// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Mark Borgerding mark a borgerding net // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_FFT_MODULE_H #define EIGEN_FFT_MODULE_H #include #include #include #include "../../Eigen/Core" /** * \defgroup FFT_Module Fast Fourier Transform module * * \code * #include * \endcode * * This module provides Fast Fourier transformation, with a configurable backend * implementation. * * The default implementation is based on kissfft. It is a small, free, and * reasonably efficient default. * * There are currently four implementation backend: * * - kissfft(https://github.com/mborgerding/kissfft) : Simple and not so fast, BSD-3-Clause. * It is a mixed-radix Fast Fourier Transform based up on the principle, "Keep It Simple, Stupid." * Notice that:kissfft fails to handle "atypically-sized" inputs(i.e., sizes with large factors),a workaround is using * fftw or pocketfft. * - fftw (http://www.fftw.org) : faster, GPL -- incompatible with Eigen in LGPL form, bigger code size. * - MKL (https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html) : fastest, free -- may be * incompatible with Eigen in GPL form. * - pocketfft (https://gitlab.mpcdf.mpg.de/mtr/pocketfft) : faster than kissfft, BSD 3-clause. * It is a heavily modified implementation of FFTPack, with the following advantages: * 1.strictly C++11 compliant * 2.more accurate twiddle factor computation * 3.very fast plan generation * 4.worst case complexity for transform sizes with large prime factors is N*log(N), because Bluestein's algorithm is * used for these cases * * \section FFTDesign Design * * The following design decisions were made concerning scaling and * half-spectrum for real FFT. * * The intent is to facilitate generic programming and ease migrating code * from Matlab/octave. * We think the default behavior of Eigen/FFT should favor correctness and * generality over speed. Of course, the caller should be able to "opt-out" from this * behavior and get the speed increase if they want it. * * 1) %Scaling: * Other libraries (FFTW,IMKL,KISSFFT) do not perform scaling, so there * is a constant gain incurred after the forward&inverse transforms , so * IFFT(FFT(x)) = Kx; this is done to avoid a vector-by-value multiply. * The downside is that algorithms that worked correctly in Matlab/octave * don't behave the same way once implemented in C++. * * How Eigen/FFT differs: invertible scaling is performed so IFFT( FFT(x) ) = x. * * 2) Real FFT half-spectrum * Other libraries use only half the frequency spectrum (plus one extra * sample for the Nyquist bin) for a real FFT, the other half is the * conjugate-symmetric of the first half. This saves them a copy and some * memory. The downside is the caller needs to have special logic for the * number of bins in complex vs real. * * How Eigen/FFT differs: The full spectrum is returned from the forward * transform. This facilitates generic template programming by obviating * separate specializations for real vs complex. On the inverse * transform, only half the spectrum is actually used if the output type is real. */ #include "../../Eigen/src/Core/util/DisableStupidWarnings.h" // IWYU pragma: begin_exports #ifdef EIGEN_FFTW_DEFAULT // FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size #include #include "src/FFT/ei_fftw_impl.h" namespace Eigen { // template typedef struct internal::fftw_impl default_fft_impl; this does not work template struct default_fft_impl : public internal::fftw_impl {}; } // namespace Eigen #elif defined EIGEN_MKL_DEFAULT // intel Math Kernel Library: fastest, free -- may be incompatible with Eigen in GPL form #include "src/FFT/ei_imklfft_impl.h" namespace Eigen { template struct default_fft_impl : public internal::imklfft::imklfft_impl {}; } // namespace Eigen #elif defined EIGEN_POCKETFFT_DEFAULT // internal::pocketfft_impl: a heavily modified implementation of FFTPack, with many advantages. #include #include "src/FFT/ei_pocketfft_impl.h" namespace Eigen { template struct default_fft_impl : public internal::pocketfft_impl {}; } // namespace Eigen #else // internal::kissfft_impl: small, free, reasonably efficient default, derived from kissfft #include "src/FFT/ei_kissfft_impl.h" namespace Eigen { template struct default_fft_impl : public internal::kissfft_impl {}; } // namespace Eigen #endif // IWYU pragma: end_exports namespace Eigen { // template struct fft_fwd_proxy; template struct fft_inv_proxy; namespace internal { template struct traits > { typedef typename T_SrcMat::PlainObject ReturnType; }; template struct traits > { typedef typename T_SrcMat::PlainObject ReturnType; }; } // namespace internal template struct fft_fwd_proxy : public ReturnByValue > { typedef DenseIndex Index; fft_fwd_proxy(const T_SrcMat& src, T_FftIfc& fft, Index nfft) : m_src(src), m_ifc(fft), m_nfft(nfft) {} template void evalTo(T_DestMat& dst) const; Index rows() const { return m_src.rows(); } Index cols() const { return m_src.cols(); } protected: const T_SrcMat& m_src; T_FftIfc& m_ifc; Index m_nfft; }; template struct fft_inv_proxy : public ReturnByValue > { typedef DenseIndex Index; fft_inv_proxy(const T_SrcMat& src, T_FftIfc& fft, Index nfft) : m_src(src), m_ifc(fft), m_nfft(nfft) {} template void evalTo(T_DestMat& dst) const; Index rows() const { return m_src.rows(); } Index cols() const { return m_src.cols(); } protected: const T_SrcMat& m_src; T_FftIfc& m_ifc; Index m_nfft; }; template > class FFT { public: typedef T_Impl impl_type; typedef DenseIndex Index; typedef typename impl_type::Scalar Scalar; typedef typename impl_type::Complex Complex; using Flag = int; static constexpr Flag Default = 0; static constexpr Flag Unscaled = 1; static constexpr Flag HalfSpectrum = 2; static constexpr Flag Speedy = 32767; FFT(const impl_type& impl = impl_type(), Flag flags = Default) : m_impl(impl), m_flag(flags) { eigen_assert((flags == Default || flags == Unscaled || flags == HalfSpectrum || flags == Speedy) && "invalid flags argument"); } inline bool HasFlag(Flag f) const { return (m_flag & (int)f) == f; } inline void SetFlag(Flag f) { m_flag |= (int)f; } inline void ClearFlag(Flag f) { m_flag &= (~(int)f); } inline void fwd(Complex* dst, const Scalar* src, Index nfft) { m_impl.fwd(dst, src, static_cast(nfft)); if (HasFlag(HalfSpectrum) == false) ReflectSpectrum(dst, nfft); } inline void fwd(Complex* dst, const Complex* src, Index nfft) { m_impl.fwd(dst, src, static_cast(nfft)); } #if defined EIGEN_FFTW_DEFAULT || defined EIGEN_POCKETFFT_DEFAULT || defined EIGEN_MKL_DEFAULT inline void fwd2(Complex* dst, const Complex* src, int n0, int n1) { m_impl.fwd2(dst, src, n0, n1); } #endif template inline void fwd(std::vector& dst, const std::vector& src) { if (NumTraits::IsComplex == 0 && HasFlag(HalfSpectrum)) dst.resize((src.size() >> 1) + 1); // half the bins + Nyquist bin else dst.resize(src.size()); fwd(&dst[0], &src[0], src.size()); } template inline void fwd(MatrixBase& dst, const MatrixBase& src, Index nfft = -1) { typedef typename ComplexDerived::Scalar dst_type; typedef typename InputDerived::Scalar src_type; EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived) EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived) EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived, InputDerived) // size at compile-time EIGEN_STATIC_ASSERT( (internal::is_same::value), YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) EIGEN_STATIC_ASSERT(int(InputDerived::Flags) & int(ComplexDerived::Flags) & DirectAccessBit, THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES) if (nfft < 1) nfft = src.size(); if (NumTraits::IsComplex == 0 && HasFlag(HalfSpectrum)) dst.derived().resize((nfft >> 1) + 1); else dst.derived().resize(nfft); if (src.innerStride() != 1 || src.size() < nfft) { Matrix tmp; if (src.size() < nfft) { tmp.setZero(nfft); tmp.block(0, 0, src.size(), 1) = src; } else { tmp = src; } fwd(&dst[0], &tmp[0], nfft); } else { fwd(&dst[0], &src[0], nfft); } } template inline fft_fwd_proxy, FFT > fwd(const MatrixBase& src, Index nfft = -1) { return fft_fwd_proxy, FFT >(src, *this, nfft); } template inline fft_inv_proxy, FFT > inv(const MatrixBase& src, Index nfft = -1) { return fft_inv_proxy, FFT >(src, *this, nfft); } inline void inv(Complex* dst, const Complex* src, Index nfft) { m_impl.inv(dst, src, static_cast(nfft)); if (HasFlag(Unscaled) == false) scale(dst, Scalar(1. / nfft), nfft); // scale the time series } inline void inv(Scalar* dst, const Complex* src, Index nfft) { m_impl.inv(dst, src, static_cast(nfft)); if (HasFlag(Unscaled) == false) scale(dst, Scalar(1. / nfft), nfft); // scale the time series } template inline void inv(MatrixBase& dst, const MatrixBase& src, Index nfft = -1) { typedef typename ComplexDerived::Scalar src_type; typedef typename ComplexDerived::RealScalar real_type; typedef typename OutputDerived::Scalar dst_type; const bool realfft = (NumTraits::IsComplex == 0); EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived) EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived) EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived, OutputDerived) // size at compile-time EIGEN_STATIC_ASSERT( (internal::is_same::value), YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) EIGEN_STATIC_ASSERT(int(OutputDerived::Flags) & int(ComplexDerived::Flags) & DirectAccessBit, THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES) if (nfft < 1) { // automatic FFT size determination if (realfft && HasFlag(HalfSpectrum)) nfft = 2 * (src.size() - 1); // assume even fft size else nfft = src.size(); } dst.derived().resize(nfft); // check for nfft that does not fit the input data size Index resize_input = (realfft && HasFlag(HalfSpectrum)) ? ((nfft / 2 + 1) - src.size()) : (nfft - src.size()); if (src.innerStride() != 1 || resize_input) { // if the vector is strided, then we need to copy it to a packed temporary Matrix tmp; if (resize_input) { size_t ncopy = (std::min)(src.size(), src.size() + resize_input); tmp.setZero(src.size() + resize_input); if (realfft && HasFlag(HalfSpectrum)) { // pad at the Nyquist bin tmp.head(ncopy) = src.head(ncopy); tmp(ncopy - 1) = real(tmp(ncopy - 1)); // enforce real-only Nyquist bin } else { size_t nhead, ntail; nhead = 1 + ncopy / 2 - 1; // range [0:pi) ntail = ncopy / 2 - 1; // range (-pi:0) tmp.head(nhead) = src.head(nhead); tmp.tail(ntail) = src.tail(ntail); if (resize_input < 0) { // shrinking -- create the Nyquist bin as the average of the two bins that fold into it tmp(nhead) = (src(nfft / 2) + src(src.size() - nfft / 2)) * real_type(.5); } else { // expanding -- split the old Nyquist bin into two halves tmp(nhead) = src(nhead) * real_type(.5); tmp(tmp.size() - nhead) = tmp(nhead); } } } else { tmp = src; } inv(&dst[0], &tmp[0], nfft); } else { inv(&dst[0], &src[0], nfft); } } template inline void inv(std::vector& dst, const std::vector& src, Index nfft = -1) { if (nfft < 1) nfft = (NumTraits::IsComplex == 0 && HasFlag(HalfSpectrum)) ? 2 * (src.size() - 1) : src.size(); dst.resize(nfft); inv(&dst[0], &src[0], nfft); } #if defined EIGEN_FFTW_DEFAULT || defined EIGEN_POCKETFFT_DEFAULT || defined EIGEN_MKL_DEFAULT inline void inv2(Complex* dst, const Complex* src, int n0, int n1) { m_impl.inv2(dst, src, n0, n1); if (HasFlag(Unscaled) == false) scale(dst, 1. / (n0 * n1), n0 * n1); } #endif inline impl_type& impl() { return m_impl; } private: template inline void scale(T_Data* x, Scalar s, Index nx) { #if 1 for (int k = 0; k < nx; ++k) *x++ *= s; #else if (((ptrdiff_t)x) & 15) Matrix::Map(x, nx) *= s; else Matrix::MapAligned(x, nx) *= s; // Matrix::Map(x,nx) * s; #endif } inline void ReflectSpectrum(Complex* freq, Index nfft) { // create the implicit right-half spectrum (conjugate-mirror of the left-half) Index nhbins = (nfft >> 1) + 1; for (Index k = nhbins; k < nfft; ++k) freq[k] = conj(freq[nfft - k]); } impl_type m_impl; int m_flag; }; template template inline void fft_fwd_proxy::evalTo(T_DestMat& dst) const { m_ifc.fwd(dst, m_src, m_nfft); } template template inline void fft_inv_proxy::evalTo(T_DestMat& dst) const { m_ifc.inv(dst, m_src, m_nfft); } } // namespace Eigen #include "../../Eigen/src/Core/util/ReenableStupidWarnings.h" #endif