RMUL2025/lib/cmsis_5/CMSIS/DSP/Testing/PatternGeneration/Distance.py

252 lines
6.2 KiB
Python
Executable File

import os.path
import itertools
import Tools
import random
import numpy as np
import scipy.spatial
NBTESTSAMPLES = 10
VECDIM = [35,14,20]
def euclidean(xa,xb):
r = scipy.spatial.distance.euclidean(xa,xb)
return(r)
def braycurtis(xa,xb):
r = scipy.spatial.distance.braycurtis(xa,xb)
return(r)
def canberra(xa,xb):
r = scipy.spatial.distance.canberra(xa,xb)
return(r)
def chebyshev(xa,xb):
r = scipy.spatial.distance.chebyshev(xa,xb)
return(r)
def cityblock(xa,xb):
r = scipy.spatial.distance.cityblock(xa,xb)
return(r)
def correlation(xa,xb):
r = scipy.spatial.distance.correlation (xa,xb)
return(r)
def cosine(xa,xb):
r = scipy.spatial.distance.cosine (xa,xb)
return(r)
def jensenshannon(xa,xb):
r = scipy.spatial.distance.jensenshannon (xa,xb)
return(r)
def minkowski (xa,xb,dim):
r = scipy.spatial.distance.minkowski(xa,xb,p=dim)
return(r)
def dice(xa,xb):
r = scipy.spatial.distance.dice (xa,xb)
return(r)
def hamming(xa,xb):
r = scipy.spatial.distance.hamming (xa,xb)
return(r)
def jaccard(xa,xb):
r = scipy.spatial.distance.jaccard (xa,xb)
return(r)
def kulsinski(xa,xb):
r = scipy.spatial.distance.kulsinski (xa,xb)
return(r)
def rogerstanimoto(xa,xb):
r = scipy.spatial.distance.rogerstanimoto (xa,xb)
return(r)
def russellrao(xa,xb):
r = scipy.spatial.distance.russellrao (xa,xb)
return(r)
def sokalmichener(xa,xb):
r = scipy.spatial.distance.sokalmichener (xa,xb)
return(r)
def sokalsneath(xa,xb):
r = scipy.spatial.distance.sokalsneath (xa,xb)
return(r)
def yule(xa,xb):
r = scipy.spatial.distance.yule (xa,xb)
return(r)
def writeFTest(config,funcList):
dims=[]
dimsM=[]
inputsA=[]
inputsB=[]
inputsAJ=[]
inputsBJ=[]
outputs=[]
outputMin=[]
outputJen=[]
for i in range(0,len(funcList)):
outputs.append([])
vecDim = VECDIM[0]
dims.append(NBTESTSAMPLES)
dims.append(vecDim)
dimsM.append(NBTESTSAMPLES)
dimsM.append(vecDim)
for _ in range(0,NBTESTSAMPLES):
normDim = np.random.choice([2,3,4])
dimsM.append(normDim)
va = np.random.randn(vecDim)
# Normalization for distance assuming probability distribution in entry
vb = np.random.randn(vecDim)
for i in range(0,len(funcList)):
func = funcList[i]
outputs[i].append(func(va,vb))
outputMin.append(minkowski(va,vb,normDim))
inputsA += list(va)
inputsB += list(vb)
va = np.abs(va)
va = va / np.sum(va)
vb = np.abs(vb)
vb = vb / np.sum(vb)
inputsAJ += list(va)
inputsBJ += list(vb)
outputJen.append(jensenshannon(va,vb))
inputsA=np.array(inputsA)
inputsB=np.array(inputsB)
for i in range(0,len(funcList)):
outputs[i]=np.array(outputs[i])
config.writeInput(1, inputsA,"InputA")
config.writeInput(1, inputsB,"InputB")
config.writeInput(8, inputsAJ,"InputA")
config.writeInput(8, inputsBJ,"InputB")
config.writeInputS16(1, dims,"Dims")
config.writeInputS16(9, dimsM,"Dims")
for i in range(0,len(funcList)):
config.writeReference(i+1, outputs[i],"Ref")
config.writeReference(8, outputJen,"Ref")
config.writeReference(9, outputMin,"Ref")
def writeBTest(config,funcList):
dims=[]
inputsA=[]
inputsB=[]
outputs=[]
for i in range(0,len(funcList)):
outputs.append([])
vecDim = VECDIM[0]
dims.append(NBTESTSAMPLES)
dims.append(vecDim)
va = np.random.choice([0,1],vecDim)
# Number of word32 containing all of our bits
pva = Tools.packset(va)
dims.append(len(pva))
for _ in range(0,NBTESTSAMPLES):
va = np.random.choice([0,1],vecDim)
vb = np.random.choice([0,1],vecDim)
# Boolean arrays are packed for the C code
pva = Tools.packset(va)
pvb = Tools.packset(vb)
for i in range(0,len(funcList)):
func = funcList[i]
outputs[i].append(func(va,vb))
inputsA += pva
inputsB += pvb
inputsA=np.array(inputsA)
inputsB=np.array(inputsB)
for i in range(0,len(funcList)):
outputs[i]=np.array(outputs[i])
config.writeInput(1, inputsA,"InputA")
config.writeInput(1, inputsB,"InputB")
config.writeInputS16(1, dims,"Dims")
for i in range(0,len(funcList)):
config.writeReferenceF32(i+1, outputs[i],"Ref")
def writeFTests(config):
writeFTest(config,[braycurtis,canberra,chebyshev,cityblock,correlation,cosine,euclidean])
def writeBTests(config):
writeBTest(config,[dice,hamming,jaccard,kulsinski,rogerstanimoto,russellrao,sokalmichener,sokalsneath,yule])
def writeFBenchmark(config):
NBSAMPLES=256
va = np.random.randn(NBSAMPLES)
vb = np.random.randn(NBSAMPLES)
inputsA = list(va)
inputsB = list(vb)
va = np.abs(va)
va = list(va / np.sum(va))
vb = np.abs(vb)
vb = list(vb / np.sum(vb))
config.writeInput(1, inputsA,"InputBenchA")
config.writeInput(1, inputsB,"InputBenchB")
config.writeInput(1, va,"InputBenchProbaA")
config.writeInput(1, vb,"InputBenchProbaB")
def writeUBenchmark(config):
NBSAMPLES=256*32
va = np.random.choice([0,1],NBSAMPLES)
vb = np.random.choice([0,1],NBSAMPLES)
pva = list(Tools.packset(va))
pvb = list(Tools.packset(vb))
config.writeInput(1, pva,"InputBenchA")
config.writeInput(1, pvb,"InputBenchB")
def generatePatterns():
PATTERNDIR = os.path.join("Patterns","DSP","Distance","Distance")
PARAMDIR = os.path.join("Parameters","DSP","Distance","Distance")
configf64=Tools.Config(PATTERNDIR,PARAMDIR,"f64")
configf32=Tools.Config(PATTERNDIR,PARAMDIR,"f32")
configf16=Tools.Config(PATTERNDIR,PARAMDIR,"f16")
configu32=Tools.Config(PATTERNDIR,PARAMDIR,"u32")
configf32.setOverwrite(False)
configf16.setOverwrite(False)
configu32.setOverwrite(False)
writeFTests(configf64)
writeFTests(configf32)
writeFTests(configf16)
writeBTests(configu32)
writeFBenchmark(configf32)
writeFBenchmark(configf16)
writeUBenchmark(configu32)
if __name__ == '__main__':
generatePatterns()