Freescale Semiconductor, Inc.
Freescale
Kinetis_L
MKL03Z4
1.6
MKL03Z4 Freescale Microcontroller
Redistribution and use in source and binary forms, with or without modification,\nare permitted provided that the following conditions are met:\n o Redistributions of source code must retain the above copyright notice, this list\n of conditions and the following disclaimer.\n o Redistributions in binary form must reproduce the above copyright notice, this\n list of conditions and the following disclaimer in the documentation and/or\n other materials provided with the distribution.\n o Neither the name of Freescale Semiconductor, Inc. nor the names of its\n contributors may be used to endorse or promote products derived from this\n software without specific prior written permission.\n THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND\n ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED\n WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE\n DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR\n ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES\n (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;\n LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON\n ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT\n (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS\n SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
CM0PLUS
r0p0
little
false
false
false
true
2
false
8
32
FTFA_FlashConfig
Flash configuration field
NV_
0x400
0
0xE
registers
BACKKEY3
Backdoor Comparison Key 3.
0
8
read-only
0xFF
0xFF
KEY
Backdoor Comparison Key.
0
8
read-only
BACKKEY2
Backdoor Comparison Key 2.
0x1
8
read-only
0xFF
0xFF
KEY
Backdoor Comparison Key.
0
8
read-only
BACKKEY1
Backdoor Comparison Key 1.
0x2
8
read-only
0xFF
0xFF
KEY
Backdoor Comparison Key.
0
8
read-only
BACKKEY0
Backdoor Comparison Key 0.
0x3
8
read-only
0xFF
0xFF
KEY
Backdoor Comparison Key.
0
8
read-only
BACKKEY7
Backdoor Comparison Key 7.
0x4
8
read-only
0xFF
0xFF
KEY
Backdoor Comparison Key.
0
8
read-only
BACKKEY6
Backdoor Comparison Key 6.
0x5
8
read-only
0xFF
0xFF
KEY
Backdoor Comparison Key.
0
8
read-only
BACKKEY5
Backdoor Comparison Key 5.
0x6
8
read-only
0xFF
0xFF
KEY
Backdoor Comparison Key.
0
8
read-only
BACKKEY4
Backdoor Comparison Key 4.
0x7
8
read-only
0xFF
0xFF
KEY
Backdoor Comparison Key.
0
8
read-only
FPROT3
Non-volatile P-Flash Protection 1 - Low Register
0x8
8
read-only
0xFF
0xFF
PROT
P-Flash Region Protect
0
8
read-only
FPROT2
Non-volatile P-Flash Protection 1 - High Register
0x9
8
read-only
0xFF
0xFF
PROT
P-Flash Region Protect
0
8
read-only
FPROT1
Non-volatile P-Flash Protection 0 - Low Register
0xA
8
read-only
0xFF
0xFF
PROT
P-Flash Region Protect
0
8
read-only
FPROT0
Non-volatile P-Flash Protection 0 - High Register
0xB
8
read-only
0xFF
0xFF
PROT
P-Flash Region Protect
0
8
read-only
FSEC
Non-volatile Flash Security Register
0xC
8
read-only
0xFF
0xFF
SEC
Flash Security
0
2
read-only
10
MCU security status is unsecure
#10
11
MCU security status is secure
#11
FSLACC
Freescale Failure Analysis Access Code
2
2
read-only
10
Freescale factory access denied
#10
11
Freescale factory access granted
#11
MEEN
no description available
4
2
read-only
10
Mass erase is disabled
#10
11
Mass erase is enabled
#11
KEYEN
Backdoor Key Security Enable
6
2
read-only
10
Backdoor key access enabled
#10
11
Backdoor key access disabled
#11
FOPT
Non-volatile Flash Option Register
0xD
8
read-only
0x3D
0xFF
LPBOOT0
no description available
0
1
read-only
00
Core and system clock divider (OUTDIV1) is 0x7 (divide by 8) when LPBOOT1=0 or 0x1 (divide by 2) when LPBOOT1=1.
#0
01
Core and system clock divider (OUTDIV1) is 0x3 (divide by 4) when LPBOOT1=0 or 0x0 (divide by 1) when LPBOOT1=1.
#1
BOOTPIN_OPT
no description available
1
1
read-only
00
Force Boot from ROM if BOOTCFG0 asserted, where BOOTCFG0 is the boot config function which is muxed with NMI pin
#0
01
Boot source configured by FOPT (BOOTSRC_SEL) bits
#1
NMI_DIS
no description available
2
1
read-only
00
NMI interrupts are always blocked
#0
01
NMI_b pin/interrupts reset default to enabled
#1
RESET_PIN_CFG
no description available
3
1
read-only
00
RESET pin is disabled following a POR and cannot be enabled as reset function
#0
01
RESET_b pin is dedicated
#1
LPBOOT1
no description available
4
1
read-only
00
Core and system clock divider (OUTDIV1) is 0x7 (divide by 8) when LPBOOT0=0 or 0x3 (divide by 4) when LPBOOT0=1.
#0
01
Core and system clock divider (OUTDIV1) is 0x1 (divide by 2) when LPBOOT0=0 or 0x0 (divide by 1) when LPBOOT0=1.
#1
FAST_INIT
no description available
5
1
read-only
00
Slower initialization
#0
01
Fast Initialization
#1
BOOTSRC_SEL
Boot source selection
6
2
read-only
00
Boot from Flash
#00
10
Boot from ROM
#10
11
Boot from ROM
#11
FTFA
Flash Memory Interface
FTFA_
0x40020000
0
0x14
registers
FTFA
5
FSTAT
Flash Status Register
0
8
read-write
0
0xFF
MGSTAT0
Memory Controller Command Completion Status Flag
0
1
read-only
FPVIOL
Flash Protection Violation Flag
4
1
read-write
0
No protection violation detected
#0
1
Protection violation detected
#1
ACCERR
Flash Access Error Flag
5
1
read-write
0
No access error detected
#0
1
Access error detected
#1
RDCOLERR
Flash Read Collision Error Flag
6
1
read-write
0
No collision error detected
#0
1
Collision error detected
#1
CCIF
Command Complete Interrupt Flag
7
1
read-write
0
Flash command in progress
#0
1
Flash command has completed
#1
FCNFG
Flash Configuration Register
0x1
8
read-write
0
0xFF
ERSSUSP
Erase Suspend
4
1
read-write
0
No suspend requested
#0
1
Suspend the current Erase Flash Sector command execution.
#1
ERSAREQ
Erase All Request
5
1
read-only
0
No request or request complete
#0
1
Request to: run the Erase All Blocks command, verify the erased state, program the security byte in the Flash Configuration Field to the unsecure state, and release MCU security by setting the FSEC[SEC] field to the unsecure state.
#1
RDCOLLIE
Read Collision Error Interrupt Enable
6
1
read-write
0
Read collision error interrupt disabled
#0
1
Read collision error interrupt enabled. An interrupt request is generated whenever a flash memory read collision error is detected (see the description of FSTAT[RDCOLERR]).
#1
CCIE
Command Complete Interrupt Enable
7
1
read-write
0
Command complete interrupt disabled
#0
1
Command complete interrupt enabled. An interrupt request is generated whenever the FSTAT[CCIF] flag is set.
#1
FSEC
Flash Security Register
0x2
8
read-only
0
0
SEC
Flash Security
0
2
read-only
00
MCU security status is secure.
#00
01
MCU security status is secure.
#01
10
MCU security status is unsecure. (The standard shipping condition of the flash memory module is unsecure.)
#10
11
MCU security status is secure.
#11
FSLACC
Freescale Failure Analysis Access Code
2
2
read-only
00
Freescale factory access granted
#00
01
Freescale factory access denied
#01
10
Freescale factory access denied
#10
11
Freescale factory access granted
#11
MEEN
Mass Erase Enable Bits
4
2
read-only
00
Mass erase is enabled
#00
01
Mass erase is enabled
#01
10
Mass erase is disabled
#10
11
Mass erase is enabled
#11
KEYEN
Backdoor Key Security Enable
6
2
read-only
00
Backdoor key access disabled
#00
01
Backdoor key access disabled (preferred KEYEN state to disable backdoor key access)
#01
10
Backdoor key access enabled
#10
11
Backdoor key access disabled
#11
FOPT
Flash Option Register
0x3
8
read-only
0
0
OPT
Nonvolatile Option
0
8
read-only
12
0x1
3,2,1,0,7,6,5,4,B,A,9,8
FCCOB%s
Flash Common Command Object Registers
0x4
8
read-write
0
0xFF
CCOBn
The FCCOB register provides a command code and relevant parameters to the memory controller
0
8
read-write
4
0x1
3,2,1,0
FPROT%s
Program Flash Protection Registers
0x10
8
read-write
0
0
PROT
Program Flash Region Protect
0
8
read-write
0
Program flash region is protected.
#0
1
Program flash region is not protected
#1
TPM0
Timer/PWM Module
TPM
TPM0_
0x40038000
0
0x88
registers
TPM0
17
SC
Status and Control
0
32
read-write
0
0xFFFFFFFF
PS
Prescale Factor Selection
0
3
read-write
000
Divide by 1
#000
001
Divide by 2
#001
010
Divide by 4
#010
011
Divide by 8
#011
100
Divide by 16
#100
101
Divide by 32
#101
110
Divide by 64
#110
111
Divide by 128
#111
CMOD
Clock Mode Selection
3
2
read-write
00
TPM counter is disabled
#00
01
TPM counter increments on every TPM counter clock
#01
10
TPM counter increments on rising edge of TPM_EXTCLK synchronized to the TPM counter clock
#10
CPWMS
Center-Aligned PWM Select
5
1
read-write
0
TPM counter operates in up counting mode.
#0
1
TPM counter operates in up-down counting mode.
#1
TOIE
Timer Overflow Interrupt Enable
6
1
read-write
0
Disable TOF interrupts. Use software polling.
#0
1
Enable TOF interrupts. An interrupt is generated when TOF equals one.
#1
TOF
Timer Overflow Flag
7
1
read-write
0
TPM counter has not overflowed.
#0
1
TPM counter has overflowed.
#1
CNT
Counter
0x4
32
read-write
0
0xFFFFFFFF
COUNT
Counter value
0
16
read-write
MOD
Modulo
0x8
32
read-write
0xFFFF
0xFFFFFFFF
MOD
Modulo value
0
16
read-write
2
0x8
0,1
C%sSC
Channel (n) Status and Control
0xC
32
read-write
0
0xFFFFFFFF
ELSA
Edge or Level Select
2
1
read-write
ELSB
Edge or Level Select
3
1
read-write
MSA
Channel Mode Select
4
1
read-write
MSB
Channel Mode Select
5
1
read-write
CHIE
Channel Interrupt Enable
6
1
read-write
0
Disable channel interrupts.
#0
1
Enable channel interrupts.
#1
CHF
Channel Flag
7
1
read-write
0
No channel event has occurred.
#0
1
A channel event has occurred.
#1
2
0x8
0,1
C%sV
Channel (n) Value
0x10
32
read-write
0
0xFFFFFFFF
VAL
Channel Value
0
16
read-write
STATUS
Capture and Compare Status
0x50
32
read-write
0
0xFFFFFFFF
CH0F
Channel 0 Flag
0
1
read-write
0
No channel event has occurred.
#0
1
A channel event has occurred.
#1
CH1F
Channel 1 Flag
1
1
read-write
0
No channel event has occurred.
#0
1
A channel event has occurred.
#1
TOF
Timer Overflow Flag
8
1
read-write
0
TPM counter has not overflowed.
#0
1
TPM counter has overflowed.
#1
CONF
Configuration
0x84
32
read-write
0
0xFFFFFFFF
DOZEEN
Doze Enable
5
1
read-write
0
Internal TPM counter continues in Doze mode.
#0
1
Internal TPM counter is paused and does not increment during Doze mode. Trigger inputs and input capture events are also ignored.
#1
DBGMODE
Debug Mode
6
2
read-write
00
TPM counter is paused and does not increment during debug mode. Trigger inputs and input capture events are also ignored.
#00
11
TPM counter continues in debug mode.
#11
GTBEEN
Global time base enable
9
1
read-write
0
All channels use the internally generated TPM counter as their timebase
#0
1
All channels use an externally generated global timebase as their timebase
#1
CSOT
Counter Start on Trigger
16
1
read-write
0
TPM counter starts to increment immediately, once it is enabled.
#0
1
TPM counter only starts to increment when it a rising edge on the selected input trigger is detected, after it has been enabled or after it has stopped due to overflow.
#1
CSOO
Counter Stop On Overflow
17
1
read-write
0
TPM counter continues incrementing or decrementing after overflow
#0
1
TPM counter stops incrementing or decrementing after overflow.
#1
CROT
Counter Reload On Trigger
18
1
read-write
0
Counter is not reloaded due to a rising edge on the selected input trigger
#0
1
Counter is reloaded when a rising edge is detected on the selected input trigger
#1
TRGSEL
Trigger Select
24
4
read-write
TPM1
Timer/PWM Module
TPM
TPM1_
0x40039000
0
0x88
registers
TPM1
18
SC
Status and Control
0
32
read-write
0
0xFFFFFFFF
PS
Prescale Factor Selection
0
3
read-write
000
Divide by 1
#000
001
Divide by 2
#001
010
Divide by 4
#010
011
Divide by 8
#011
100
Divide by 16
#100
101
Divide by 32
#101
110
Divide by 64
#110
111
Divide by 128
#111
CMOD
Clock Mode Selection
3
2
read-write
00
TPM counter is disabled
#00
01
TPM counter increments on every TPM counter clock
#01
10
TPM counter increments on rising edge of TPM_EXTCLK synchronized to the TPM counter clock
#10
CPWMS
Center-Aligned PWM Select
5
1
read-write
0
TPM counter operates in up counting mode.
