RMUL2025/lib/cmsis_5/CMSIS/DSP/Testing/Source/Tests/StatsTestsF32.cpp

1129 lines
30 KiB
C++
Executable File

#include "StatsTestsF32.h"
#include <stdio.h>
#include "Error.h"
#include "Test.h"
#define SNR_THRESHOLD 120
/*
Reference patterns are generated with
a double precision computation.
*/
#define REL_ERROR (1.0e-5)
void StatsTestsF32::test_max_f32()
{
const float32_t *inp = inputA.ptr();
float32_t result;
uint32_t indexval;
float32_t *refp = ref.ptr();
int16_t *refind = maxIndexes.ptr();
float32_t *outp = output.ptr();
int16_t *ind = index.ptr();
arm_max_f32(inp,
inputA.nbSamples(),
&result,
&indexval);
outp[0] = result;
ind[0] = indexval;
ASSERT_EQ(result,refp[this->refOffset]);
ASSERT_EQ((int16_t)indexval,refind[this->refOffset]);
}
void StatsTestsF32::test_absmax_f32()
{
const float32_t *inp = inputA.ptr();
float32_t result;
uint32_t indexval;
float32_t *refp = ref.ptr();
int16_t *refind = maxIndexes.ptr();
float32_t *outp = output.ptr();
int16_t *ind = index.ptr();
arm_absmax_f32(inp,
inputA.nbSamples(),
&result,
&indexval);
outp[0] = result;
ind[0] = indexval;
ASSERT_EQ(result,refp[this->refOffset]);
ASSERT_EQ((int16_t)indexval,refind[this->refOffset]);
}
void StatsTestsF32::test_max_no_idx_f32()
{
const float32_t *inp = inputA.ptr();
float32_t result;
float32_t *refp = ref.ptr();
float32_t *outp = output.ptr();
arm_max_no_idx_f32(inp,
inputA.nbSamples(),
&result);
outp[0] = result;
ASSERT_EQ(result,refp[this->refOffset]);
}
void StatsTestsF32::test_absmax_no_idx_f32()
{
const float32_t *inp = inputA.ptr();
float32_t result;
float32_t *refp = ref.ptr();
float32_t *outp = output.ptr();
arm_absmax_no_idx_f32(inp,
inputA.nbSamples(),
&result);
outp[0] = result;
ASSERT_EQ(result,refp[this->refOffset]);
}
void StatsTestsF32::test_min_no_idx_f32()
{
const float32_t *inp = inputA.ptr();
float32_t result;
float32_t *refp = ref.ptr();
float32_t *outp = output.ptr();
arm_min_no_idx_f32(inp,
inputA.nbSamples(),
&result);
outp[0] = result;
ASSERT_EQ(result,refp[this->refOffset]);
}
void StatsTestsF32::test_absmin_no_idx_f32()
{
const float32_t *inp = inputA.ptr();
float32_t result;
float32_t *refp = ref.ptr();
float32_t *outp = output.ptr();
arm_absmin_no_idx_f32(inp,
inputA.nbSamples(),
&result);
outp[0] = result;
ASSERT_EQ(result,refp[this->refOffset]);
}
void StatsTestsF32::test_min_f32()
{
const float32_t *inp = inputA.ptr();
float32_t result;
uint32_t indexval;
float32_t *refp = ref.ptr();
int16_t *refind = minIndexes.ptr();
float32_t *outp = output.ptr();
int16_t *ind = index.ptr();
arm_min_f32(inp,
inputA.nbSamples(),
&result,
&indexval);
outp[0] = result;
ind[0] = indexval;
ASSERT_EQ(result,refp[this->refOffset]);
ASSERT_EQ((int16_t)indexval,refind[this->refOffset]);
}
void StatsTestsF32::test_absmin_f32()
{
