATALL1() \
in1.numRows=rows; \
in1.numCols=columns; \
memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\
in1.pData = ap; \
\
outll.numRows=rows; \
outll.numCols=columns; \
\
outll.pData = outllp;
#define SWAP_ROWS(A,i,j) \
for(int w=0;w < n; w++) \
{ \
float64_t tmp; \
tmp = A[i*n + w]; \
A[i*n + w] = A[j*n + w];\
A[j*n + w] = tmp; \
}
void UnaryTestsF32::test_mat_vec_mult_f32()
{
LOADVECDATA2();
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
internal = *dimsp++;
PREPAREVECDATA2();
arm_mat_vec_mult_f32(&this->in1, bp, outp);
outp += rows ;
checkInnerTailOverflow(outp);
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void UnaryTestsF32::test_mat_add_f32()
{
LOADDATA2();
arm_status status;
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = *dimsp++;
PREPAREDATA2();
status=arm_mat_add_f32(&this->in1,&this->in2,&this->out);
ASSERT_TRUE(status==ARM_MATH_SUCCESS);
outp += (rows * columns);
checkInnerTailOverflow(outp);
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void UnaryTestsF32::test_mat_sub_f32()
{
LOADDATA2();
arm_status status;
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = *dimsp++;
PREPAREDATA2();
status=arm_mat_sub_f32(&this->in1,&this->in2,&this->out);
ASSERT_TRUE(status==ARM_MATH_SUCCESS);
outp += (rows * columns);
checkInnerTailOverflow(outp);
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void UnaryTestsF32::test_mat_scale_f32()
{
LOADDATA1();
arm_status status;
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = *dimsp++;
PREPAREDATA1(false);
status=arm_mat_scale_f32(&this->in1,0.5f,&this->out);
ASSERT_TRUE(status==ARM_MATH_SUCCESS);
outp += (rows * columns);
checkInnerTailOverflow(outp);
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void UnaryTestsF32::test_mat_trans_f32()
{
LOADDATA1();
arm_status status;
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = *dimsp++;
PREPAREDATA1(true);
status=arm_mat_trans_f32(&this->in1,&this->out);
ASSERT_TRUE(status==ARM_MATH_SUCCESS);
outp += (rows * columns);
checkInnerTailOverflow(outp);
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void UnaryTestsF32::test_mat_cmplx_trans_f32()
{
LOADDATA1();
arm_status status;
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = *dimsp++;
PREPAREDATA1C(true);
status=arm_mat_cmplx_trans_f32(&this->in1,&this->out);
ASSERT_TRUE(status==ARM_MATH_SUCCESS);
outp += 2*(rows * columns);
checkInnerTailOverflow(outp);
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
static void refInnerTail(float32_t *b)
{
b[0] = 1.0f;
b[1] = -2.0f;
b[2] = 3.0f;
b[3] = -4.0f;
}
static void checkInnerTail(float32_t *b)
{
ASSERT_TRUE(b[0] == 1.0f);
ASSERT_TRUE(b[1] == -2.0f);
ASSERT_TRUE(b[2] == 3.0f);
ASSERT_TRUE(b[3] == -4.0f);
}
void UnaryTestsF32::test_mat_inverse_f32()
{
const float32_t *inp1=input1.ptr();
float32_t *ap=a.ptr();
float32_t *outp=output.ptr();
int16_t *dimsp = dims.ptr();
int nbMatrixes = dims.nbSamples();
int rows,columns;
int i;
arm_status status;
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = rows;
PREPAREDATA1(false);
refInnerTail(outp+(rows * columns));
status=arm_mat_inverse_f32(&this->in1,&this->out);
ASSERT_TRUE(status==ARM_MATH_SUCCESS);
outp += (rows * columns);
inp1 += (rows * columns);
checkInnerTail(outp);
}