#0
1
TPM counter operates in up-down counting mode.
#1
TOIE
Timer Overflow Interrupt Enable
6
1
read-write
0
Disable TOF interrupts. Use software polling.
#0
1
Enable TOF interrupts. An interrupt is generated when TOF equals one.
#1
TOF
Timer Overflow Flag
7
1
read-write
0
TPM counter has not overflowed.
#0
1
TPM counter has overflowed.
#1
CNT
Counter
0x4
32
read-write
0
0xFFFFFFFF
COUNT
Counter value
0
16
read-write
MOD
Modulo
0x8
32
read-write
0xFFFF
0xFFFFFFFF
MOD
Modulo value
0
16
read-write
2
0x8
0,1
C%sSC
Channel (n) Status and Control
0xC
32
read-write
0
0xFFFFFFFF
ELSA
Edge or Level Select
2
1
read-write
ELSB
Edge or Level Select
3
1
read-write
MSA
Channel Mode Select
4
1
read-write
MSB
Channel Mode Select
5
1
read-write
CHIE
Channel Interrupt Enable
6
1
read-write
0
Disable channel interrupts.
#0
1
Enable channel interrupts.
#1
CHF
Channel Flag
7
1
read-write
0
No channel event has occurred.
#0
1
A channel event has occurred.
#1
2
0x8
0,1
C%sV
Channel (n) Value
0x10
32
read-write
0
0xFFFFFFFF
VAL
Channel Value
0
16
read-write
STATUS
Capture and Compare Status
0x50
32
read-write
0
0xFFFFFFFF
CH0F
Channel 0 Flag
0
1
read-write
0
No channel event has occurred.
#0
1
A channel event has occurred.
#1
CH1F
Channel 1 Flag
1
1
read-write
0
No channel event has occurred.
#0
1
A channel event has occurred.
#1
TOF
Timer Overflow Flag
8
1
read-write
0
TPM counter has not overflowed.
#0
1
TPM counter has overflowed.
#1
CONF
Configuration
0x84
32
read-write
0
0xFFFFFFFF
DOZEEN
Doze Enable
5
1
read-write
0
Internal TPM counter continues in Doze mode.
#0
1
Internal TPM counter is paused and does not increment during Doze mode. Trigger inputs and input capture events are also ignored.
#1
DBGMODE
Debug Mode
6
2
read-write
00
TPM counter is paused and does not increment during debug mode. Trigger inputs and input capture events are also ignored.
#00
11
TPM counter continues in debug mode.
#11
GTBEEN
Global time base enable
9
1
read-write
0
All channels use the internally generated TPM counter as their timebase
#0
1
All channels use an externally generated global timebase as their timebase
#1
CSOT
Counter Start on Trigger
16
1
read-write
0
TPM counter starts to increment immediately, once it is enabled.
#0
1
TPM counter only starts to increment when it a rising edge on the selected input trigger is detected, after it has been enabled or after it has stopped due to overflow.
#1
CSOO
Counter Stop On Overflow
17
1
read-write
0
TPM counter continues incrementing or decrementing after overflow
#0
1
TPM counter stops incrementing or decrementing after overflow.
#1
CROT
Counter Reload On Trigger
18
1
read-write
0
Counter is not reloaded due to a rising edge on the selected input trigger
#0
1
Counter is reloaded when a rising edge is detected on the selected input trigger
#1
TRGSEL
Trigger Select
24
4
read-write
ADC0
Analog-to-Digital Converter
ADC0_
0x4003B000
0
0x50
registers
ADC0
15
2
0x4
A,B
SC1%s
ADC Status and Control Registers 1
0
32
read-write
0x1F
0xFFFFFFFF
ADCH
Input channel select
0
5
read-write
00000
AD0 is selected as input.
#00000
00001
AD1 is selected as input.
#00001
00010
AD2 is selected as input.
#00010
00011
AD3 is selected as input.
#00011
00100
AD4 is selected as input.
#00100
00101
AD5 is selected as input.
#00101
00110
AD6 is selected as input.
#00110
00111
AD7 is selected as input.
#00111
01000
AD8 is selected as input.
#01000
01001
AD9 is selected as input.
#01001
01010
AD10 is selected as input.
#01010
01011
AD11 is selected as input.
#01011
01100
AD12 is selected as input.
#01100
01101
AD13 is selected as input.
#01101
01110
AD14 is selected as input.
#01110
01111
AD15 is selected as input.
#01111
10000
AD16 is selected as input.
#10000
10001
AD17 is selected as input.
#10001
10010
AD18 is selected as input.
#10010
10011
AD19 is selected as input.
#10011
10100
AD20 is selected as input.
#10100
10101
AD21 is selected as input.
#10101
10110
AD22 is selected as input.
#10110
10111
AD23 is selected as input.
#10111
11010
Temp Sensor (single-ended) is selected as input.
#11010
11011
Bandgap (single-ended) is selected as input.
#11011
11101
VREFSH is selected as input. Voltage reference selected is determined by SC2[REFSEL].
#11101
11110
VREFSL is selected as input. Voltage reference selected is determined by SC2[REFSEL].
#11110
11111
Module is disabled.
#11111
AIEN
Interrupt Enable
6
1
read-write
0
Conversion complete interrupt is disabled.
#0
1
Conversion complete interrupt is enabled.
#1
COCO
Conversion Complete Flag
7
1
read-only
0
Conversion is not completed.
#0
1
Conversion is completed.
#1
CFG1
ADC Configuration Register 1
0x8
32
read-write
0
0xFFFFFFFF
ADICLK
Input Clock Select
0
2
read-write
00
Bus clock
#00
01
Bus clock divided by 2(BUSCLK/DIV2)
#01
10
Alternate clock (ALTCLK)
#10
11
Asynchronous clock (ADACK)
#11
MODE
Conversion mode selection
2
2
read-write
00
It is single-ended 8-bit conversion.
#00
01
It is single-ended 12-bit conversion .
#01
10
It is single-ended 10-bit conversion.
#10
11
Reserved. Do not set the field to this value.
#11
ADLSMP
Sample Time Configuration
4
1
read-write
0
Short sample time.
#0
1
Long sample time.
#1
ADIV
Clock Divide Select
5
2
read-write
00
The divide ratio is 1 and the clock rate is input clock.
#00
01
The divide ratio is 2 and the clock rate is (input clock)/2.
#01
10
The divide ratio is 4 and the clock rate is (input clock)/4.
#10
11
The divide ratio is 8 and the clock rate is (input clock)/8.
#11
ADLPC
Low-Power Configuration
7
1
read-write
0
Normal power configuration.
#0
1
Low-power configuration. The power is reduced at the expense of maximum clock speed.
#1
CFG2
ADC Configuration Register 2
0xC
32
read-write
0
0xFFFFFFFF
ADLSTS
Long Sample Time Select
0
2
read-write
00
Default longest sample time; 20 extra ADCK cycles; 24 ADCK cycles total.
#00
01
12 extra ADCK cycles; 16 ADCK cycles total sample time.
#01
10
6 extra ADCK cycles; 10 ADCK cycles total sample time.
#10
11
2 extra ADCK cycles; 6 ADCK cycles total sample time.
#11
ADHSC
High-Speed Configuration
2
1
read-write
0
Normal conversion sequence selected.
#0
1
High-speed conversion sequence selected with 2 additional ADCK cycles to total conversion time.
#1
ADACKEN
Asynchronous Clock Output Enable
3
1
read-write
0
Asynchronous clock output disabled; Asynchronous clock is enabled only if selected by ADICLK and a conversion is active.
#0
1
Asynchronous clock and clock output is enabled regardless of the state of the ADC.
#1
MUXSEL
ADC Mux Select
4
1
read-write
0
ADxxa channels are selected.
#0
1
ADxxb channels are selected.
#1
2
0x4
A,B
R%s
ADC Data Result Register
0x10
32
read-only
0
0xFFFFFFFF
D
Data result
0
16
read-only
2
0x4
1,2
CV%s
Compare Value Registers
0x18
32
read-write
0
0xFFFFFFFF
CV
Compare Value.
0
16
read-write
SC2
Status and Control Register 2
0x20
32
read-write
0
0xFFFFFFFF
REFSEL
Voltage Reference Selection
0
2
read-write
00
Default voltage reference pin pair, that is, external pins VREFH and VREFL
#00
01
Alternate reference pair, that is, VALTH and VALTL . This pair may be additional external pins or internal sources depending on the MCU configuration. See the chip configuration information for details specific to this MCU
#01
ACREN
Compare Function Range Enable
3
1
read-write
0
Range function disabled. Only CV1 is compared.
#0
1
Range function enabled. Both CV1 and CV2 are compared.
#1
ACFGT
Compare Function Greater Than Enable
4
1
read-write
0
Configures less than threshold, outside range not inclusive and inside range not inclusive; functionality based on the values placed in CV1 and CV2.
#0
1
Configures greater than or equal to threshold, outside and inside ranges inclusive; functionality based on the values placed in CV1 and CV2.
#1
ACFE
Compare Function Enable
5
1
read-write
0
Compare function disabled.
#0
1
Compare function enabled.
#1
ADTRG
Conversion Trigger Select
6
1
read-write
0
Software trigger selected.
#0
1
Hardware trigger selected.
#1
ADACT
Conversion Active
7
1
read-only
0
Conversion not in progress.
#0
1
Conversion in progress.
#1
SC3
Status and Control Register 3
0x24
32
read-write
0
0xFFFFFFFF
AVGS
Hardware Average Select
0
2
read-write
00
4 samples averaged.
#00
01
8 samples averaged.
#01
10
16 samples averaged.
#10
11
32 samples averaged.
#11
AVGE
Hardware Average Enable
2
1
read-write
0
Hardware average function disabled.
#0
1
Hardware average function enabled.
#1
ADCO
Continuous Conversion Enable
3
1
read-write
0
One conversion or one set of conversions if the hardware average function is enabled, that is, AVGE=1, after initiating a conversion.
#0
1
Continuous conversions or sets of conversions if the hardware average function is enabled, that is, AVGE=1, after initiating a conversion.
#1
CALF
Calibration Failed Flag
6
1
read-write
0
Calibration completed normally.
#0
1
Calibration failed. ADC accuracy specifications are not guaranteed.
#1
CAL
Calibration
7
1
read-write
OFS
ADC Offset Correction Register
0x28
32
read-write
0x4
0xFFFFFFFF
OFS
Offset Error Correction Value
0
16
read-write
PG
ADC Plus-Side Gain Register
0x2C
32
read-write
0x8200
0xFFFFFFFF
PG
Plus-Side Gain
0
16
read-write
CLPD
ADC Plus-Side General Calibration Value Register
0x34
32
read-write
0xA
0xFFFFFFFF
CLPD
Calibration Value
0
6
read-write
CLPS
ADC Plus-Side General Calibration Value Register
0x38
32
read-write
0x20
0xFFFFFFFF
CLPS
Calibration Value
0
6
read-write
CLP4
ADC Plus-Side General Calibration Value Register
0x3C
32
read-write
0x200
0xFFFFFFFF
CLP4
Calibration Value
0
10
read-write
CLP3
ADC Plus-Side General Calibration Value Register
0x40
32
read-write
0x100
0xFFFFFFFF
CLP3
Calibration Value
0
9
read-write
CLP2
ADC Plus-Side General Calibration Value Register
0x44
32
read-write
0x80
0xFFFFFFFF
CLP2
Calibration Value
0
8
read-write
CLP1
ADC Plus-Side General Calibration Value Register
0x48
32
read-write
0x40
0xFFFFFFFF
CLP1
Calibration Value
0
7
read-write
CLP0
ADC Plus-Side General Calibration Value Register
0x4C
32
read-write
0x20
0xFFFFFFFF
CLP0
Calibration Value
0
6
read-write
RTC
Secure Real Time Clock
RTC_
0x4003D000
0
0x20
registers
RTC
20
RTC_Seconds
21
TSR
RTC Time Seconds Register
0
32
read-write
0
0xFFFFFFFF
TSR
Time Seconds Register
0
32
read-write
TPR
RTC Time Prescaler Register
0x4
32
read-write
0
0xFFFFFFFF
TPR
Time Prescaler Register
0
16
read-write
TAR
RTC Time Alarm Register
0x8
32
read-write
0
0xFFFFFFFF
TAR
Time Alarm Register
0
32
read-write
TCR
RTC Time Compensation Register
0xC
32
read-write
0
0xFFFFFFFF
TCR
Time Compensation Register
0
8
read-write
10000000
Time Prescaler Register overflows every 32896 clock cycles.
#10000000
11111111
Time Prescaler Register overflows every 32769 clock cycles.
#11111111
0
Time Prescaler Register overflows every 32768 clock cycles.
#0
1
Time Prescaler Register overflows every 32767 clock cycles.
#1
1111111
Time Prescaler Register overflows every 32641 clock cycles.
#1111111
CIR
Compensation Interval Register
8
8
read-write
TCV
Time Compensation Value
16
8
read-only
CIC
Compensation Interval Counter
24
8
read-only
CR
RTC Control Register
0x10
32
read-write
0
0xFFFFFFFF
SWR
Software Reset
0
1
read-write
0
No effect.
#0
1
Resets all RTC registers except for the SWR bit . The SWR bit is cleared by POR and by software explicitly clearing it.