const float32_t *inp = inputA.ptr();
float32_t result;
uint32_t indexval;
float32_t *refp = ref.ptr();
int16_t *refind = minIndexes.ptr();
float32_t *outp = output.ptr();
int16_t *ind = index.ptr();
arm_absmin_f32(inp,
inputA.nbSamples(),
&result,
&indexval);
outp[0] = result;
ind[0] = indexval;
ASSERT_EQ(result,refp[this->refOffset]);
ASSERT_EQ((int16_t)indexval,refind[this->refOffset]);
}
void StatsTestsF32::test_mean_f32()
{
const float32_t *inp = inputA.ptr();
float32_t result;
float32_t *refp = ref.ptr();
float32_t *outp = output.ptr();
arm_mean_f32(inp,
inputA.nbSamples(),
&result);
outp[0] = result;
ASSERT_SNR(result,refp[this->refOffset],(float32_t)SNR_THRESHOLD);
ASSERT_REL_ERROR(result,refp[this->refOffset],REL_ERROR);
}
void StatsTestsF32::test_power_f32()
{
const float32_t *inp = inputA.ptr();
float32_t result;
float32_t *refp = ref.ptr();
float32_t *outp = output.ptr();
arm_power_f32(inp,
inputA.nbSamples(),
&result);
outp[0] = result;
ASSERT_SNR(result,refp[this->refOffset],(float32_t)SNR_THRESHOLD);
ASSERT_REL_ERROR(result,refp[this->refOffset],REL_ERROR);
}
void StatsTestsF32::test_rms_f32()
{
const float32_t *inp = inputA.ptr();
float32_t result;
float32_t *refp = ref.ptr();
float32_t *outp = output.ptr();
arm_rms_f32(inp,
inputA.nbSamples(),
&result);
outp[0] = result;
ASSERT_SNR(result,refp[this->refOffset],(float32_t)SNR_THRESHOLD);
ASSERT_REL_ERROR(result,refp[this->refOffset],REL_ERROR);
}
void StatsTestsF32::test_std_f32()
{
const float32_t *inp = inputA.ptr();
float32_t result;
float32_t *refp = ref.ptr();
float32_t *outp = output.ptr();
arm_std_f32(inp,
inputA.nbSamples(),
&result);
outp[0] = result;
ASSERT_SNR(result,refp[this->refOffset],(float32_t)SNR_THRESHOLD);
ASSERT_REL_ERROR(result,refp[this->refOffset],REL_ERROR);
}
void StatsTestsF32::test_var_f32()
{
const float32_t *inp = inputA.ptr();
float32_t result;
float32_t *refp = ref.ptr();
float32_t *outp = output.ptr();
arm_var_f32(inp,
inputA.nbSamples(),
&result);
outp[0] = result;
ASSERT_SNR(result,refp[this->refOffset],(float32_t)SNR_THRESHOLD);
ASSERT_REL_ERROR(result,refp[this->refOffset],REL_ERROR);
}
void StatsTestsF32::test_std_stability_f32()
{
/*
With the textbook algorithm, those values will produce a negative
value for the variance.
The CMSIS-DSP variance algorithm is the two pass one so will work
with those values.
So, it should be possible to compute the square root for the standard
deviation.
*/
float32_t in[4]={4.0f, 7.0f, 13.0f, 16.0f};
float32_t result;
int i;
/*
Add bigger offset so that average is much bigger than standard deviation.
*/
for(i=0 ; i < 4; i++)
{
in[i] += 3.0e4f;
}
arm_std_f32(in,4,&result);
/*
If variance is giving a negative value, the square root
should return zero.
We check it is not happening here.