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD_INV);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR_INV,REL_ERROR_INV);
}
void UnaryTestsF32::test_mat_cholesky_dpo_f32()
{
float32_t *ap=a.ptr();
const float32_t *inp1=input1.ptr();
float32_t *outp=output.ptr();
int16_t *dimsp = dims.ptr();
int nbMatrixes = dims.nbSamples();
int rows,columns;
int i;
arm_status status;
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = rows;
PREPAREDATA1(false);
status=arm_mat_cholesky_f32(&this->in1,&this->out);
ASSERT_TRUE(status==ARM_MATH_SUCCESS);
outp += (rows * columns);
inp1 += (rows * columns);
checkInnerTailOverflow(outp);
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD_CHOL);
ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR_CHOL,REL_ERROR_CHOL);
}
void UnaryTestsF32::test_solve_upper_triangular_f32()
{
float32_t *ap=a.ptr();
const float32_t *inp1=input1.ptr();
float32_t *bp=b.ptr();
const float32_t *inp2=input2.ptr();
float32_t *outp=output.ptr();
int16_t *dimsp = dims.ptr();
int nbMatrixes = dims.nbSamples()>>1;
int rows,columns;
int i;
arm_status status;
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = *dimsp++;
PREPAREDATALT();
status=arm_mat_solve_upper_triangular_f32(&this->in1,&this->in2,&this->out);
ASSERT_TRUE(status==ARM_MATH_SUCCESS);
outp += (rows * columns);
inp1 += (rows * rows);
inp2 += (rows * columns);
checkInnerTailOverflow(outp);
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR);
}
void UnaryTestsF32::test_solve_lower_triangular_f32()
{
float32_t *ap=a.ptr();
const float32_t *inp1=input1.ptr();
float32_t *bp=b.ptr();
const float32_t *inp2=input2.ptr();
float32_t *outp=output.ptr();
int16_t *dimsp = dims.ptr();
int nbMatrixes = dims.nbSamples() >> 1;
int rows,columns;
int i;
arm_status status;
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = *dimsp++;
PREPAREDATALT();
status=arm_mat_solve_lower_triangular_f32(&this->in1,&this->in2,&this->out);
ASSERT_TRUE(status==ARM_MATH_SUCCESS);
outp += (rows * columns);
inp1 += (rows * rows);
inp2 += (rows * columns);
checkInnerTailOverflow(outp);
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR);
}
static void trans_f64(const float64_t *src, float64_t *dst, int n)
{
for(int r=0; r<n ; r++)
{
for(int c=0; c<n ; c++)
{
dst[c*n+r] = src[r*n+c];
}
}
}
static void trans_f32_f64(const float32_t *src, float64_t *dst, int n)
{
for(int r=0; r<n ; r++)
{
for(int c=0; c<n ; c++)
{
dst[c*n+r] = (float64_t)src[r*n+c];
}
}
}
static void mult_f32_f64(const float32_t *srcA, const float64_t *srcB, float64_t *dst,int n)
{
for(int r=0; r<n ; r++)
{
for(int c=0; c<n ; c++)
{
float64_t sum=0.0;
for(int k=0; k < n ; k++)
{
sum += (float64_t)srcA[r*n+k] * srcB[k*n+c];
}
dst[r*n+c] = sum;
}
}
}
static void mult_f64_f64(const float64_t *srcA, const float64_t *srcB, float64_t *dst,int n)
{
for(int r=0; r<n ; r++)
{
for(int c=0; c<n ; c++)
{
float64_t sum=0.0;
for(int k=0; k < n ; k++)
{
sum += srcA[r*n+k] * srcB[k*n+c];
}
dst[r*n+c] = sum;
}
}
}
void UnaryTestsF32::compute_ldlt_error(const int n,const int16_t *outpp)
{
float64_t *tmpa = tmpapat.ptr() ;
float64_t *tmpb = tmpbpat.ptr() ;
float64_t *tmpc = tmpcpat.ptr() ;
/* Compute P A P^t */
// Create identiy matrix
for(int r=0; r < n; r++)
{
for(int c=0; c < n; c++)
{
if (r == c)
{
tmpa[r*n+c] = 1.0;
}