#1
WPE
Wakeup Pin Enable
1
1
read-write
0
Wakeup pin is disabled.
#0
1
Wakeup pin is enabled and wakeup pin asserts if the RTC interrupt asserts or the wakeup pin is turned on.
#1
SUP
Supervisor Access
2
1
read-write
0
Non-supervisor mode write accesses are not supported and generate a bus error.
#0
1
Non-supervisor mode write accesses are supported.
#1
UM
Update Mode
3
1
read-write
0
Registers cannot be written when locked.
#0
1
Registers can be written when locked under limited conditions.
#1
WPS
Wakeup Pin Select
4
1
read-write
0
Wakeup pin asserts (active low, open drain) if the RTC interrupt asserts or the wakeup pin is turned on.
#0
1
Wakeup pin instead outputs the RTC 32kHz clock, provided the wakeup pin is turned on and the 32kHz clock is output to other peripherals.
#1
OSCE
Oscillator Enable
8
1
read-write
0
32.768 kHz oscillator is disabled.
#0
1
32.768 kHz oscillator is enabled. After setting this bit, wait the oscillator startup time before enabling the time counter to allow the 32.768 kHz clock time to stabilize.
#1
CLKO
Clock Output
9
1
read-write
0
The 32 kHz clock is output to other peripherals.
#0
1
The 32 kHz clock is not output to other peripherals.
#1
SC16P
Oscillator 16pF Load Configure
10
1
read-write
0
Disable the load.
#0
1
Enable the additional load.
#1
SC8P
Oscillator 8pF Load Configure
11
1
read-write
0
Disable the load.
#0
1
Enable the additional load.
#1
SC4P
Oscillator 4pF Load Configure
12
1
read-write
0
Disable the load.
#0
1
Enable the additional load.
#1
SC2P
Oscillator 2pF Load Configure
13
1
read-write
0
Disable the load.
#0
1
Enable the additional load.
#1
SR
RTC Status Register
0x14
32
read-write
0x1
0xFFFFFFFF
TIF
Time Invalid Flag
0
1
read-only
0
Time is valid.
#0
1
Time is invalid and time counter is read as zero.
#1
TOF
Time Overflow Flag
1
1
read-only
0
Time overflow has not occurred.
#0
1
Time overflow has occurred and time counter is read as zero.
#1
TAF
Time Alarm Flag
2
1
read-only
0
Time alarm has not occurred.
#0
1
Time alarm has occurred.
#1
TCE
Time Counter Enable
4
1
read-write
0
Time counter is disabled.
#0
1
Time counter is enabled.
#1
LR
RTC Lock Register
0x18
32
read-write
0xFF
0xFFFFFFFF
TCL
Time Compensation Lock
3
1
read-write
0
Time Compensation Register is locked and writes are ignored.
#0
1
Time Compensation Register is not locked and writes complete as normal.
#1
CRL
Control Register Lock
4
1
read-write
0
Control Register is locked and writes are ignored.
#0
1
Control Register is not locked and writes complete as normal.
#1
SRL
Status Register Lock
5
1
read-write
0
Status Register is locked and writes are ignored.
#0
1
Status Register is not locked and writes complete as normal.
#1
LRL
Lock Register Lock
6
1
read-write
0
Lock Register is locked and writes are ignored.
#0
1
Lock Register is not locked and writes complete as normal.
#1
IER
RTC Interrupt Enable Register
0x1C
32
read-write
0x7
0xFFFFFFFF
TIIE
Time Invalid Interrupt Enable
0
1
read-write
0
Time invalid flag does not generate an interrupt.
#0
1
Time invalid flag does generate an interrupt.
#1
TOIE
Time Overflow Interrupt Enable
1
1
read-write
0
Time overflow flag does not generate an interrupt.
#0
1
Time overflow flag does generate an interrupt.
#1
TAIE
Time Alarm Interrupt Enable
2
1
read-write
0
Time alarm flag does not generate an interrupt.
#0
1
Time alarm flag does generate an interrupt.
#1
TSIE
Time Seconds Interrupt Enable
4
1
read-write
0
Seconds interrupt is disabled.
#0
1
Seconds interrupt is enabled.
#1
WPON
Wakeup Pin On
7
1
read-write
0
No effect.
#0
1
If the wakeup pin is enabled, then the wakeup pin will assert.
#1
LPTMR0
Low Power Timer
LPTMR0_
0x40040000
0
0x10
registers
LPTMR0
28
CSR
Low Power Timer Control Status Register
0
32
read-write
0
0xFFFFFFFF
TEN
Timer Enable
0
1
read-write
0
LPTMR is disabled and internal logic is reset.
#0
1
LPTMR is enabled.
#1
TMS
Timer Mode Select
1
1
read-write
0
Time Counter mode.
#0
1
Pulse Counter mode.
#1
TFC
Timer Free-Running Counter
2
1
read-write
0
CNR is reset whenever TCF is set.
#0
1
CNR is reset on overflow.
#1
TPP
Timer Pin Polarity
3
1
read-write
0
Pulse Counter input source is active-high, and the CNR will increment on the rising-edge.
#0
1
Pulse Counter input source is active-low, and the CNR will increment on the falling-edge.
#1
TPS
Timer Pin Select
4
2
read-write
00
Pulse counter input 0 is selected.
#00
01
Pulse counter input 1 is selected.
#01
10
Pulse counter input 2 is selected.
#10
11
Pulse counter input 3 is selected.
#11
TIE
Timer Interrupt Enable
6
1
read-write
0
Timer interrupt disabled.
#0
1
Timer interrupt enabled.
#1
TCF
Timer Compare Flag
7
1
read-write
0
The value of CNR is not equal to CMR and increments.
#0
1
The value of CNR is equal to CMR and increments.
#1
PSR
Low Power Timer Prescale Register
0x4
32
read-write
0
0xFFFFFFFF
PCS
Prescaler Clock Select
0
2
read-write
00
Prescaler/glitch filter clock 0 selected.
#00
01
Prescaler/glitch filter clock 1 selected.
#01
10
Prescaler/glitch filter clock 2 selected.
#10
11
Prescaler/glitch filter clock 3 selected.
#11
PBYP
Prescaler Bypass
2
1
read-write
0
Prescaler/glitch filter is enabled.
#0
1
Prescaler/glitch filter is bypassed.
#1
PRESCALE
Prescale Value
3
4
read-write
0000
Prescaler divides the prescaler clock by 2; glitch filter does not support this configuration.
#0000
0001
Prescaler divides the prescaler clock by 4; glitch filter recognizes change on input pin after 2 rising clock edges.
#0001
0010
Prescaler divides the prescaler clock by 8; glitch filter recognizes change on input pin after 4 rising clock edges.
#0010
0011
Prescaler divides the prescaler clock by 16; glitch filter recognizes change on input pin after 8 rising clock edges.
#0011
0100
Prescaler divides the prescaler clock by 32; glitch filter recognizes change on input pin after 16 rising clock edges.
#0100
0101
Prescaler divides the prescaler clock by 64; glitch filter recognizes change on input pin after 32 rising clock edges.
#0101
0110
Prescaler divides the prescaler clock by 128; glitch filter recognizes change on input pin after 64 rising clock edges.
#0110
0111
Prescaler divides the prescaler clock by 256; glitch filter recognizes change on input pin after 128 rising clock edges.
#0111
1000
Prescaler divides the prescaler clock by 512; glitch filter recognizes change on input pin after 256 rising clock edges.
#1000
1001
Prescaler divides the prescaler clock by 1024; glitch filter recognizes change on input pin after 512 rising clock edges.
#1001
1010
Prescaler divides the prescaler clock by 2048; glitch filter recognizes change on input pin after 1024 rising clock edges.
#1010
1011
Prescaler divides the prescaler clock by 4096; glitch filter recognizes change on input pin after 2048 rising clock edges.
#1011
1100
Prescaler divides the prescaler clock by 8192; glitch filter recognizes change on input pin after 4096 rising clock edges.
#1100
1101
Prescaler divides the prescaler clock by 16,384; glitch filter recognizes change on input pin after 8192 rising clock edges.
#1101
1110
Prescaler divides the prescaler clock by 32,768; glitch filter recognizes change on input pin after 16,384 rising clock edges.
#1110
1111
Prescaler divides the prescaler clock by 65,536; glitch filter recognizes change on input pin after 32,768 rising clock edges.
#1111
CMR
Low Power Timer Compare Register
0x8
32
read-write
0
0xFFFFFFFF
COMPARE
Compare Value
0
16
read-write
CNR
Low Power Timer Counter Register
0xC
32
read-write
0
0xFFFFFFFF
COUNTER
Counter Value
0
16
read-write
RFSYS
System register file
RFSYS_
0x40041000
0
0x10
registers
4
0x4
0,1,2,3
REG%s
Register file register
0
32
read-write
0
0xFFFFFFFF
LL
Low lower byte
0
8
read-write
LH
Low higher byte
8
8
read-write
HL
High lower byte
16
8
read-write
HH
High higher byte
24
8
read-write
SIM
System Integration Module
SIM_
0x40047000
0
0x1108
registers
SOPT1
System Options Register 1
0
32
read-write
0
0xFFFFFFFF
OSC32KOUT
32K oscillator clock output
16
2
read-write
00
ERCLK32K is not output.
#00
01
ERCLK32K is output on PTB13.
#01
OSC32KSEL
32K Oscillator Clock Select
18
2
read-write
00
System oscillator (OSC32KCLK)
#00
10
RTC_CLKIN
#10
11
LPO 1kHz
#11
SOPT2
System Options Register 2
0x1004
32
read-write
0
0xFFFFFFFF
RTCCLKOUTSEL
RTC Clock Out Select
4
1
read-write
0
RTC 1 Hz clock is output on the RTC_CLKOUT pin.
#0
1
OSCERCLK clock is output on the RTC_CLKOUT pin.
#1
CLKOUTSEL
CLKOUT select
5
3
read-write
010
Bus clock
#010
011
LPO clock (1 kHz)
#011
100
MCGIRCLK
#100
110
OSCERCLK
#110
111
IRC48M clock (IRC48M clock can be output to PAD only when chip VDD is 2.7-3.6 V)
#111
TPMSRC
TPM Clock Source Select
24
2
read-write
00
Clock disabled
#00
01
IRC48M clock
#01
10
OSCERCLK clock
#10
11
MCGIRCLK clock
#11
LPUART0SRC
LPUART0 Clock Source Select
26
2
read-write
00
Clock disabled
#00
01
IRC48M clock
#01
10
OSCERCLK clock
#10
11
MCGIRCLK clock
#11
SOPT4
System Options Register 4
0x100C
32
read-write
0
0xFFFFFFFF
TPM1CH0SRC
TPM1 Channel 0 Input Capture Source Select
18
1
read-write
0
TPM1_CH0 signal
#0
1
CMP0 output
#1
TPM0CLKSEL
TPM0 External Clock Pin Select
24
1
read-write
0
TPM0 external clock driven by TPM_CLKIN0 pin.
#0
1
TPM0 external clock driven by TPM_CLKIN1 pin.
#1
TPM1CLKSEL
TPM1 External Clock Pin Select
25
1
read-write
0
TPM1 external clock driven by TPM_CLKIN0 pin.
#0
1
TPM1 external clock driven by TPM_CLKIN1 pin.
#1
SOPT5
System Options Register 5
0x1010
32
read-write
0
0xFFFFFFFF
LPUART0TXSRC
LPUART0 transmit data source select
0
1
read-write
0
LPUART0_TX pin
#0
1
LPUART0_TX pin modulated with TPM1 channel 0 output
#1
LPUART0RXSRC
LPUART0 Receive Data Source Select
2
1
read-write
0
LPUART_RX pin
#0
1
CMP0 output
#1
LPUART0ODE
LPUART0 Open Drain Enable
16
1
read-write
0
Open drain is disabled on LPUART0.
#0
1
Open drain is enabled on LPUART0.
#1
SOPT7
System Options Register 7
0x1018
32
read-write
0
0xFFFFFFFF
ADC0TRGSEL
ADC0 Trigger Select
0
4
read-write
0000
External trigger pin input (EXTRG_IN)
#0000
0001
CMP0 output
#0001
1000
TPM0 overflow
#1000
1001
TPM1 overflow
#1001
1100
RTC alarm
#1100
1101
RTC seconds
#1101
1110
LPTMR0 trigger
#1110
ADC0PRETRGSEL
ADC0 Pretrigger Select
4
1
read-write
0
Pre-trigger ADHDWTSA is selected, thus ADC0 will use ADC0_SC1A configuration for the next ADC conversion and store the result in ADC0_RA register.
#0
1
Pre-trigger ADHDWTSB is selected, thus ADC0 will use ADC0_SC1B configuration for the next ADC conversion and store the result in ADC0_RB register.
#1
ADC0ALTTRGEN
ADC0 Alternate Trigger Enable
7
1
read-write
0
ADC ADHWT trigger comes from TPM1 channel 0 and channel1. Prior to the assertion of TPM1 channel 0, a pre-trigger pulse will be sent to ADHWTSA to initiate an ADC acquisition using ADCx_SC1A configuration and store ADC conversion in ADCx_RA Register. Prior to the assertion of TPM1 channel 1 a pre-trigger pulse will be sent to ADHWTSB to initiate an ADC acquisition using ADCx_SC1Bconfiguration and store ADC conversion in ADCx_RB Register.
#0
1
ADC ADHWT trigger comes from a peripheral event selected by ADC0TRGSEL bits.ADC0PRETRGSEL bit will select the optional ADHWTSA or ADHWTSB select lines for choosing the ADCx_SC1x config and ADCx_Rx result regsiter to store the ADC conversion.