*/
ASSERT_TRUE(fabs(5.47723f - result) < 1.0e-4f);
}
void StatsTestsF32::test_entropy_f32()
{
const float32_t *inp = inputA.ptr();
const int16_t *dimsp = dims.ptr();
float32_t *outp = output.ptr();
for(int i=0;i < this->nbPatterns; i++)
{
*outp = arm_entropy_f32(inp,dimsp[i+1]);
outp++;
inp += dimsp[i+1];
}
ASSERT_SNR(ref,output,(float32_t)SNR_THRESHOLD);
ASSERT_REL_ERROR(ref,output,REL_ERROR);
}
void StatsTestsF32::test_logsumexp_f32()
{
const float32_t *inp = inputA.ptr();
const int16_t *dimsp = dims.ptr();
float32_t *outp = output.ptr();
for(int i=0;i < this->nbPatterns; i++)
{
*outp = arm_logsumexp_f32(inp,dimsp[i+1]);
outp++;
inp += dimsp[i+1];
}
ASSERT_SNR(ref,output,(float32_t)SNR_THRESHOLD);
ASSERT_REL_ERROR(ref,output,REL_ERROR);
}
void StatsTestsF32::test_kullback_leibler_f32()
{
const float32_t *inpA = inputA.ptr();
const float32_t *inpB = inputB.ptr();
const int16_t *dimsp = dims.ptr();
float32_t *outp = output.ptr();
for(int i=0;i < this->nbPatterns; i++)
{
*outp = arm_kullback_leibler_f32(inpA,inpB,dimsp[i+1]);
outp++;
inpA += dimsp[i+1];
inpB += dimsp[i+1];
}
ASSERT_SNR(ref,output,(float32_t)SNR_THRESHOLD);
ASSERT_REL_ERROR(ref,output,REL_ERROR);
}
void StatsTestsF32::test_logsumexp_dot_prod_f32()
{
const float32_t *inpA = inputA.ptr();
const float32_t *inpB = inputB.ptr();
const int16_t *dimsp = dims.ptr();
float32_t *outp = output.ptr();
float32_t *tmpp = tmp.ptr();
for(int i=0;i < this->nbPatterns; i++)
{
*outp = arm_logsumexp_dot_prod_f32(inpA,inpB,dimsp[i+1],tmpp);
outp++;
inpA += dimsp[i+1];
inpB += dimsp[i+1];
}
ASSERT_SNR(ref,output,(float32_t)SNR_THRESHOLD);
ASSERT_REL_ERROR(ref,output,REL_ERROR);
}
void StatsTestsF32::test_mse_f32()
{
const float32_t *inpA = inputA.ptr();
const float32_t *inpB = inputB.ptr();
float32_t result;
float32_t *refp = ref.ptr();
float32_t *outp = output.ptr();
arm_mse_f32(inpA,inpB,
inputA.nbSamples(),
&result);
outp[0] = result;
ASSERT_SNR(result,refp[this->refOffset],(float32_t)SNR_THRESHOLD);
ASSERT_REL_ERROR(result,refp[this->refOffset],(float32_t)REL_ERROR);
}
void StatsTestsF32::setUp(Testing::testID_t id,std::vector<Testing::param_t>& paramsArgs,Client::PatternMgr *mgr)
{
(void)paramsArgs;
switch(id)
{
case StatsTestsF32::TEST_MAX_F32_1:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,3);
maxIndexes.reload(StatsTestsF32::MAXINDEXES_S16_ID,mgr);
ref.reload(StatsTestsF32::MAXVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
index.create(1,StatsTestsF32::OUT_S16_ID,mgr);
refOffset = 0;
}
break;
case StatsTestsF32::TEST_MAX_F32_2:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,8);
maxIndexes.reload(StatsTestsF32::MAXINDEXES_S16_ID,mgr);
ref.reload(StatsTestsF32::MAXVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
index.create(1,StatsTestsF32::OUT_S16_ID,mgr);
refOffset = 1;
}
break;
case StatsTestsF32::TEST_MAX_F32_3:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,11);
maxIndexes.reload(StatsTestsF32::MAXINDEXES_S16_ID,mgr);
ref.reload(StatsTestsF32::MAXVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
index.create(1,StatsTestsF32::OUT_S16_ID,mgr);
refOffset = 2;
}
break;
case StatsTestsF32::TEST_MEAN_F32_4:
{
inputA.reload(StatsTestsF32::INPUT2_F32_ID,mgr,3);
ref.reload(StatsTestsF32::MEANVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 0;
}
break;
case StatsTestsF32::TEST_MEAN_F32_5:
{
inputA.reload(StatsTestsF32::INPUT2_F32_ID,mgr,8);
ref.reload(StatsTestsF32::MEANVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 1;
}
break;
case StatsTestsF32::TEST_MEAN_F32_6:
{
inputA.reload(StatsTestsF32::INPUT2_F32_ID,mgr,11);
ref.reload(StatsTestsF32::MEANVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 2;
}
break;
