RMUL2025/lib/cmsis_5/CMSIS/DSP/Testing/Source/Tests/InterpolationTestsF32.cpp

200 lines
6.8 KiB
C++
Executable File

#include "InterpolationTestsF32.h"
#include <stdio.h>
#include "Error.h"
#define SNR_THRESHOLD 120
/*
Reference patterns are generated with
a double precision computation.
*/
#define REL_ERROR (8.0e-5)
void InterpolationTestsF32::test_linear_interp_f32()
{
const float32_t *inp = input.ptr();
float32_t *outp = output.ptr();
unsigned long nb;
for(nb = 0; nb < input.nbSamples(); nb++)
{
outp[nb] = arm_linear_interp_f32(&S,inp[nb]);
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_REL_ERROR(output,ref,REL_ERROR);
}
void InterpolationTestsF32::test_bilinear_interp_f32()
{
const float32_t *inp = input.ptr();
float32_t *outp = output.ptr();
float32_t x,y;
unsigned long nb;
for(nb = 0; nb < input.nbSamples(); nb += 2)
{
x = inp[nb];
y = inp[nb+1];
*outp++=arm_bilinear_interp_f32(&SBI,x,y);
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_REL_ERROR(output,ref,REL_ERROR);
}
void InterpolationTestsF32::test_spline_square_f32()
{
const float32_t *inpX = inputX.ptr();
const float32_t *inpY = inputY.ptr();
const float32_t *outX = outputX.ptr();
float32_t *outp = output.ptr();
float32_t *buf = buffer.ptr(); // ((2*4-1)*sizeof(float32_t))
float32_t *coef = splineCoefs.ptr(); // ((3*(4-1))*sizeof(float32_t))
arm_spline_instance_f32 S;
arm_spline_init_f32(&S, ARM_SPLINE_PARABOLIC_RUNOUT, inpX, inpY, 4, coef, buf);
arm_spline_f32(&S, outX, outp, 20);
ASSERT_EMPTY_TAIL(buffer);
ASSERT_EMPTY_TAIL(splineCoefs);
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
}
void InterpolationTestsF32::test_spline_sine_f32()
{
const float32_t *inpX = inputX.ptr();
const float32_t *inpY = inputY.ptr();
const float32_t *outX = outputX.ptr();
float32_t *outp = output.ptr();
float32_t *buf = buffer.ptr(); // ((2*9-1)*sizeof(float32_t))
float32_t *coef = splineCoefs.ptr(); // ((3*(9-1))*sizeof(float32_t))
arm_spline_instance_f32 S;
arm_spline_init_f32(&S, ARM_SPLINE_NATURAL, inpX, inpY, 9, coef, buf);
arm_spline_f32(&S, outX, outp, 33);
ASSERT_EMPTY_TAIL(buffer);
ASSERT_EMPTY_TAIL(splineCoefs);
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
}
void InterpolationTestsF32::test_spline_ramp_f32()
{
const float32_t *inpX = inputX.ptr();
const float32_t *inpY = inputY.ptr();
const float32_t *outX = outputX.ptr();
float32_t *outp = output.ptr();
float32_t *buf = buffer.ptr(); // ((2*3-1)*sizeof(float32_t))
float32_t *coef = splineCoefs.ptr(); // ((3*(3-1))*sizeof(float32_t))
arm_spline_instance_f32 S;
arm_spline_init_f32(&S, ARM_SPLINE_PARABOLIC_RUNOUT, inpX, inpY, 3, coef, buf);
arm_spline_f32(&S, outX, outp, 30);
ASSERT_EMPTY_TAIL(buffer);
ASSERT_EMPTY_TAIL(splineCoefs);
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
}