#1
SDID
System Device Identification Register
0x1024
32
read-only
0x100680
0xFFFFFFFF
PINID
Pincount Identification
0
4
read-only
0000
16-pin
#0000
0001
24-pin
#0001
0010
32-pin
#0010
0011
36-pin
#0011
0100
48-pin
#0100
0101
64-pin
#0101
0110
80-pin
#0110
1000
100-pin
#1000
1011
Custom pinout (WLCSP)
#1011
DIEID
Device Die Number
7
5
read-only
REVID
Device Revision Number
12
4
read-only
SRAMSIZE
System SRAM Size
16
4
read-only
0000
0.5 KB
#0000
0001
1 KB
#0001
0010
2 KB
#0010
0011
4 KB
#0011
0100
8 KB
#0100
0101
16 KB
#0101
0110
32 KB
#0110
0111
64 KB
#0111
SERIESID
Kinetis Series ID
20
4
read-only
0001
KL family
#0001
SUBFAMID
Kinetis Sub-Family ID
24
4
read-only
0010
KLx2 Subfamily
#0010
0011
KLx3 Subfamily
#0011
0100
KLx4 Subfamily
#0100
0101
KLx5 Subfamily
#0101
0110
KLx6 Subfamily
#0110
0111
KLx7 Subfamily
#0111
FAMID
Kinetis family ID
28
4
read-only
0000
KL0x Family (low end)
#0000
0001
KL1x Family (basic)
#0001
0010
KL2x Family (USB)
#0010
0011
KL3x Family (Segment LCD)
#0011
0100
KL4x Family (USB and Segment LCD)
#0100
SCGC4
System Clock Gating Control Register 4
0x1034
32
read-write
0xF0000030
0xFFFFFFFF
I2C0
I2C0 Clock Gate Control
6
1
read-write
0
Clock disabled
#0
1
Clock enabled
#1
CMP
Comparator Clock Gate Control
19
1
read-write
0
Clock disabled
#0
1
Clock enabled
#1
VREF
VREF Clock Gate Control
20
1
read-write
0
Clock disabled
#0
1
Clock enabled
#1
SPI0
SPI0 Clock Gate Control
22
1
read-write
0
Clock disabled
#0
1
Clock enabled
#1
SCGC5
System Clock Gating Control Register 5
0x1038
32
read-write
0x182
0xFFFFFFFF
LPTMR
Low Power Timer Access Control
0
1
read-write
0
Access disabled
#0
1
Access enabled
#1
PORTA
Port A Clock Gate Control
9
1
read-write
0
Clock disabled
#0
1
Clock enabled
#1
PORTB
Port B Clock Gate Control
10
1
read-write
0
Clock disabled
#0
1
Clock enabled
#1
LPUART0
LPUART0 Clock Gate Control
20
1
read-write
0
Clock disabled
#0
1
Clock enabled
#1
SCGC6
System Clock Gating Control Register 6
0x103C
32
read-write
0x1
0xFFFFFFFF
FTF
Flash Memory Clock Gate Control
0
1
read-write
0
Clock disabled
#0
1
Clock enabled
#1
TPM0
TPM0 Clock Gate Control
24
1
read-write
0
Clock disabled
#0
1
Clock enabled
#1
TPM1
TPM1 Clock Gate Control
25
1
read-write
0
Clock disabled
#0
1
Clock enabled
#1
ADC0
ADC0 Clock Gate Control
27
1
read-write
0
Clock disabled
#0
1
Clock enabled
#1
RTC
RTC Access Control
29
1
read-write
0
Access and interrupts disabled
#0
1
Access and interrupts enabled
#1
CLKDIV1
System Clock Divider Register 1
0x1044
32
read-write
0x10000
0xFFFFFFFF
OUTDIV4
Clock 4 Output Divider value
16
3
read-write
000
Divide-by-1.
#000
001
Divide-by-2.
#001
010
Divide-by-3.
#010
011
Divide-by-4.
#011
100
Divide-by-5.
#100
101
Divide-by-6.
#101
110
Divide-by-7.
#110
111
Divide-by-8.
#111
OUTDIV1
Clock 1 Output Divider value
28
4
read-write
0000
Divide-by-1.
#0000
0001
Divide-by-2.
#0001
0010
Divide-by-3.
#0010
0011
Divide-by-4.
#0011
0100
Divide-by-5.
#0100
0101
Divide-by-6.
#0101
0110
Divide-by-7.
#0110
0111
Divide-by-8.
#0111
1000
Divide-by-9.
#1000
1001
Divide-by-10.
#1001
1010
Divide-by-11.
#1010
1011
Divide-by-12.
#1011
1100
Divide-by-13.
#1100
1101
Divide-by-14.
#1101
1110
Divide-by-15.
#1110
1111
Divide-by-16.
#1111
FCFG1
Flash Configuration Register 1
0x104C
32
read-write
0xF000000
0xFFFFFFFF
FLASHDIS
Flash Disable
0
1
read-write
0
Flash is enabled.
#0
1
Flash is disabled.
#1
FLASHDOZE
Flash Doze
1
1
read-write
0
Flash remains enabled during Doze mode.
#0
1
Flash is disabled for the duration of Doze mode.
#1
PFSIZE
Program Flash Size
24
4
read-only
0000
8 KB of program flash memory, 0.25 KB protection region
#0000
0001
16 KB of program flash memory, 0.5 KB protection region
#0001
0011
32 KB of program flash memory, 1 KB protection region
#0011
0101
64 KB of program flash memory, 2 KB protection region
#0101
0111
128 KB of program flash memory, 4 KB protection region
#0111
1001
256 KB of program flash memory, 8 KB protection region
#1001
1111
32 KB of program flash memory, 1 KB protection region
#1111
FCFG2
Flash Configuration Register 2
0x1050
32
read-only
0x7F800000
0xFFFFFFFF
MAXADDR0
Max Address lock
24
7
read-only
UIDMH
Unique Identification Register Mid-High
0x1058
32
read-only
0
0xFFFFFFFF
UID
Unique Identification
0
16
read-only
UIDML
Unique Identification Register Mid Low
0x105C
32
read-only
0
0xFFFFFFFF
UID
Unique Identification
0
32
read-only
UIDL
Unique Identification Register Low
0x1060
32
read-only
0
0xFFFFFFFF
UID
Unique Identification
0
32
read-only
COPC
COP Control Register
0x1100
32
read-write
0xC
0xFFFFFFFF
COPW
COP Windowed Mode
0
1
read-write
0
Normal mode
#0
1
Windowed mode
#1
COPCLKS
COP Clock Select
1
1
read-write
0
COP configured for short timeout
#0
1
COP configured for long timeout
#1
COPT
COP Watchdog Timeout
2
2
read-write
00
COP disabled
#00
01
COP timeout after 25 cycles for short timeout or 213 cycles for long timeout
#01
10
COP timeout after 28 cycles for short timeout or 216 cycles for long timeout
#10
11
COP timeout after 210 cycles for short timeout or 218 cycles for long timeout
#11
COPSTPEN
COP Stop Enable
4
1
read-write
0
COP is disabled and the counter is reset in Stop modes
#0
1
COP is enabled in Stop modes
#1
COPDBGEN
COP Debug Enable
5
1
read-write
0
COP is disabled and the counter is reset in Debug mode
#0
1
COP is enabled in Debug mode
#1
COPCLKSEL
COP Clock Select
6
2
read-write
00
LPO clock (1 kHz)
#00
01
MCGIRCLK
#01
10
OSCERCLK
#10
11
Bus clock
#11
SRVCOP
Service COP
0x1104
32
write-only
0
0xFFFFFFFF
SRVCOP
Service COP Register
0
8
write-only
PORTA
Pin Control and Interrupts
PORT
PORTA_
0x40049000
0
0xA4
registers
PORTA
30
32
0x4
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
PCR%s
Pin Control Register n
0
32
read-write
0x6
0xFFFFFFFF
PS
Pull Select
0
1
read-write
0
Internal pulldown resistor is enabled on the corresponding pin, if the corresponding PE field is set.
#0
1
Internal pullup resistor is enabled on the corresponding pin, if the corresponding PE field is set.
#1
PE
Pull Enable
1
1
read-write
0
Internal pullup or pulldown resistor is not enabled on the corresponding pin.
#0
1
Internal pullup or pulldown resistor is enabled on the corresponding pin, if the pin is configured as a digital input.
#1
SRE
Slew Rate Enable
2
1
read-write
0
Fast slew rate is configured on the corresponding pin, if the pin is configured as a digital output.
#0
1
Slow slew rate is configured on the corresponding pin, if the pin is configured as a digital output.
#1
PFE
Passive Filter Enable
4
1
read-write
0
Passive input filter is disabled on the corresponding pin.
#0
1
Passive input filter is enabled on the corresponding pin, if the pin is configured as a digital input. Refer to the device data sheet for filter characteristics.
#1
DSE
Drive Strength Enable
6
1
read-write
0
Low drive strength is configured on the corresponding pin, if pin is configured as a digital output.
#0
1
High drive strength is configured on the corresponding pin, if pin is configured as a digital output.
#1
MUX
Pin Mux Control
8
3
read-write
000
Pin disabled (analog).
#000
001
Alternative 1 (GPIO).
#001
010
Alternative 2 (chip-specific).
#010
011
Alternative 3 (chip-specific).
#011
100
Alternative 4 (chip-specific).
#100
101
Alternative 5 (chip-specific).
#101
110
Alternative 6 (chip-specific).
#110
111
Alternative 7 (chip-specific).
#111
IRQC
Interrupt Configuration
16
4
read-write
0000
Interrupt request disabled.
#0000
1000
Interrupt when logic 0.
#1000
1001
Interrupt on rising-edge.
#1001
1010
Interrupt on falling-edge.
#1010
1011
Interrupt on either edge.
#1011
1100
Interrupt when logic 1.
#1100
ISF
Interrupt Status Flag
24
1
read-write
0
Configured interrupt is not detected.
#0
1
Configured interrupt is detected. The flag remains set until a logic 1 is written to the flag. If the pin is configured for a level sensitive interrupt and the pin remains asserted, then the flag is set again immediately after it is cleared.
#1
GPCLR
Global Pin Control Low Register
0x80
32
write-only
0
0xFFFFFFFF
GPWD
Global Pin Write Data
0
16
write-only
GPWE
Global Pin Write Enable
16
16
write-only
0
Corresponding Pin Control Register is not updated with the value in GPWD.
#0
1
Corresponding Pin Control Register is updated with the value in GPWD.
#1
GPCHR
Global Pin Control High Register
0x84
32
write-only
0
0xFFFFFFFF
GPWD
Global Pin Write Data
0
16
write-only
GPWE
Global Pin Write Enable
16
16
write-only
0
Corresponding Pin Control Register is not updated with the value in GPWD.
#0
1
Corresponding Pin Control Register is updated with the value in GPWD.
#1
ISFR
Interrupt Status Flag Register
0xA0
32
read-write
0
0xFFFFFFFF
ISF
Interrupt Status Flag
0
32
read-write
0
Configured interrupt is not detected.
#0
1
Configured interrupt is detected. The flag remains set until a logic 1 is written to the flag. If the pin is configured for a level sensitive interrupt and the pin remains asserted, then the flag is set again immediately after it is cleared.
#1
PORTB
Pin Control and Interrupts
PORT
PORTB_
0x4004A000
0
0xA4
registers
PORTB
31
32
0x4
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
PCR%s
Pin Control Register n
0
32
read-write
0x1
0xFFFFFFFF
PS
Pull Select
0
1
read-write
0
Internal pulldown resistor is enabled on the corresponding pin, if the corresponding PE field is set.
#0
1
Internal pullup resistor is enabled on the corresponding pin, if the corresponding PE field is set.
#1
PE
Pull Enable
1
1
read-write
0
Internal pullup or pulldown resistor is not enabled on the corresponding pin.
#0
1
Internal pullup or pulldown resistor is enabled on the corresponding pin, if the pin is configured as a digital input.
#1
SRE
Slew Rate Enable
2
1
read-write
0
Fast slew rate is configured on the corresponding pin, if the pin is configured as a digital output.
#0
1
Slow slew rate is configured on the corresponding pin, if the pin is configured as a digital output.
#1
PFE
Passive Filter Enable
4
1
read-write
0
Passive input filter is disabled on the corresponding pin.
#0
1
Passive input filter is enabled on the corresponding pin, if the pin is configured as a digital input. Refer to the device data sheet for filter characteristics.
#1
DSE
Drive Strength Enable
6
1
read-write
0
Low drive strength is configured on the corresponding pin, if pin is configured as a digital output.
#0
1
High drive strength is configured on the corresponding pin, if pin is configured as a digital output.
#1
MUX
Pin Mux Control
8
3
read-write
000
Pin disabled (analog).
#000
001
Alternative 1 (GPIO).
#001
010
Alternative 2 (chip-specific).
#010
011
Alternative 3 (chip-specific).
#011
100
Alternative 4 (chip-specific).
#100
101
Alternative 5 (chip-specific).
#101
110
Alternative 6 (chip-specific).
#110
111
Alternative 7 (chip-specific).
#111
IRQC
Interrupt Configuration
16
4
read-write
0000
Interrupt request disabled.
#0000
1000
Interrupt when logic 0.
#1000
1001
Interrupt on rising-edge.
#1001
1010
Interrupt on falling-edge.
#1010
1011
Interrupt on either edge.