case StatsTestsF32::TEST_MIN_F32_7:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,3);
minIndexes.reload(StatsTestsF32::MININDEXES_S16_ID,mgr);
ref.reload(StatsTestsF32::MINVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
index.create(1,StatsTestsF32::OUT_S16_ID,mgr);
refOffset = 0;
}
break;
case StatsTestsF32::TEST_MIN_F32_8:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,8);
minIndexes.reload(StatsTestsF32::MININDEXES_S16_ID,mgr);
ref.reload(StatsTestsF32::MINVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
index.create(1,StatsTestsF32::OUT_S16_ID,mgr);
refOffset = 1;
}
break;
case StatsTestsF32::TEST_MIN_F32_9:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,11);
minIndexes.reload(StatsTestsF32::MININDEXES_S16_ID,mgr);
ref.reload(StatsTestsF32::MINVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
index.create(1,StatsTestsF32::OUT_S16_ID,mgr);
refOffset = 2;
}
break;
case StatsTestsF32::TEST_POWER_F32_10:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,3);
ref.reload(StatsTestsF32::POWERVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 0;
}
break;
case StatsTestsF32::TEST_POWER_F32_11:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,8);
ref.reload(StatsTestsF32::POWERVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 1;
}
break;
case StatsTestsF32::TEST_POWER_F32_12:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,11);
ref.reload(StatsTestsF32::POWERVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 2;
}
break;
case StatsTestsF32::TEST_RMS_F32_13:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,3);
ref.reload(StatsTestsF32::RMSVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 0;
}
break;
case StatsTestsF32::TEST_RMS_F32_14:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,8);
ref.reload(StatsTestsF32::RMSVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 1;
}
break;
case StatsTestsF32::TEST_RMS_F32_15:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,11);
ref.reload(StatsTestsF32::RMSVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 2;
}
break;
case StatsTestsF32::TEST_STD_F32_16:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,3);
ref.reload(StatsTestsF32::STDVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 0;
}
break;
case StatsTestsF32::TEST_STD_F32_17:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,8);
ref.reload(StatsTestsF32::STDVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 1;
}
break;
case StatsTestsF32::TEST_STD_F32_18:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,11);
ref.reload(StatsTestsF32::STDVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 2;
}
break;
case StatsTestsF32::TEST_VAR_F32_19:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,3);
ref.reload(StatsTestsF32::VARVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 0;
}
break;
case StatsTestsF32::TEST_VAR_F32_20:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,8);
ref.reload(StatsTestsF32::VARVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 1;
}
break;
case StatsTestsF32::TEST_VAR_F32_21:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,11);
ref.reload(StatsTestsF32::VARVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 2;
}
break;
case StatsTestsF32::TEST_ENTROPY_F32_22:
{
inputA.reload(StatsTestsF32::INPUT22_F32_ID,mgr);
dims.reload(StatsTestsF32::DIM22_S16_ID,mgr);
ref.reload(StatsTestsF32::REF22_ENTROPY_F32_ID,mgr);
output.create(ref.nbSamples(),StatsTestsF32::OUT_F32_ID,mgr);
const int16_t *dimsp = dims.ptr();
this->nbPatterns=dimsp[0];
}
break;
case StatsTestsF32::TEST_LOGSUMEXP_F32_23:
{
inputA.reload(StatsTestsF32::INPUT23_F32_ID,mgr);
dims.reload(StatsTestsF32::DIM23_S16_ID,mgr);
ref.reload(StatsTestsF32::REF23_LOGSUMEXP_F32_ID,mgr);
