RMUL2025/lib/cmsis_5/CMSIS/DSP/cmsisdsp/mfcc.py

115 lines
3.1 KiB
Python
Executable File

import numpy as np
import cmsisdsp.datatype as dt
def frequencyToMelSpace(freq):
"""
Convert a frequency in Hz to Mel space value
:param freq: Frequency in Hz.
:type freq: float
:return: Mel value.
:rtype: float
"""
return 1127.0 * np.log(1.0 + freq / 700.0)
def melSpaceToFrequency(mels):
"""
Convert a Mel space value to a frequency in Hz
:param freq: Mel value.
:type freq: float
:return: Frequency in Hz.
:rtype: float
"""
return 700.0 * (np.exp(mels / 1127.0) - 1.0)
def melFilterMatrix(dtype,fmin, fmax, numOfMelFilters,fs,FFTSize):
"""
Sparse matrix in a specific format and encoding the filters in Mel space
:param dtype: The datatype to use for the matrix coefficients.
:type dtype: int
:param fmin: Minimum frequency in Hz.
:type fmin: float
:param fmax: Maximum frequency in Hz.
:type fmax: float
:param numOfMelFilters: Number of Mel filters.
:type numOfMelFilters: int
:param fs: Sampling frequency.
:type fs: int
:param FFTSize: FFT Length.
:type FFTSize: int
:return: A tuple encoding the sparse matrix.
:rtype: A tuple
"""
filters = np.zeros((numOfMelFilters,int(FFTSize/2+1)))
zeros = np.zeros(int(FFTSize // 2 ))
fmin_mel = frequencyToMelSpace(fmin)
fmax_mel = frequencyToMelSpace(fmax)
mels = np.linspace(fmin_mel, fmax_mel, num=numOfMelFilters+2)
linearfreqs = np.linspace( 0, fs/2.0, int(FFTSize // 2 + 1) )
spectrogrammels = frequencyToMelSpace(linearfreqs)[1:]
filtPos=[]
filtLen=[]
totalLen = 0
packedFilters = []
for n in range(numOfMelFilters):
upper = (spectrogrammels - mels[n])/(mels[n+1]-mels[n])
lower = (mels[n+2] - spectrogrammels)/(mels[n+2]-mels[n+1])
filters[n, :] = np.hstack([0,np.maximum(zeros,np.minimum(upper,lower))])
nb = 0
startFound = False
for sample in filters[n, :]:
if not startFound and sample != 0.0:
startFound = True
startPos = nb
if startFound and sample == 0.0:
endPos = nb - 1
break
nb = nb + 1
filtLen.append(endPos - startPos+1)
totalLen += endPos - startPos + 1
filtPos.append(startPos)
packedFilters += list(filters[n, startPos:endPos+1])
return filtLen,filtPos,dt.convert(packedFilters,dtype)
def dctMatrix(dtype,numOfDctOutputs, numOfMelFilters):
"""
Dct matrix in a specific format
:param dtype: The datatype to use for the matrix coefficients.
:type dtype: int
:param numOfDctOutputs: Number of DCT bands.
:type numOfDctOutputs: int
:param numOfMelFilters: Number of Mel filters.
:type numOfMelFilters: int
:return: The dct matrix.
:rtype: array of dtype
"""
result = np.zeros((numOfDctOutputs,numOfMelFilters))
s=(np.linspace(1,numOfMelFilters,numOfMelFilters) - 0.5)/numOfMelFilters
for i in range(0, numOfDctOutputs):
result[i,:]=np.cos(i * np.pi*s) * np.sqrt(2.0/numOfMelFilters)
return dt.convert(result.reshape(numOfDctOutputs*numOfMelFilters),dtype)