#1011
1100
Interrupt when logic 1.
#1100
ISF
Interrupt Status Flag
24
1
read-write
0
Configured interrupt is not detected.
#0
1
Configured interrupt is detected. The flag remains set until a logic 1 is written to the flag. If the pin is configured for a level sensitive interrupt and the pin remains asserted, then the flag is set again immediately after it is cleared.
#1
GPCLR
Global Pin Control Low Register
0x80
32
write-only
0
0xFFFFFFFF
GPWD
Global Pin Write Data
0
16
write-only
GPWE
Global Pin Write Enable
16
16
write-only
0
Corresponding Pin Control Register is not updated with the value in GPWD.
#0
1
Corresponding Pin Control Register is updated with the value in GPWD.
#1
GPCHR
Global Pin Control High Register
0x84
32
write-only
0
0xFFFFFFFF
GPWD
Global Pin Write Data
0
16
write-only
GPWE
Global Pin Write Enable
16
16
write-only
0
Corresponding Pin Control Register is not updated with the value in GPWD.
#0
1
Corresponding Pin Control Register is updated with the value in GPWD.
#1
ISFR
Interrupt Status Flag Register
0xA0
32
read-write
0
0xFFFFFFFF
ISF
Interrupt Status Flag
0
32
read-write
0
Configured interrupt is not detected.
#0
1
Configured interrupt is detected. The flag remains set until a logic 1 is written to the flag. If the pin is configured for a level sensitive interrupt and the pin remains asserted, then the flag is set again immediately after it is cleared.
#1
LPUART0
Universal Asynchronous Receiver/Transmitter
LPUART0_
0x40054000
0
0x14
registers
LPUART0
12
BAUD
LPUART Baud Rate Register
0
32
read-write
0xF000004
0xFFFFFFFF
SBR
Baud Rate Modulo Divisor.
0
13
read-write
SBNS
Stop Bit Number Select
13
1
read-write
0
One stop bit.
#0
1
Two stop bits.
#1
RXEDGIE
RX Input Active Edge Interrupt Enable
14
1
read-write
0
Hardware interrupts from LPUART_STAT[RXEDGIF] disabled (use polling).
#0
1
Hardware interrupt requested when LPUART_STAT[RXEDGIF] flag is 1.
#1
LBKDIE
LIN Break Detect Interrupt Enable
15
1
read-write
0
Hardware interrupts from LPUART_STAT[LBKDIF] disabled (use polling).
#0
1
Hardware interrupt requested when LPUART_STAT[LBKDIF] flag is 1.
#1
RESYNCDIS
Resynchronization Disable
16
1
read-write
0
Resynchronization during received data word is supported
#0
1
Resynchronization during received data word is disabled
#1
BOTHEDGE
Both Edge Sampling
17
1
read-write
0
Receiver samples input data using the rising edge of the baud rate clock.
#0
1
Receiver samples input data using the rising and falling edge of the baud rate clock.
#1
MATCFG
Match Configuration
18
2
read-write
00
Address Match Wakeup
#00
01
Idle Match Wakeup
#01
10
Match On and Match Off
#10
11
Enables RWU on Data Match and Match On/Off for transmitter CTS input
#11
OSR
Over Sampling Ratio
24
5
read-write
M10
10-bit Mode select
29
1
read-write
0
Receiver and transmitter use 8-bit or 9-bit data characters.
#0
1
Receiver and transmitter use 10-bit data characters.
#1
MAEN2
Match Address Mode Enable 2
30
1
read-write
0
Normal operation.
#0
1
Enables automatic address matching or data matching mode for MATCH[MA2].
#1
MAEN1
Match Address Mode Enable 1
31
1
read-write
0
Normal operation.
#0
1
Enables automatic address matching or data matching mode for MATCH[MA1].
#1
STAT
LPUART Status Register
0x4
32
read-write
0xC00000
0xFFFFFFFF
MA2F
Match 2 Flag
14
1
read-write
0
Received data is not equal to MA2
#0
1
Received data is equal to MA2
#1
MA1F
Match 1 Flag
15
1
read-write
0
Received data is not equal to MA1
#0
1
Received data is equal to MA1
#1
PF
Parity Error Flag
16
1
read-write
0
No parity error.
#0
1
Parity error.
#1
FE
Framing Error Flag
17
1
read-write
0
No framing error detected. This does not guarantee the framing is correct.
#0
1
Framing error.
#1
NF
Noise Flag
18
1
read-write
0
No noise detected.
#0
1
Noise detected in the received character in LPUART_DATA.
#1
OR
Receiver Overrun Flag
19
1
read-write
0
No overrun.
#0
1
Receive overrun (new LPUART data lost).
#1
IDLE
Idle Line Flag
20
1
read-write
0
No idle line detected.
#0
1
Idle line was detected.
#1
RDRF
Receive Data Register Full Flag
21
1
read-only
0
Receive data buffer empty.
#0
1
Receive data buffer full.
#1
TC
Transmission Complete Flag
22
1
read-only
0
Transmitter active (sending data, a preamble, or a break).
#0
1
Transmitter idle (transmission activity complete).
#1
TDRE
Transmit Data Register Empty Flag
23
1
read-only
0
Transmit data buffer full.
#0
1
Transmit data buffer empty.
#1
RAF
Receiver Active Flag
24
1
read-only
0
LPUART receiver idle waiting for a start bit.
#0
1
LPUART receiver active (LPUART_RX input not idle).
#1
LBKDE
LIN Break Detection Enable
25
1
read-write
0
Break character is detected at length 10 bit times (if M = 0, SBNS = 0) or 11 (if M = 1, SBNS = 0 or M = 0, SBNS = 1) or 12 (if M = 1, SBNS = 1 or M10 = 1, SNBS = 0) or 13 (if M10 = 1, SNBS = 1).
#0
1
Break character is detected at length of 11 bit times (if M = 0, SBNS = 0) or 12 (if M = 1, SBNS = 0 or M = 0, SBNS = 1) or 14 (if M = 1, SBNS = 1 or M10 = 1, SNBS = 0) or 15 (if M10 = 1, SNBS = 1).
#1
BRK13
Break Character Generation Length
26
1
read-write
0
Break character is transmitted with length of 10 bit times (if M = 0, SBNS = 0) or 11 (if M = 1, SBNS = 0 or M = 0, SBNS = 1) or 12 (if M = 1, SBNS = 1 or M10 = 1, SNBS = 0) or 13 (if M10 = 1, SNBS = 1).
#0
1
Break character is transmitted with length of 13 bit times (if M = 0, SBNS = 0) or 14 (if M = 1, SBNS = 0 or M = 0, SBNS = 1) or 15 (if M = 1, SBNS = 1 or M10 = 1, SNBS = 0) or 16 (if M10 = 1, SNBS = 1).
#1
RWUID
Receive Wake Up Idle Detect
27
1
read-write
0
During receive standby state (RWU = 1), the IDLE bit does not get set upon detection of an idle character. During address match wakeup, the IDLE bit does not get set when an address does not match.
#0
1
During receive standby state (RWU = 1), the IDLE bit gets set upon detection of an idle character. During address match wakeup, the IDLE bit does get set when an address does not match.
#1
RXINV
Receive Data Inversion
28
1
read-write
0
Receive data not inverted.
#0
1
Receive data inverted.
#1
MSBF
MSB First
29
1
read-write
0
LSB (bit0) is the first bit that is transmitted following the start bit. Further, the first bit received after the start bit is identified as bit0.
#0
1
MSB (bit9, bit8, bit7 or bit6) is the first bit that is transmitted following the start bit depending on the setting of CTRL[M], CTRL[PE] and BAUD[M10]. Further, the first bit received after the start bit is identified as bit9, bit8, bit7 or bit6 depending on the setting of CTRL[M] and CTRL[PE].
#1
RXEDGIF
LPUART_RX Pin Active Edge Interrupt Flag
30
1
read-write
0
No active edge on the receive pin has occurred.
#0
1
An active edge on the receive pin has occurred.
#1
LBKDIF
LIN Break Detect Interrupt Flag
31
1
read-write
0
No LIN break character has been detected.
#0
1
LIN break character has been detected.
#1
CTRL
LPUART Control Register
0x8
32
read-write
0
0xFFFFFFFF
PT
Parity Type
0
1
read-write
0
Even parity.
#0
1
Odd parity.
#1
PE
Parity Enable
1
1
read-write
0
No hardware parity generation or checking.
#0
1
Parity enabled.
#1
ILT
Idle Line Type Select
2
1
read-write
0
Idle character bit count starts after start bit.
#0
1
Idle character bit count starts after stop bit.
#1
WAKE
Receiver Wakeup Method Select
3
1
read-write
0
Configures RWU for idle-line wakeup.
#0
1
Configures RWU with address-mark wakeup.
#1
M
9-Bit or 8-Bit Mode Select
4
1
read-write
0
Receiver and transmitter use 8-bit data characters.
#0
1
Receiver and transmitter use 9-bit data characters.
#1
RSRC
Receiver Source Select
5
1
read-write
0
Provided LOOPS is set, RSRC is cleared, selects internal loop back mode and the LPUART does not use the LPUART_RX pin.
#0
1
Single-wire LPUART mode where the LPUART_TX pin is connected to the transmitter output and receiver input.
#1
DOZEEN
Doze Enable
6
1
read-write
0
LPUART is enabled in Doze mode.
#0
1
LPUART is disabled in Doze mode.
#1
LOOPS
Loop Mode Select
7
1
read-write
0
Normal operation - LPUART_RX and LPUART_TX use separate pins.
#0
1
Loop mode or single-wire mode where transmitter outputs are internally connected to receiver input (see RSRC bit).
#1
IDLECFG
Idle Configuration
8
3
read-write
000
1 idle character
#000
001
2 idle characters
#001
010
4 idle characters
#010
011
8 idle characters
#011
100
16 idle characters
#100
101
32 idle characters
#101
110
64 idle characters
#110
111
128 idle characters
#111
MA2IE
Match 2 Interrupt Enable
14
1
read-write
0
MA2F interrupt disabled
#0
1
MA2F interrupt enabled
#1
MA1IE
Match 1 Interrupt Enable
15
1
read-write
0
MA1F interrupt disabled
#0
1
MA1F interrupt enabled
#1
SBK
Send Break
16
1
read-write
0
Normal transmitter operation.
#0
1
Queue break character(s) to be sent.
#1
RWU
Receiver Wakeup Control
17
1
read-write
0
Normal receiver operation.
#0
1
LPUART receiver in standby waiting for wakeup condition.
#1
RE
Receiver Enable
18
1
read-write
0
Receiver disabled.
#0
1
Receiver enabled.
#1
TE
Transmitter Enable
19
1
read-write
0
Transmitter disabled.
#0
1
Transmitter enabled.
#1
ILIE
Idle Line Interrupt Enable
20
1
read-write
0
Hardware interrupts from IDLE disabled; use polling.
#0
1
Hardware interrupt requested when IDLE flag is 1.
#1
RIE
Receiver Interrupt Enable
21
1
read-write
0
Hardware interrupts from RDRF disabled; use polling.
#0
1
Hardware interrupt requested when RDRF flag is 1.
#1
TCIE
Transmission Complete Interrupt Enable for
22
1
read-write
0
Hardware interrupts from TC disabled; use polling.
#0
1
Hardware interrupt requested when TC flag is 1.
#1
TIE
Transmit Interrupt Enable
23
1
read-write
0
Hardware interrupts from TDRE disabled; use polling.
#0
1
Hardware interrupt requested when TDRE flag is 1.
#1
PEIE
Parity Error Interrupt Enable
24
1
read-write
0
PF interrupts disabled; use polling).
#0
1
Hardware interrupt requested when PF is set.
#1
FEIE
Framing Error Interrupt Enable
25
1
read-write
0
FE interrupts disabled; use polling.
#0
1
Hardware interrupt requested when FE is set.
#1
NEIE
Noise Error Interrupt Enable
26
1
read-write
0
NF interrupts disabled; use polling.
#0
1
Hardware interrupt requested when NF is set.
#1
ORIE
Overrun Interrupt Enable
27
1
read-write
0
OR interrupts disabled; use polling.
#0
1
Hardware interrupt requested when OR is set.
#1
TXINV
Transmit Data Inversion
28
1
read-write
0
Transmit data not inverted.
#0
1
Transmit data inverted.
#1
TXDIR
LPUART_TX Pin Direction in Single-Wire Mode
29
1
read-write
0
LPUART_TX pin is an input in single-wire mode.
#0
1
LPUART_TX pin is an output in single-wire mode.
#1
R9T8
Receive Bit 9 / Transmit Bit 8
30
1
read-write
R8T9
Receive Bit 8 / Transmit Bit 9
31
1
read-write
DATA
LPUART Data Register
0xC
32
read-write
0x1000
0xFFFFFFFF
R0T0
Read receive data buffer 0 or write transmit data buffer 0.
0
1
read-write
R1T1
Read receive data buffer 1 or write transmit data buffer 1.
1
1
read-write
R2T2
Read receive data buffer 2 or write transmit data buffer 2.
2
1
read-write
R3T3
Read receive data buffer 3 or write transmit data buffer 3.
3
1
read-write
R4T4
Read receive data buffer 4 or write transmit data buffer 4.
4
1
read-write
R5T5
Read receive data buffer 5 or write transmit data buffer 5.
5
1
read-write
R6T6
Read receive data buffer 6 or write transmit data buffer 6.
6
1
read-write
R7T7
Read receive data buffer 7 or write transmit data buffer 7.
7
1
read-write
R8T8
Read receive data buffer 8 or write transmit data buffer 8.