output.create(ref.nbSamples(),StatsTestsF32::OUT_F32_ID,mgr);
const int16_t *dimsp = dims.ptr();
this->nbPatterns=dimsp[0];
}
break;
case StatsTestsF32::TEST_KULLBACK_LEIBLER_F32_24:
{
inputA.reload(StatsTestsF32::INPUTA24_F32_ID,mgr);
inputB.reload(StatsTestsF32::INPUTB24_F32_ID,mgr);
dims.reload(StatsTestsF32::DIM24_S16_ID,mgr);
ref.reload(StatsTestsF32::REF24_KL_F32_ID,mgr);
output.create(ref.nbSamples(),StatsTestsF32::OUT_F32_ID,mgr);
const int16_t *dimsp = dims.ptr();
this->nbPatterns=dimsp[0];
}
break;
case StatsTestsF32::TEST_LOGSUMEXP_DOT_PROD_F32_25:
{
inputA.reload(StatsTestsF32::INPUTA25_F32_ID,mgr);
inputB.reload(StatsTestsF32::INPUTB25_F32_ID,mgr);
dims.reload(StatsTestsF32::DIM25_S16_ID,mgr);
ref.reload(StatsTestsF32::REF25_LOGSUMEXP_DOT_F32_ID,mgr);
output.create(ref.nbSamples(),StatsTestsF32::OUT_F32_ID,mgr);
const int16_t *dimsp = dims.ptr();
this->nbPatterns=dimsp[0];
/* 12 is max vecDim as defined in Python script generating the data */
tmp.create(12,StatsTestsF32::TMP_F32_ID,mgr);
}
break;
case StatsTestsF32::TEST_MAX_NO_IDX_F32_26:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,3);
ref.reload(StatsTestsF32::MAXVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 0;
}
break;
case StatsTestsF32::TEST_MAX_NO_IDX_F32_27:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,8);
ref.reload(StatsTestsF32::MAXVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 1;
}
break;
case StatsTestsF32::TEST_MAX_NO_IDX_F32_28:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,11);
ref.reload(StatsTestsF32::MAXVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 2;
}
break;
case TEST_MEAN_F32_29:
inputA.reload(StatsTestsF32::INPUT2_F32_ID,mgr,100);
ref.reload(StatsTestsF32::MEANVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 3;
break;
case TEST_RMS_F32_30:
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,100);
ref.reload(StatsTestsF32::RMSVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 3;
break;
case TEST_STD_F32_31:
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,100);
ref.reload(StatsTestsF32::STDVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 3;
break;
case TEST_VAR_F32_32:
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,100);
ref.reload(StatsTestsF32::VARVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 3;
break;
case StatsTestsF32::TEST_ABSMAX_F32_34:
{
inputA.reload(StatsTestsF32::INPUTNEW1_F32_ID,mgr,3);
maxIndexes.reload(StatsTestsF32::ABSMAXINDEXES_S16_ID,mgr);
ref.reload(StatsTestsF32::ABSMAXVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
index.create(1,StatsTestsF32::OUT_S16_ID,mgr);
refOffset = 0;
}
break;
case StatsTestsF32::TEST_ABSMAX_F32_35:
{
inputA.reload(StatsTestsF32::INPUTNEW1_F32_ID,mgr,8);
maxIndexes.reload(StatsTestsF32::ABSMAXINDEXES_S16_ID,mgr);
ref.reload(StatsTestsF32::ABSMAXVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
index.create(1,StatsTestsF32::OUT_S16_ID,mgr);
refOffset = 1;
}
break;
case StatsTestsF32::TEST_ABSMAX_F32_36:
{
inputA.reload(StatsTestsF32::INPUTNEW1_F32_ID,mgr,11);
maxIndexes.reload(StatsTestsF32::ABSMAXINDEXES_S16_ID,mgr);
ref.reload(StatsTestsF32::ABSMAXVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
index.create(1,StatsTestsF32::OUT_S16_ID,mgr);
refOffset = 2;
}
break;
case StatsTestsF32::TEST_ABSMIN_F32_37:
{
inputA.reload(StatsTestsF32::INPUTNEW1_F32_ID,mgr,3);
minIndexes.reload(StatsTestsF32::ABSMININDEXES_S16_ID,mgr);
ref.reload(StatsTestsF32::ABSMINVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
index.create(1,StatsTestsF32::OUT_S16_ID,mgr);
refOffset = 0;
}
break;
case StatsTestsF32::TEST_ABSMIN_F32_38:
{
inputA.reload(StatsTestsF32::INPUTNEW1_F32_ID,mgr,8);
