157 lines
4.4 KiB
C++
Executable File
157 lines
4.4 KiB
C++
Executable File
#include "BinaryTestsF16.h"
|
|
#include <stdio.h>
|
|
#include "Error.h"
|
|
|
|
#define SNR_THRESHOLD 60
|
|
|
|
/*
|
|
|
|
Reference patterns are generated with
|
|
a double precision computation.
|
|
|
|
*/
|
|
#define REL_ERROR (2.0e-3)
|
|
#define ABS_ERROR (2.0e-3)
|
|
|
|
|
|
/* Upper bound of maximum matrix dimension used by Python */
|
|
#define MAXMATRIXDIM 40
|
|
|
|
|
|
#define LOADDATA2() \
|
|
const float16_t *inp1=input1.ptr(); \
|
|
const float16_t *inp2=input2.ptr(); \
|
|
\
|
|
float16_t *ap=a.ptr(); \
|
|
float16_t *bp=b.ptr(); \
|
|
\
|
|
float16_t *outp=output.ptr(); \
|
|
int16_t *dimsp = dims.ptr(); \
|
|
int nbMatrixes = dims.nbSamples() / 3;\
|
|
int rows,internal,columns; \
|
|
int i;
|
|
|
|
|
|
|
|
|
|
|
|
#define PREPAREDATA2() \
|
|
in1.numRows=rows; \
|
|
in1.numCols=internal; \
|
|
memcpy((void*)ap,(const void*)inp1,2*sizeof(float16_t)*rows*internal);\
|
|
in1.pData = ap; \
|
|
\
|
|
in2.numRows=internal; \
|
|
in2.numCols=columns; \
|
|
memcpy((void*)bp,(const void*)inp2,2*sizeof(float16_t)*internal*columns);\
|
|
in2.pData = bp; \
|
|
\
|
|
out.numRows=rows; \
|
|
out.numCols=columns; \
|
|
out.pData = outp;
|
|
|
|
|
|
|
|
void BinaryTestsF16::test_mat_mult_f16()
|
|
{
|
|
LOADDATA2();
|
|
arm_status status;
|
|
|
|
for(i=0;i < nbMatrixes ; i ++)
|
|
{
|
|
rows = *dimsp++;
|
|
internal = *dimsp++;
|
|
columns = *dimsp++;
|
|
|
|
PREPAREDATA2();
|
|
|
|
status=arm_mat_mult_f16(&this->in1,&this->in2,&this->out);
|
|
ASSERT_TRUE(status==ARM_MATH_SUCCESS);
|
|
|
|
outp += (rows * columns);
|
|
|
|
}
|
|
|
|
ASSERT_EMPTY_TAIL(output);
|
|
|
|
ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
|
|
|
|
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
|
|
|
|
}
|
|
|
|
void BinaryTestsF16::test_mat_cmplx_mult_f16()
|
|
{
|
|
LOADDATA2();
|
|
arm_status status;
|
|
|
|
for(i=0;i < nbMatrixes ; i ++)
|
|
{
|
|
rows = *dimsp++;
|
|
internal = *dimsp++;
|
|
columns = *dimsp++;
|
|
|
|
PREPAREDATA2();
|
|
|
|
status=arm_mat_cmplx_mult_f16(&this->in1,&this->in2,&this->out);
|
|
ASSERT_TRUE(status==ARM_MATH_SUCCESS);
|
|
|
|
outp += (2*rows * columns);
|
|
|
|
}
|
|
|
|
ASSERT_EMPTY_TAIL(output);
|
|
|
|
ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
|
|
|
|
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
|
|
|
|
}
|
|
|
|
|
|
void BinaryTestsF16::setUp(Testing::testID_t id,std::vector<Testing::param_t>& params,Client::PatternMgr *mgr)
|
|
{
|
|
|
|
|
|
(void)params;
|
|
switch(id)
|
|
{
|
|
case TEST_MAT_MULT_F16_1:
|
|
input1.reload(BinaryTestsF16::INPUTS1_F16_ID,mgr);
|
|
input2.reload(BinaryTestsF16::INPUTS2_F16_ID,mgr);
|
|
dims.reload(BinaryTestsF16::DIMSBINARY1_S16_ID,mgr);
|
|
|
|
ref.reload(BinaryTestsF16::REFMUL1_F16_ID,mgr);
|
|
|
|
output.create(ref.nbSamples(),BinaryTestsF16::OUT_F16_ID,mgr);
|
|
a.create(MAXMATRIXDIM*MAXMATRIXDIM,BinaryTestsF16::TMPA_F16_ID,mgr);
|
|
b.create(MAXMATRIXDIM*MAXMATRIXDIM,BinaryTestsF16::TMPB_F16_ID,mgr);
|
|
break;
|
|
|
|
case TEST_MAT_CMPLX_MULT_F16_2:
|
|
input1.reload(BinaryTestsF16::INPUTSC1_F16_ID,mgr);
|
|
input2.reload(BinaryTestsF16::INPUTSC2_F16_ID,mgr);
|
|
dims.reload(BinaryTestsF16::DIMSBINARY1_S16_ID,mgr);
|
|
|
|
ref.reload(BinaryTestsF16::REFCMPLXMUL1_F16_ID,mgr);
|
|
|
|
output.create(ref.nbSamples(),BinaryTestsF16::OUT_F16_ID,mgr);
|
|
a.create(2*MAXMATRIXDIM*MAXMATRIXDIM,BinaryTestsF16::TMPA_F16_ID,mgr);
|
|
b.create(2*MAXMATRIXDIM*MAXMATRIXDIM,BinaryTestsF16::TMPB_F16_ID,mgr);
|
|
break;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
void BinaryTestsF16::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
|
|
{
|
|
(void)id;
|
|
output.dump(mgr);
|
|
}
|