8
1
read-write
R9T9
Read receive data buffer 9 or write transmit data buffer 9.
9
1
read-write
IDLINE
Idle Line
11
1
read-only
0
Receiver was not idle before receiving this character.
#0
1
Receiver was idle before receiving this character.
#1
RXEMPT
Receive Buffer Empty
12
1
read-only
0
Receive buffer contains valid data.
#0
1
Receive buffer is empty, data returned on read is not valid.
#1
FRETSC
Frame Error / Transmit Special Character
13
1
read-write
0
The dataword was received without a frame error on read, transmit a normal character on write.
#0
1
The dataword was received with a frame error, transmit an idle or break character on transmit.
#1
PARITYE
The current received dataword contained in DATA[R9:R0] was received with a parity error.
14
1
read-only
0
The dataword was received without a parity error.
#0
1
The dataword was received with a parity error.
#1
NOISY
The current received dataword contained in DATA[R9:R0] was received with noise.
15
1
read-only
0
The dataword was received without noise.
#0
1
The data was received with noise.
#1
MATCH
LPUART Match Address Register
0x10
32
read-write
0
0xFFFFFFFF
MA1
Match Address 1
0
10
read-write
MA2
Match Address 2
16
10
read-write
MCG
Multipurpose Clock Generator Lite
MCG_
0x40064000
0
0x19
registers
C1
MCG Control Register 1
0
8
read-write
0x40
0xFF
IREFSTEN
Internal Reference Stop Enable
0
1
read-write
0
LIRC is disabled in Stop mode.
#0
1
LIRC is enabled in Stop mode, if IRCLKEN is set.
#1
IRCLKEN
Internal Reference Clock Enable
1
1
read-write
0
LIRC is disabled.
#0
1
LIRC is enabled.
#1
CLKS
Clock Source Select
6
2
read-write
00
Selects HIRC clock as the main clock source. This is HIRC mode.
#00
01
Selects LIRC clock as the main clock source. This is LIRC2M or LIRC8M mode.
#01
10
Selects external clock as the main clock source. This is EXT mode.
#10
11
Reserved. Writing 11 takes no effect.
#11
C2
MCG Control Register 2
0x1
8
read-write
0x1
0xFF
IRCS
Low-frequency Internal Reference Clock Select
0
1
read-write
0
LIRC is in 2 MHz mode.
#0
1
LIRC is in 8 MHz mode.
#1
EREFS0
External Clock Source Select
2
1
read-write
0
External clock requested.
#0
1
Oscillator requested.
#1
S
MCG Status Register
0x6
8
read-only
0x4
0xFF
OSCINIT0
OSC Initialization Status
1
1
read-only
0
OSC is not ready.
#0
1
OSC clock is ready.
#1
CLKST
Clock Mode Status
2
2
read-only
00
HIRC clock is selected as the main clock source, and MCG_Lite works at HIRC mode.
#00
01
LIRC clock is selected as the main clock source, and MCG_Lite works at LIRC2M or LIRC8M mode.
#01
10
External clock is selected as the main clock source, and MCG_Lite works at EXT mode.
#10
SC
MCG Status and Control Register
0x8
8
read-write
0
0xFF
FCRDIV
Low-frequency Internal Reference Clock Divider
1
3
read-write
000
Division factor is 1.
#000
001
Division factor is 2.
#001
010
Division factor is 4.
#010
011
Division factor is 8.
#011
100
Division factor is 16.
#100
101
Division factor is 32.
#101
110
Division factor is 64.
#110
111
Division factor is 128.
#111
MC
MCG Miscellaneous Control Register
0x18
8
read-write
0
0xFF
LIRC_DIV2
Second Low-frequency Internal Reference Clock Divider
0
3
read-write
000
Division factor is 1.
#000
001
Division factor is 2.
#001
010
Division factor is 4.
#010
011
Division factor is 8.
#011
100
Division factor is 16.
#100
101
Division factor is 32.
#101
110
Division factor is 64.
#110
111
Division factor is 128.
#111
HIRCEN
High-frequency IRC Enable
7
1
read-write
0
HIRC source is not enabled.
#0
1
HIRC source is enabled.
#1
OSC
Oscillator
OSC_
0x40065000
0
0x1
registers
CR
OSC Control Register
0
8
read-write
0
0xFF
SC16P
Oscillator 16 pF Capacitor Load Configure
0
1
read-write
0
Disable the selection.
#0
1
Add 16 pF capacitor to the oscillator load.
#1
SC8P
Oscillator 8 pF Capacitor Load Configure
1
1
read-write
0
Disable the selection.
#0
1
Add 8 pF capacitor to the oscillator load.
#1
SC4P
Oscillator 4 pF Capacitor Load Configure
2
1
read-write
0
Disable the selection.
#0
1
Add 4 pF capacitor to the oscillator load.
#1
SC2P
Oscillator 2 pF Capacitor Load Configure
3
1
read-write
0
Disable the selection.
#0
1
Add 2 pF capacitor to the oscillator load.
#1
EREFSTEN
External Reference Stop Enable
5
1
read-write
0
External reference clock is disabled in Stop mode.
#0
1
External reference clock stays enabled in Stop mode if ERCLKEN is set before entering Stop mode.
#1
ERCLKEN
External Reference Enable
7
1
read-write
0
External reference clock is inactive.
#0
1
External reference clock is enabled.
#1
I2C0
Inter-Integrated Circuit
I2C0_
0x40066000
0
0xD
registers
I2C0
8
A1
I2C Address Register 1
0
8
read-write
0
0xFF
AD
Address
1
7
read-write
F
I2C Frequency Divider register
0x1
8
read-write
0
0xFF
ICR
ClockRate
0
6
read-write
MULT
Multiplier Factor
6
2
read-write
00
mul = 1
#00
01
mul = 2
#01
10
mul = 4
#10
C1
I2C Control Register 1
0x2
8
read-write
0
0xFF
WUEN
Wakeup Enable
1
1
read-write
0
Normal operation. No interrupt generated when address matching in low power mode.
#0
1
Enables the wakeup function in low power mode.
#1
RSTA
Repeat START
2
1
write-only
TXAK
Transmit Acknowledge Enable
3
1
read-write
0
An acknowledge signal is sent to the bus on the following receiving byte (if FACK is cleared) or the current receiving byte (if FACK is set).
#0
1
No acknowledge signal is sent to the bus on the following receiving data byte (if FACK is cleared) or the current receiving data byte (if FACK is set).
#1
TX
Transmit Mode Select
4
1
read-write
0
Receive
#0
1
Transmit
#1
MST
Master Mode Select
5
1
read-write
0
Slave mode
#0
1
Master mode
#1
IICIE
I2C Interrupt Enable
6
1
read-write
0
Disabled
#0
1
Enabled
#1
IICEN
I2C Enable
7
1
read-write
0
Disabled
#0
1
Enabled
#1
S
I2C Status register 1
0x3
8
read-write
0x80
0xFF
RXAK
Receive Acknowledge
0
1
read-only
0
Acknowledge signal was received after the completion of one byte of data transmission on the bus
#0
1
No acknowledge signal detected
#1
IICIF
Interrupt Flag
1
1
read-write
0
No interrupt pending
#0
1
Interrupt pending
#1
SRW
Slave Read/Write
2
1
read-only
0
Slave receive, master writing to slave
#0
1
Slave transmit, master reading from slave
#1
RAM
Range Address Match
3
1
read-write
0
Not addressed
#0
1
Addressed as a slave
#1
ARBL
Arbitration Lost
4
1
read-write
0
Standard bus operation.
#0
1
Loss of arbitration.
#1
BUSY
Bus Busy
5
1
read-only
0
Bus is idle
#0
1
Bus is busy
#1
IAAS
Addressed As A Slave
6
1
read-write
0
Not addressed
#0
1
Addressed as a slave
#1
TCF
Transfer Complete Flag
7
1
read-only
0
Transfer in progress
#0
1
Transfer complete
#1
D
I2C Data I/O register
0x4
8
read-write
0
0xFF
DATA
Data
0
8
read-write
C2
I2C Control Register 2
0x5
8
read-write
0
0xFF
AD
Slave Address
0
3
read-write
RMEN
Range Address Matching Enable
3
1
read-write
0
Range mode disabled. No address matching occurs for an address within the range of values of the A1 and RA registers.
#0
1
Range mode enabled. Address matching occurs when a slave receives an address within the range of values of the A1 and RA registers.
#1
SBRC
Slave Baud Rate Control
4
1
read-write
0
The slave baud rate follows the master baud rate and clock stretching may occur
#0
1
Slave baud rate is independent of the master baud rate
#1
ADEXT
Address Extension
6
1
read-write
0
7-bit address scheme
#0
1
10-bit address scheme
#1
GCAEN
General Call Address Enable
7
1
read-write
0
Disabled
#0
1
Enabled
#1
FLT
I2C Programmable Input Glitch Filter register
0x6
8
read-write
0
0xFF
FLT
I2C Programmable Filter Factor
0
4
read-write
0
No filter/bypass
#0000
STARTF
I2C Bus Start Detect Flag
4
1
read-write
0
No start happens on I2C bus
#0
1
Start detected on I2C bus
#1
SSIE
I2C Bus Stop or Start Interrupt Enable
5
1
read-write
0
Stop or start detection interrupt is disabled
#0
1
Stop or start detection interrupt is enabled
#1
STOPF
I2C Bus Stop Detect Flag
6
1
read-write
0
No stop happens on I2C bus
#0
1
Stop detected on I2C bus
#1
SHEN
Stop Hold Enable
7
1
read-write
0
Stop holdoff is disabled. The MCU's entry to stop mode is not gated.
#0
1
Stop holdoff is enabled.
#1
RA
I2C Range Address register
0x7
8
read-write
0
0xFF
RAD
Range Slave Address
1
7
read-write
SMB
I2C SMBus Control and Status register
0x8
8
read-write
0
0xFF
SHTF2IE
SHTF2 Interrupt Enable
0
1
read-write
0
SHTF2 interrupt is disabled
#0
1
SHTF2 interrupt is enabled
#1
SHTF2
SCL High Timeout Flag 2
1
1
read-write
0
No SCL high and SDA low timeout occurs
#0
1
SCL high and SDA low timeout occurs
#1
SHTF1
SCL High Timeout Flag 1
2
1
read-only
0
No SCL high and SDA high timeout occurs
#0
1
SCL high and SDA high timeout occurs
#1
SLTF
SCL Low Timeout Flag
3
1
read-write
0
No low timeout occurs
#0
1
Low timeout occurs
#1
TCKSEL
Timeout Counter Clock Select
4
1
read-write
0
Timeout counter counts at the frequency of the I2C module clock / 64
#0
1
Timeout counter counts at the frequency of the I2C module clock
#1
SIICAEN
Second I2C Address Enable
5
1
read-write
0
I2C address register 2 matching is disabled
#0
1
I2C address register 2 matching is enabled
#1
ALERTEN
SMBus Alert Response Address Enable
6
1
read-write
0
SMBus alert response address matching is disabled
#0
1
SMBus alert response address matching is enabled
#1
FACK
Fast NACK/ACK Enable
7
1
read-write
0
An ACK or NACK is sent on the following receiving data byte
#0
1
Writing 0 to TXAK after receiving a data byte generates an ACK. Writing 1 to TXAK after receiving a data byte generates a NACK.
#1
A2
I2C Address Register 2
0x9
8
read-write
0xC2
0xFF
SAD
SMBus Address
1
7
read-write
SLTH
I2C SCL Low Timeout Register High
0xA
8
read-write
0
0xFF
SSLT
Most significant byte of SCL low timeout value that determines the timeout period of SCL low.
0
8
read-write
SLTL
I2C SCL Low Timeout Register Low
0xB
8
read-write
0
0xFF
SSLT
Least significant byte of SCL low timeout value that determines the timeout period of SCL low.
0
8
read-write
S2
I2C Status register 2
0xC
8
read-write
0x1
0xFF
EMPTY
Empty flag
0
1
read-only
0
Tx or Rx buffer is not empty and cannot be written to, that is new data cannot be loaded into the buffer.
#0
1
Tx or Rx buffer is empty and can be written to, that is new data can be loaded into the buffer.
#1
ERROR
Error flag
1
1
read-write
0
The buffer is not full and all write/read operations have no errors.
#0
1
There are 3 or more write/read errors during the data transfer phase (when the Empty flag is not set and the buffer is busy).
#1
CMP0
High-Speed Comparator (CMP), Voltage Reference (VREF) Digital-to-Analog Converter (DAC), and Analog Mux (ANMUX)
CMP0_
0x40073000
0
0x6
registers
CMP0
16
CR0
CMP Control Register 0
0
8
read-write
0
0xFF
HYSTCTR
Comparator hard block hysteresis control
0
2
read-write
00
Level 0
#00
01
Level 1
#01
10
Level 2
#10
11
Level 3
#11
FILTER_CNT
Filter Sample Count
4
3
read-write
000
Filter is disabled. SE = 0, COUT = COUTA.
#000
001
One sample must agree. The comparator output is simply sampled.
#001
010
2 consecutive samples must agree.
#010
011
3 consecutive samples must agree.
#011
100
4 consecutive samples must agree.
#100
101
5 consecutive samples must agree.
#101
110
6 consecutive samples must agree.
#110
111
7 consecutive samples must agree.
#111
CR1
CMP Control Register 1
0x1
8
read-write
0
0xFF
EN
Comparator Module Enable
0
1
read-write
0
Analog Comparator is disabled.
#0
1
Analog Comparator is enabled.