else
{
tmpa[r*n+c] = 0.0;
}
}
}
// Create permutation matrix
for(int r=0;r < n; r++)
{
SWAP_ROWS(tmpa,r,outpp[r]);
}
trans_f64((const float64_t*)tmpa,tmpb,n);
mult_f32_f64((const float32_t*)this->in1.pData,(const float64_t*)tmpb,tmpc,n);
mult_f64_f64((const float64_t*)tmpa,(const float64_t*)tmpc,outa,n);
/* Compute L D L^t */
trans_f32_f64((const float32_t*)this->outll.pData,tmpc,n);
mult_f32_f64((const float32_t*)this->outd.pData,(const float64_t*)tmpc,tmpa,n);
mult_f32_f64((const float32_t*)this->outll.pData,(const float64_t*)tmpa,outb,n);
}
void UnaryTestsF32::test_mat_ldl_f32()
{
float32_t *ap=a.ptr();
const float32_t *inp1=input1.ptr();
float32_t *outllp=outputll.ptr();
float32_t *outdp=outputd.ptr();
int16_t *outpp=outputp.ptr();
outa=outputa.ptr();
outb=outputb.ptr();
int16_t *dimsp = dims.ptr();
int nbMatrixes = dims.nbSamples();
int rows,columns;
int i;
arm_status status;
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = rows;
PREPAREDATALL1();
outd.numRows=rows;
outd.numCols=columns;
outd.pData=outdp;
memset(outpp,0,rows*sizeof(uint16_t));
memset(outdp,0,columns*rows*sizeof(float32_t));
status=arm_mat_ldlt_f32(&this->in1,&this->outll,&this->outd,(uint16_t*)outpp);
ASSERT_TRUE(status==ARM_MATH_SUCCESS);
compute_ldlt_error(rows,outpp);
outllp += (rows * columns);
outdp += (rows * columns);
outpp += rows;
outa += (rows * columns);
outb +=(rows * columns);
inp1 += (rows * columns);
checkInnerTailOverflow(outllp);
checkInnerTailOverflow(outdp);
}
ASSERT_EMPTY_TAIL(outputll);
ASSERT_EMPTY_TAIL(outputd);
ASSERT_EMPTY_TAIL(outputp);
ASSERT_EMPTY_TAIL(outputa);
ASSERT_EMPTY_TAIL(outputb);
ASSERT_CLOSE_ERROR(outputa,outputb,snrAbs,snrRel);
}
void UnaryTestsF32::setUp(Testing::testID_t id,std::vector<Testing::param_t>& params,Client::PatternMgr *mgr)
{
(void)params;
switch(id)
{
case TEST_MAT_ADD_F32_1:
input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
input2.reload(UnaryTestsF32::INPUTS2_F32_ID,mgr);
dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
ref.reload(UnaryTestsF32::REFADD1_F32_ID,mgr);
output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
break;
case TEST_MAT_SUB_F32_2:
input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
input2.reload(UnaryTestsF32::INPUTS2_F32_ID,mgr);
dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
ref.reload(UnaryTestsF32::REFSUB1_F32_ID,mgr);
output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
break;
case TEST_MAT_SCALE_F32_3:
input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
ref.reload(UnaryTestsF32::REFSCALE1_F32_ID,mgr);
output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
break;
case TEST_MAT_TRANS_F32_4:
input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
ref.reload(UnaryTestsF32::REFTRANS1_F32_ID,mgr);
output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
break;
case TEST_MAT_INVERSE_F32_5:
input1.reload(UnaryTestsF32::INPUTSINV_F32_ID,mgr);
dims.reload(UnaryTestsF32::DIMSINVERT1_S16_ID,mgr);
ref.reload(UnaryTestsF32::REFINV1_F32_ID,mgr);
output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
break;
case TEST_MAT_VEC_MULT_F32_6:
input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
input2.reload(UnaryTestsF32::INPUTVEC1_F32_ID,mgr);
dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