minIndexes.reload(StatsTestsF32::ABSMININDEXES_S16_ID,mgr);
ref.reload(StatsTestsF32::ABSMINVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
index.create(1,StatsTestsF32::OUT_S16_ID,mgr);
refOffset = 1;
}
break;
case StatsTestsF32::TEST_ABSMIN_F32_39:
{
inputA.reload(StatsTestsF32::INPUTNEW1_F32_ID,mgr,11);
minIndexes.reload(StatsTestsF32::ABSMININDEXES_S16_ID,mgr);
ref.reload(StatsTestsF32::ABSMINVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
index.create(1,StatsTestsF32::OUT_S16_ID,mgr);
refOffset = 2;
}
break;
case StatsTestsF32::TEST_MIN_NO_IDX_F32_40:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,3);
ref.reload(StatsTestsF32::MINVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 0;
}
break;
case StatsTestsF32::TEST_MIN_NO_IDX_F32_41:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,8);
ref.reload(StatsTestsF32::MINVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 1;
}
break;
case StatsTestsF32::TEST_MIN_NO_IDX_F32_42:
{
inputA.reload(StatsTestsF32::INPUT1_F32_ID,mgr,11);
ref.reload(StatsTestsF32::MINVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 2;
}
break;
case StatsTestsF32::TEST_ABSMAX_NO_IDX_F32_43:
{
inputA.reload(StatsTestsF32::INPUTNEW1_F32_ID,mgr,3);
ref.reload(StatsTestsF32::ABSMAXVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 0;
}
break;
case StatsTestsF32::TEST_ABSMAX_NO_IDX_F32_44:
{
inputA.reload(StatsTestsF32::INPUTNEW1_F32_ID,mgr,8);
ref.reload(StatsTestsF32::ABSMAXVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 1;
}
break;
case StatsTestsF32::TEST_ABSMAX_NO_IDX_F32_45:
{
inputA.reload(StatsTestsF32::INPUTNEW1_F32_ID,mgr,11);
ref.reload(StatsTestsF32::ABSMAXVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 2;
}
break;
case StatsTestsF32::TEST_ABSMIN_NO_IDX_F32_46:
{
inputA.reload(StatsTestsF32::INPUTNEW1_F32_ID,mgr,3);
ref.reload(StatsTestsF32::ABSMINVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 0;
}
break;
case StatsTestsF32::TEST_ABSMIN_NO_IDX_F32_47:
{
inputA.reload(StatsTestsF32::INPUTNEW1_F32_ID,mgr,8);
ref.reload(StatsTestsF32::ABSMINVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 1;
}
break;
case StatsTestsF32::TEST_ABSMIN_NO_IDX_F32_48:
{
inputA.reload(StatsTestsF32::INPUTNEW1_F32_ID,mgr,11);
ref.reload(StatsTestsF32::ABSMINVALS_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 2;
}
break;
case StatsTestsF32::TEST_MSE_F32_49:
{
inputA.reload(StatsTestsF32::INPUTNEW1_F32_ID,mgr,3);
inputB.reload(StatsTestsF32::INPUTNEW2_F32_ID,mgr,3);
ref.reload(StatsTestsF32::MSE_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 0;
}
break;
case StatsTestsF32::TEST_MSE_F32_50:
{
inputA.reload(StatsTestsF32::INPUTNEW1_F32_ID,mgr,8);
inputB.reload(StatsTestsF32::INPUTNEW2_F32_ID,mgr,8);
ref.reload(StatsTestsF32::MSE_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 1;
}
break;
case StatsTestsF32::TEST_MSE_F32_51:
{
inputA.reload(StatsTestsF32::INPUTNEW1_F32_ID,mgr,11);
inputB.reload(StatsTestsF32::INPUTNEW2_F32_ID,mgr,11);
ref.reload(StatsTestsF32::MSE_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 2;
}
break;
case StatsTestsF32::TEST_MSE_F32_52:
{
inputA.reload(StatsTestsF32::INPUTNEW1_F32_ID,mgr,100);
inputB.reload(StatsTestsF32::INPUTNEW2_F32_ID,mgr,100);
ref.reload(StatsTestsF32::MSE_F32_ID,mgr);
output.create(1,StatsTestsF32::OUT_F32_ID,mgr);
refOffset = 3;
}
break;
}
}
void StatsTestsF32::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
{
(void)id;
switch(id)
{
case StatsTestsF32::TEST_MAX_F32_1:
case StatsTestsF32::TEST_MAX_F32_2:
case StatsTestsF32::TEST_MAX_F32_3:
case StatsTestsF32::TEST_MIN_F32_7:
case StatsTestsF32::TEST_MIN_F32_8:
case StatsTestsF32::TEST_MIN_F32_9:
index.dump(mgr);
output.dump(mgr);
break;
default:
output.dump(mgr);
}
}