#1
OPE
Comparator Output Pin Enable
1
1
read-write
0
CMPO is not available on the associated CMPO output pin. If the comparator does not own the pin, this field has no effect.
#0
1
CMPO is available on the associated CMPO output pin. The comparator output (CMPO) is driven out on the associated CMPO output pin if the comparator owns the pin. If the comparator does not own the field, this bit has no effect.
#1
COS
Comparator Output Select
2
1
read-write
0
Set the filtered comparator output (CMPO) to equal COUT.
#0
1
Set the unfiltered comparator output (CMPO) to equal COUTA.
#1
INV
Comparator INVERT
3
1
read-write
0
Does not invert the comparator output.
#0
1
Inverts the comparator output.
#1
PMODE
Power Mode Select
4
1
read-write
0
Low-Speed (LS) Comparison mode selected. In this mode, CMP has slower output propagation delay and lower current consumption.
#0
1
High-Speed (HS) Comparison mode selected. In this mode, CMP has faster output propagation delay and higher current consumption.
#1
TRIGM
Trigger Mode Enable
5
1
read-write
0
Trigger mode is disabled.
#0
1
Trigger mode is enabled.
#1
WE
Windowing Enable
6
1
read-write
0
Windowing mode is not selected.
#0
1
Windowing mode is selected.
#1
SE
Sample Enable
7
1
read-write
0
Sampling mode is not selected.
#0
1
Sampling mode is selected.
#1
FPR
CMP Filter Period Register
0x2
8
read-write
0
0xFF
FILT_PER
Filter Sample Period
0
8
read-write
SCR
CMP Status and Control Register
0x3
8
read-write
0
0xFF
COUT
Analog Comparator Output
0
1
read-only
CFF
Analog Comparator Flag Falling
1
1
read-write
0
Falling-edge on COUT has not been detected.
#0
1
Falling-edge on COUT has occurred.
#1
CFR
Analog Comparator Flag Rising
2
1
read-write
0
Rising-edge on COUT has not been detected.
#0
1
Rising-edge on COUT has occurred.
#1
IEF
Comparator Interrupt Enable Falling
3
1
read-write
0
Interrupt is disabled.
#0
1
Interrupt is enabled.
#1
IER
Comparator Interrupt Enable Rising
4
1
read-write
0
Interrupt is disabled.
#0
1
Interrupt is enabled.
#1
DACCR
DAC Control Register
0x4
8
read-write
0
0xFF
VOSEL
DAC Output Voltage Select
0
6
read-write
VRSEL
Supply Voltage Reference Source Select
6
1
read-write
0
Vin1 is selected as resistor ladder network supply reference.
#0
1
Vin2 is selected as resistor ladder network supply reference.
#1
DACEN
DAC Enable
7
1
read-write
0
DAC is disabled.
#0
1
DAC is enabled.
#1
MUXCR
MUX Control Register
0x5
8
read-write
0
0xFF
MSEL
Minus Input Mux Control
0
3
read-write
000
IN0
#000
001
IN1
#001
010
IN2
#010
011
IN3
#011
100
IN4
#100
101
IN5
#101
110
IN6
#110
111
IN7
#111
PSEL
Plus Input Mux Control
3
3
read-write
000
IN0
#000
001
IN1
#001
010
IN2
#010
011
IN3
#011
100
IN4
#100
101
IN5
#101
110
IN6
#110
111
IN7
#111
VREF
Voltage Reference
VREF_
0x40074000
0
0x2
registers
TRM
VREF Trim Register
0
8
read-write
0
0x40
TRIM
Trim bits
0
6
read-write
000000
Min
#0
111111
Max
#111111
CHOPEN
Chop oscillator enable. When set, internal chopping operation is enabled and the internal analog offset will be minimized.
6
1
read-write
0
Chop oscillator is disabled.
#0
1
Chop oscillator is enabled.
#1
SC
VREF Status and Control Register
0x1
8
read-write
0
0xFF
MODE_LV
Buffer Mode selection
0
2
read-write
00
Bandgap on only, for stabilization and startup
#00
01
High power buffer mode enabled
#01
10
Low-power buffer mode enabled
#10
VREFST
Internal Voltage Reference stable
2
1
read-only
0
The module is disabled or not stable.
#0
1
The module is stable.
#1
ICOMPEN
Second order curvature compensation enable
5
1
read-write
0
Disabled
#0
1
Enabled
#1
REGEN
Regulator enable
6
1
read-write
0
Internal 1.75 V regulator is disabled.
#0
1
Internal 1.75 V regulator is enabled.
#1
VREFEN
Internal Voltage Reference enable
7
1
read-write
0
The module is disabled.
#0
1
The module is enabled.
#1
SPI0
Serial Peripheral Interface
SPI0_
0x40076000
0
0x7
registers
SPI0
10
S
SPI Status Register
0
8
read-write
0x20
0xFF
MODF
Master Mode Fault Flag
4
1
read-only
0
No mode fault error
#0
1
Mode fault error detected
#1
SPTEF
SPI Transmit Buffer Empty Flag
5
1
read-only
0
SPI transmit buffer not empty
#0
1
SPI transmit buffer empty
#1
SPMF
SPI Match Flag
6
1
read-write
0
Value in the receive data buffer does not match the value in the M register
#0
1
Value in the receive data buffer matches the value in the M register
#1
SPRF
SPI Read Buffer Full Flag
7
1
read-only
0
No data available in the receive data buffer
#0
1
Data available in the receive data buffer
#1
BR
SPI Baud Rate Register
0x1
8
read-write
0
0xFF
SPR
SPI Baud Rate Divisor
0
4
read-write
0000
Baud rate divisor is 2.
#0000
0001
Baud rate divisor is 4.
#0001
0010
Baud rate divisor is 8.
#0010
0011
Baud rate divisor is 16.
#0011
0100
Baud rate divisor is 32.
#0100
0101
Baud rate divisor is 64.
#0101
0110
Baud rate divisor is 128.
#0110
0111
Baud rate divisor is 256.
#0111
1000
Baud rate divisor is 512.
#1000
SPPR
SPI Baud Rate Prescale Divisor
4
3
read-write
000
Baud rate prescaler divisor is 1.
#000
001
Baud rate prescaler divisor is 2.
#001
010
Baud rate prescaler divisor is 3.
#010
011
Baud rate prescaler divisor is 4.
#011
100
Baud rate prescaler divisor is 5.
#100
101
Baud rate prescaler divisor is 6.
#101
110
Baud rate prescaler divisor is 7.
#110
111
Baud rate prescaler divisor is 8.
#111
C2
SPI Control Register 2
0x2
8
read-write
0
0xFF
SPC0
SPI Pin Control 0
0
1
read-write
0
SPI uses separate pins for data input and data output (pin mode is normal). In master mode of operation: MISO is master in and MOSI is master out. In slave mode of operation: MISO is slave out and MOSI is slave in.
#0
1
SPI configured for single-wire bidirectional operation (pin mode is bidirectional). In master mode of operation: MISO is not used by SPI; MOSI is master in when BIDIROE is 0 or master I/O when BIDIROE is 1. In slave mode of operation: MISO is slave in when BIDIROE is 0 or slave I/O when BIDIROE is 1; MOSI is not used by SPI.
#1
SPISWAI
SPI Stop in Wait Mode
1
1
read-write
0
SPI clocks continue to operate in Wait mode.
#0
1
SPI clocks stop when the MCU enters Wait mode.
#1
BIDIROE
Bidirectional Mode Output Enable
3
1
read-write
0
Output driver disabled so SPI data I/O pin acts as an input
#0
1
SPI I/O pin enabled as an output
#1
MODFEN
Master Mode-Fault Function Enable
4
1
read-write
0
Mode fault function disabled, master SS pin reverts to general-purpose I/O not controlled by SPI
#0
1
Mode fault function enabled, master SS pin acts as the mode fault input or the slave select output
#1
SPMIE
SPI Match Interrupt Enable
7
1
read-write
0
Interrupts from SPMF inhibited (use polling)
#0
1
When SPMF is 1, requests a hardware interrupt
#1
C1
SPI Control Register 1
0x3
8
read-write
0x4
0xFF
LSBFE
LSB First (shifter direction)
0
1
read-write
0
SPI serial data transfers start with the most significant bit.
#0
1
SPI serial data transfers start with the least significant bit.
#1
SSOE
Slave Select Output Enable
1
1
read-write
0
When C2[MODFEN] is 0: In master mode, SS pin function is general-purpose I/O (not SPI). In slave mode, SS pin function is slave select input. When C2[MODFEN] is 1: In master mode, SS pin function is SS input for mode fault. In slave mode, SS pin function is slave select input.
#0
1
When C2[MODFEN] is 0: In master mode, SS pin function is general-purpose I/O (not SPI). In slave mode, SS pin function is slave select input. When C2[MODFEN] is 1: In master mode, SS pin function is automatic SS output. In slave mode: SS pin function is slave select input.
#1
CPHA
Clock Phase
2
1
read-write
0
First edge on SPSCK occurs at the middle of the first cycle of a data transfer.
#0
1
First edge on SPSCK occurs at the start of the first cycle of a data transfer.
#1
CPOL
Clock Polarity
3
1
read-write
0
Active-high SPI clock (idles low)
#0
1
Active-low SPI clock (idles high)
#1
MSTR
Master/Slave Mode Select
4
1
read-write
0
SPI module configured as a slave SPI device
#0
1
SPI module configured as a master SPI device
#1
SPTIE
SPI Transmit Interrupt Enable
5
1
read-write
0
Interrupts from SPTEF inhibited (use polling)
#0
1
When SPTEF is 1, hardware interrupt requested
#1
SPE
SPI System Enable
6
1
read-write
0
SPI system inactive
#0
1
SPI system enabled
#1
SPIE
SPI Interrupt Enable: for SPRF and MODF
7
1
read-write
0
Interrupts from SPRF and MODF are inhibited-use polling
#0
1
Request a hardware interrupt when SPRF or MODF is 1
#1
M
SPI Match Register
0x4
8
read-write
0
0xFF
Bits
Hardware compare value (low byte)
0
8
read-write
D
SPI Data Register
0x6
8
read-write
0
0xFF
Bits
Data (low byte)
0
8
read-write
LLWU
Low leakage wakeup unit
LLWU_
0x4007C000
0
0x6
registers
LLWU
7
PE1
LLWU Pin Enable 1 register
0
8
read-write
0
0xFF
WUPE0
Wakeup Pin Enable For LLWU_P0
0
2
read-write
00
External input pin disabled as wakeup input
#00
01
External input pin enabled with rising edge detection
#01
10
External input pin enabled with falling edge detection
#10
11
External input pin enabled with any change detection
#11
WUPE1
Wakeup Pin Enable For LLWU_P1
2
2
read-write
00
External input pin disabled as wakeup input
#00
01
External input pin enabled with rising edge detection
#01
10
External input pin enabled with falling edge detection
#10
11
External input pin enabled with any change detection
#11
WUPE2
Wakeup Pin Enable For LLWU_P2
4
2
read-write
00
External input pin disabled as wakeup input
#00
01
External input pin enabled with rising edge detection
#01
10
External input pin enabled with falling edge detection
#10
11
External input pin enabled with any change detection
#11
WUPE3
Wakeup Pin Enable For LLWU_P3
6
2
read-write
00
External input pin disabled as wakeup input
#00
01
External input pin enabled with rising edge detection
#01
10
External input pin enabled with falling edge detection
#10
11
External input pin enabled with any change detection
#11
PE2
LLWU Pin Enable 2 register
0x1
8
read-write
0
0xFF
WUPE4
Wakeup Pin Enable For LLWU_P4
0
2
read-write
00
External input pin disabled as wakeup input
#00
01
External input pin enabled with rising edge detection
#01
10
External input pin enabled with falling edge detection
#10
11
External input pin enabled with any change detection
#11
WUPE5
Wakeup Pin Enable For LLWU_P5
2
2
read-write
00
External input pin disabled as wakeup input
#00
01
External input pin enabled with rising edge detection
#01
10
External input pin enabled with falling edge detection
#10
11
External input pin enabled with any change detection
#11
WUPE6
Wakeup Pin Enable For LLWU_P6
4
2
read-write
00
External input pin disabled as wakeup input
#00
01
External input pin enabled with rising edge detection
#01
10
External input pin enabled with falling edge detection
#10
11
External input pin enabled with any change detection
#11
WUPE7
Wakeup Pin Enable For LLWU_P7
6
2
read-write
00
External input pin disabled as wakeup input
#00
01
External input pin enabled with rising edge detection
#01
10
External input pin enabled with falling edge detection
#10
11
External input pin enabled with any change detection
#11
ME
LLWU Module Enable register
0x2
8
read-write
0
0xFF
WUME0
Wakeup Module Enable For Module 0
0
1
read-write
0
Internal module flag not used as wakeup source
#0
1
Internal module flag used as wakeup source