ref.reload(UnaryTestsF32::REFVECMUL1_F32_ID,mgr);
output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
b.create(MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
break;
case TEST_MAT_CMPLX_TRANS_F32_7:
input1.reload(UnaryTestsF32::INPUTSC1_F32_ID,mgr);
dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
ref.reload(UnaryTestsF32::REFTRANSC1_F32_ID,mgr);
output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
break;
case TEST_MAT_CHOLESKY_DPO_F32_8:
input1.reload(UnaryTestsF32::INPUTSCHOLESKY1_DPO_F32_ID,mgr);
dims.reload(UnaryTestsF32::DIMSCHOLESKY1_DPO_S16_ID,mgr);
ref.reload(UnaryTestsF32::REFCHOLESKY1_DPO_F32_ID,mgr);
output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
break;
case TEST_SOLVE_UPPER_TRIANGULAR_F32_9:
input1.reload(UnaryTestsF32::INPUT_MAT_UTSOLVE_F32_ID,mgr);
input2.reload(UnaryTestsF32::INPUT_VEC_LTSOLVE_F32_ID,mgr);
dims.reload(UnaryTestsF32::DIM_LTSOLVE_F32_ID,mgr);
ref.reload(UnaryTestsF32::REF_UT_SOLVE_F32_ID,mgr);
output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
break;
case TEST_SOLVE_LOWER_TRIANGULAR_F32_10:
input1.reload(UnaryTestsF32::INPUT_MAT_LTSOLVE_F32_ID,mgr);
input2.reload(UnaryTestsF32::INPUT_VEC_LTSOLVE_F32_ID,mgr);
dims.reload(UnaryTestsF32::DIM_LTSOLVE_F32_ID,mgr);
ref.reload(UnaryTestsF32::REF_LT_SOLVE_F32_ID,mgr);
output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
break;
case TEST_MAT_LDL_F32_11:
// Definite positive test
input1.reload(UnaryTestsF32::INPUTSCHOLESKY1_DPO_F32_ID,mgr);
dims.reload(UnaryTestsF32::DIMSCHOLESKY1_DPO_S16_ID,mgr);
outputll.create(input1.nbSamples(),UnaryTestsF32::LL_F32_ID,mgr);
outputd.create(input1.nbSamples(),UnaryTestsF32::D_F32_ID,mgr);
outputp.create(input1.nbSamples(),UnaryTestsF32::PERM_S16_ID,mgr);
outputa.create(input1.nbSamples(),UnaryTestsF32::OUTA_F64_ID,mgr);
outputb.create(input1.nbSamples(),UnaryTestsF32::OUTB_F64_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
tmpapat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F64_ID,mgr);
tmpbpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPC_F64_ID,mgr);
tmpcpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPD_F64_ID,mgr);
this->snrRel=REL_ERROR_LDLT;
this->snrAbs=ABS_ERROR_LDLT;
break;
case TEST_MAT_LDL_F32_12:
// Semi definite positive test
input1.reload(UnaryTestsF32::INPUTSCHOLESKY1_SDPO_F32_ID,mgr);
dims.reload(UnaryTestsF32::DIMSCHOLESKY1_SDPO_S16_ID,mgr);
outputll.create(input1.nbSamples(),UnaryTestsF32::LL_F32_ID,mgr);
outputd.create(input1.nbSamples(),UnaryTestsF32::D_F32_ID,mgr);
outputp.create(input1.nbSamples(),UnaryTestsF32::PERM_S16_ID,mgr);
outputa.create(input1.nbSamples(),UnaryTestsF32::OUTA_F64_ID,mgr);
outputb.create(input1.nbSamples(),UnaryTestsF32::OUTB_F64_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
tmpapat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F64_ID,mgr);
tmpbpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPC_F64_ID,mgr);
tmpcpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPD_F64_ID,mgr);
this->snrRel=REL_ERROR_LDLT_SPDO;
this->snrAbs=ABS_ERROR_LDLT_SDPO;
break;
}
}
void UnaryTestsF32::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
{
(void)id;
(void)mgr;
switch(id)
{
case TEST_MAT_LDL_F32_11:
//outputll.dump(mgr);
break;
}
//output.dump(mgr);
}