void InterpolationTestsF32::setUp(Testing::testID_t id,std::vector<Testing::param_t>& params,Client::PatternMgr *mgr)
{
const int16_t *pConfig;
Testing::nbSamples_t nb=MAX_NB_SAMPLES;
(void)params;
switch(id)
{
case InterpolationTestsF32::TEST_LINEAR_INTERP_F32_1:
input.reload(InterpolationTestsF32::INPUT_F32_ID,mgr,nb);
y.reload(InterpolationTestsF32::YVAL_F32_ID,mgr,nb);
ref.reload(InterpolationTestsF32::REF_LINEAR_F32_ID,mgr,nb);
S.nValues=y.nbSamples(); /**< nValues */
/* Those values must be coherent with the ones in the
Python script generating the patterns */
S.x1=0.0; /**< x1 */
S.xSpacing=1.0; /**< xSpacing */
S.pYData=y.ptr(); /**< pointer to the table of Y values */
break;
case InterpolationTestsF32::TEST_BILINEAR_INTERP_F32_2:
input.reload(InterpolationTestsF32::INPUTBI_F32_ID,mgr,nb);
config.reload(InterpolationTestsF32::CONFIGBI_S16_ID,mgr,nb);
y.reload(InterpolationTestsF32::YVALBI_F32_ID,mgr,nb);
ref.reload(InterpolationTestsF32::REF_BILINEAR_F32_ID,mgr,nb);
pConfig = config.ptr();
SBI.numRows = pConfig[1];
SBI.numCols = pConfig[0];
SBI.pData = y.ptr();
break;
case TEST_SPLINE_SQUARE_F32_3:
inputX.reload(InterpolationTestsF32::INPUT_SPLINE_SQU_X_F32_ID,mgr,4);
inputY.reload(InterpolationTestsF32::INPUT_SPLINE_SQU_Y_F32_ID,mgr,4);
outputX.reload(InterpolationTestsF32::OUTPUT_SPLINE_SQU_X_F32_ID,mgr,20);
ref.reload(InterpolationTestsF32::REF_SPLINE_SQU_F32_ID,mgr,20);
splineCoefs.create(3*(4-1),InterpolationTestsF32::COEFS_SPLINE_F32_ID,mgr);
buffer.create(2*4-1,InterpolationTestsF32::TEMP_SPLINE_F32_ID,mgr);
output.create(20,InterpolationTestsF32::OUT_SAMPLES_F32_ID,mgr);
break;
case TEST_SPLINE_SINE_F32_4:
inputX.reload(InterpolationTestsF32::INPUT_SPLINE_SIN_X_F32_ID,mgr,9);
inputY.reload(InterpolationTestsF32::INPUT_SPLINE_SIN_Y_F32_ID,mgr,9);
outputX.reload(InterpolationTestsF32::OUTPUT_SPLINE_SIN_X_F32_ID,mgr,33);
ref.reload(InterpolationTestsF32::REF_SPLINE_SIN_F32_ID,mgr,33);
splineCoefs.create(3*(9-1),InterpolationTestsF32::COEFS_SPLINE_F32_ID,mgr);
buffer.create(2*9-1,InterpolationTestsF32::TEMP_SPLINE_F32_ID,mgr);
output.create(33,InterpolationTestsF32::OUT_SAMPLES_F32_ID,mgr);
break;
case TEST_SPLINE_RAMP_F32_5:
inputX.reload(InterpolationTestsF32::INPUT_SPLINE_RAM_X_F32_ID,mgr,3);
inputY.reload(InterpolationTestsF32::INPUT_SPLINE_RAM_Y_F32_ID,mgr,3);
outputX.reload(InterpolationTestsF32::OUTPUT_SPLINE_RAM_X_F32_ID,mgr,30);
ref.reload(InterpolationTestsF32::REF_SPLINE_RAM_F32_ID,mgr,30);
splineCoefs.create(3*(3-1),InterpolationTestsF32::COEFS_SPLINE_F32_ID,mgr);
buffer.create(2*3-1,InterpolationTestsF32::TEMP_SPLINE_F32_ID,mgr);
output.create(30,InterpolationTestsF32::OUT_SAMPLES_F32_ID,mgr);
break;
}
output.create(ref.nbSamples(),InterpolationTestsF32::OUT_SAMPLES_F32_ID,mgr);
}
void InterpolationTestsF32::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
{
(void)id;
output.dump(mgr);
}