#1
WUME1
Wakeup Module Enable for Module 1
1
1
read-write
0
Internal module flag not used as wakeup source
#0
1
Internal module flag used as wakeup source
#1
WUME2
Wakeup Module Enable For Module 2
2
1
read-write
0
Internal module flag not used as wakeup source
#0
1
Internal module flag used as wakeup source
#1
WUME3
Wakeup Module Enable For Module 3
3
1
read-write
0
Internal module flag not used as wakeup source
#0
1
Internal module flag used as wakeup source
#1
WUME4
Wakeup Module Enable For Module 4
4
1
read-write
0
Internal module flag not used as wakeup source
#0
1
Internal module flag used as wakeup source
#1
WUME5
Wakeup Module Enable For Module 5
5
1
read-write
0
Internal module flag not used as wakeup source
#0
1
Internal module flag used as wakeup source
#1
WUME6
Wakeup Module Enable For Module 6
6
1
read-write
0
Internal module flag not used as wakeup source
#0
1
Internal module flag used as wakeup source
#1
WUME7
Wakeup Module Enable For Module 7
7
1
read-write
0
Internal module flag not used as wakeup source
#0
1
Internal module flag used as wakeup source
#1
F1
LLWU Flag 1 register
0x3
8
read-write
0
0xFF
WUF0
Wakeup Flag For LLWU_P0
0
1
read-write
0
LLWU_P0 input was not a wakeup source
#0
1
LLWU_P0 input was a wakeup source
#1
WUF1
Wakeup Flag For LLWU_P1
1
1
read-write
0
LLWU_P1 input was not a wakeup source
#0
1
LLWU_P1 input was a wakeup source
#1
WUF2
Wakeup Flag For LLWU_P2
2
1
read-write
0
LLWU_P2 input was not a wakeup source
#0
1
LLWU_P2 input was a wakeup source
#1
WUF3
Wakeup Flag For LLWU_P3
3
1
read-write
0
LLWU_P3 input was not a wake-up source
#0
1
LLWU_P3 input was a wake-up source
#1
WUF4
Wakeup Flag For LLWU_P4
4
1
read-write
0
LLWU_P4 input was not a wakeup source
#0
1
LLWU_P4 input was a wakeup source
#1
WUF5
Wakeup Flag For LLWU_P5
5
1
read-write
0
LLWU_P5 input was not a wakeup source
#0
1
LLWU_P5 input was a wakeup source
#1
WUF6
Wakeup Flag For LLWU_P6
6
1
read-write
0
LLWU_P6 input was not a wakeup source
#0
1
LLWU_P6 input was a wakeup source
#1
WUF7
Wakeup Flag For LLWU_P7
7
1
read-write
0
LLWU_P7 input was not a wakeup source
#0
1
LLWU_P7 input was a wakeup source
#1
F3
LLWU Flag 3 register
0x4
8
read-only
0
0xFF
MWUF0
Wakeup flag For module 0
0
1
read-only
0
Module 0 input was not a wakeup source
#0
1
Module 0 input was a wakeup source
#1
MWUF1
Wakeup flag For module 1
1
1
read-only
0
Module 1 input was not a wakeup source
#0
1
Module 1 input was a wakeup source
#1
MWUF2
Wakeup flag For module 2
2
1
read-only
0
Module 2 input was not a wakeup source
#0
1
Module 2 input was a wakeup source
#1
MWUF3
Wakeup flag For module 3
3
1
read-only
0
Module 3 input was not a wakeup source
#0
1
Module 3 input was a wakeup source
#1
MWUF4
Wakeup flag For module 4
4
1
read-only
0
Module 4 input was not a wakeup source
#0
1
Module 4 input was a wakeup source
#1
MWUF5
Wakeup flag For module 5
5
1
read-only
0
Module 5 input was not a wakeup source
#0
1
Module 5 input was a wakeup source
#1
MWUF6
Wakeup flag For module 6
6
1
read-only
0
Module 6 input was not a wakeup source
#0
1
Module 6 input was a wakeup source
#1
MWUF7
Wakeup flag For module 7
7
1
read-only
0
Module 7 input was not a wakeup source
#0
1
Module 7 input was a wakeup source
#1
FILT1
LLWU Pin Filter 1 register
0x5
8
read-write
0
0xFF
FILTSEL
Filter Pin Select
0
4
read-write
0000
Select LLWU_P0 for filter
#0000
1111
Select LLWU_P15 for filter
#1111
FILTE
Digital Filter On External Pin
5
2
read-write
00
Filter disabled
#00
01
Filter posedge detect enabled
#01
10
Filter negedge detect enabled
#10
11
Filter any edge detect enabled
#11
FILTF
Filter Detect Flag
7
1
read-write
0
Pin Filter 1 was not a wakeup source
#0
1
Pin Filter 1 was a wakeup source
#1
PMC
Power Management Controller
PMC_
0x4007D000
0
0x3
registers
PMC
6
LVDSC1
Low Voltage Detect Status And Control 1 register
0
8
read-write
0x10
0xFF
LVDV
Low-Voltage Detect Voltage Select
0
2
read-write
00
Low trip point selected (V LVD = V LVDL )
#00
01
High trip point selected (V LVD = V LVDH )
#01
LVDRE
Low-Voltage Detect Reset Enable
4
1
read-write
0
LVDF does not generate hardware resets
#0
1
Force an MCU reset when LVDF = 1
#1
LVDIE
Low-Voltage Detect Interrupt Enable
5
1
read-write
0
Hardware interrupt disabled (use polling)
#0
1
Request a hardware interrupt when LVDF = 1
#1
LVDACK
Low-Voltage Detect Acknowledge
6
1
write-only
LVDF
Low-Voltage Detect Flag
7
1
read-only
0
Low-voltage event not detected
#0
1
Low-voltage event detected
#1
LVDSC2
Low Voltage Detect Status And Control 2 register
0x1
8
read-write
0
0xFF
LVWV
Low-Voltage Warning Voltage Select
0
2
read-write
00
Low trip point selected (VLVW = VLVW1)
#00
01
Mid 1 trip point selected (VLVW = VLVW2)
#01
10
Mid 2 trip point selected (VLVW = VLVW3)
#10
11
High trip point selected (VLVW = VLVW4)
#11
LVWIE
Low-Voltage Warning Interrupt Enable
5
1
read-write
0
Hardware interrupt disabled (use polling)
#0
1
Request a hardware interrupt when LVWF = 1
#1
LVWACK
Low-Voltage Warning Acknowledge
6
1
write-only
LVWF
Low-Voltage Warning Flag
7
1
read-only
0
Low-voltage warning event not detected
#0
1
Low-voltage warning event detected
#1
REGSC
Regulator Status And Control register
0x2
8
read-write
0x4
0xFF
BGBE
Bandgap Buffer Enable
0
1
read-write
0
Bandgap buffer not enabled
#0
1
Bandgap buffer enabled
#1
REGONS
Regulator In Run Regulation Status
2
1
read-only
0
Regulator is in stop regulation or in transition to/from it
#0
1
Regulator is in run regulation
#1
ACKISO
Acknowledge Isolation
3
1
read-write
0
Peripherals and I/O pads are in normal run state.
#0
1
Certain peripherals and I/O pads are in an isolated and latched state.
#1
BGEN
Bandgap Enable In VLPx Operation
4
1
read-write
0
Bandgap voltage reference is disabled in VLPx , and VLLSx modes.
#0
1
Bandgap voltage reference is enabled in VLPx , and VLLSx modes.
#1
SMC
System Mode Controller
SMC_
0x4007E000
0
0x4
registers
PMPROT
Power Mode Protection register
0
8
read-write
0
0xFF
AVLLS
Allow Very-Low-Leakage Stop Mode
1
1
read-write
0
Any VLLSx mode is not allowed
#0
1
Any VLLSx mode is allowed
#1
AVLP
Allow Very-Low-Power Modes
5
1
read-write
0
VLPR, VLPW, and VLPS are not allowed.
#0
1
VLPR, VLPW, and VLPS are allowed.
#1
PMCTRL
Power Mode Control register
0x1
8
read-write
0
0xFF
STOPM
Stop Mode Control
0
3
read-write
000
Normal Stop (STOP)
#000
010
Very-Low-Power Stop (VLPS)
#010
100
Very-Low-Leakage Stop (VLLSx)
#100
110
Reseved
#110
STOPA
Stop Aborted
3
1
read-only
0
The previous stop mode entry was successsful.
#0
1
The previous stop mode entry was aborted.
#1
RUNM
Run Mode Control
5
2
read-write
00
Normal Run mode (RUN)
#00
10
Very-Low-Power Run mode (VLPR)
#10
STOPCTRL
Stop Control Register
0x2
8
read-write
0x3
0xFF
VLLSM
VLLS Mode Control
0
3
read-write
000
VLLS0
#000
001
VLLS1
#001
011
VLLS3
#011
LPOPO
LPO Power Option
3
1
read-write
0
LPO clock is enabled in VLLSx
#0
1
LPO clock is disabled in VLLSx
#1
PORPO
POR Power Option
5
1
read-write
0
POR detect circuit is enabled in VLLS0
#0
1
POR detect circuit is disabled in VLLS0
#1
PSTOPO
Partial Stop Option
6
2
read-write
00
STOP - Normal Stop mode
#00
01
PSTOP1 - Partial Stop with both system and bus clocks disabled
#01
10
PSTOP2 - Partial Stop with system clock disabled and bus clock enabled
#10
PMSTAT
Power Mode Status register
0x3
8
read-only
0x1
0xFF
PMSTAT
When debug is enabled, the PMSTAT will not update to STOP or VLPS When a PSTOP mode is enabled, the PMSTAT will not update to STOP or VLPS
0
7
read-only
RCM
Reset Control Module
RCM_
0x4007F000
0
0xA
registers
SRS0
System Reset Status Register 0
0
8
read-only
0x82
0xFF
WAKEUP
Low Leakage Wakeup Reset
0
1
read-only
0
Reset not caused by LLWU module wakeup source
#0
1
Reset caused by LLWU module wakeup source
#1
LVD
Low-Voltage Detect Reset
1
1
read-only
0
Reset not caused by LVD trip or POR
#0
1
Reset caused by LVD trip or POR
#1
WDOG
Watchdog
5
1
read-only
0
Reset not caused by watchdog timeout
#0
1
Reset caused by watchdog timeout
#1
PIN
External Reset Pin
6
1
read-only
0
Reset not caused by external reset pin
#0
1
Reset caused by external reset pin
#1
POR
Power-On Reset
7
1
read-only
0
Reset not caused by POR
#0
1
Reset caused by POR
#1
SRS1
System Reset Status Register 1
0x1
8
read-only
0
0xFF
LOCKUP
Core Lockup
1
1
read-only
0
Reset not caused by core LOCKUP event
#0
1
Reset caused by core LOCKUP event
#1
SW
Software
2
1
read-only
0
Reset not caused by software setting of SYSRESETREQ bit
#0
1
Reset caused by software setting of SYSRESETREQ bit
#1
MDM_AP
MDM-AP System Reset Request
3
1
read-only
0
Reset not caused by host debugger system setting of the System Reset Request bit
#0
1
Reset caused by host debugger system setting of the System Reset Request bit
#1
SACKERR
Stop Mode Acknowledge Error Reset
5
1
read-only
0
Reset not caused by peripheral failure to acknowledge attempt to enter stop mode
#0
1
Reset caused by peripheral failure to acknowledge attempt to enter stop mode
#1
RPFC
Reset Pin Filter Control register
0x4
8
read-write
0
0xFF
RSTFLTSRW
Reset Pin Filter Select in Run and Wait Modes
0
2
read-write
00
All filtering disabled
#00
01
Bus clock filter enabled for normal operation
#01
10
LPO clock filter enabled for normal operation
#10
RSTFLTSS
Reset Pin Filter Select in Stop Mode
2
1
read-write
0
All filtering disabled
#0
1
LPO clock filter enabled
#1
RPFW
Reset Pin Filter Width register
0x5
8
read-write
0
0xFF
RSTFLTSEL
Reset Pin Filter Bus Clock Select
0
5
read-write
00000
Bus clock filter count is 1
#00000
00001
Bus clock filter count is 2
#00001
00010
Bus clock filter count is 3
#00010
00011
Bus clock filter count is 4
#00011
00100
Bus clock filter count is 5
#00100
00101
Bus clock filter count is 6
#00101
00110
Bus clock filter count is 7
#00110
00111
Bus clock filter count is 8
#00111
01000
Bus clock filter count is 9
#01000
01001
Bus clock filter count is 10
#01001
01010
Bus clock filter count is 11
#01010
01011
Bus clock filter count is 12
#01011
01100
Bus clock filter count is 13
#01100
01101
Bus clock filter count is 14
#01101
01110
Bus clock filter count is 15
#01110
01111
Bus clock filter count is 16
#01111
10000
Bus clock filter count is 17
#10000
10001
Bus clock filter count is 18
#10001
10010
Bus clock filter count is 19
#10010
10011
Bus clock filter count is 20
#10011
10100
Bus clock filter count is 21
#10100
10101
Bus clock filter count is 22
#10101
10110
Bus clock filter count is 23
#10110
10111
Bus clock filter count is 24
#10111
11000
Bus clock filter count is 25
#11000
11001
Bus clock filter count is 26
#11001
11010
Bus clock filter count is 27
#11010
11011
Bus clock filter count is 28
#11011
11100
Bus clock filter count is 29
#11100
11101
Bus clock filter count is 30
#11101
11110
Bus clock filter count is 31
#11110
11111
Bus clock filter count is 32
#11111
FM
Force Mode Register
0x6
8
read-write
0
0xFF
FORCEROM
Force ROM Boot
1
2
read-write
00
No effect
#00
01
Force boot from ROM with RCM_MR[1] set.
#01
10
Force boot from ROM with RCM_MR[2] set.
#10
11
Force boot from ROM with RCM_MR[2:1] set.
#11
MR
Mode Register
0x7
8
read-write
0
0xFF
BOOTROM
Boot ROM Configuration
1
2
read-write
00
Boot from Flash
#00
01
Boot from ROM due to BOOTCFG0 pin assertion
#01
10
Boot form ROM due to FOPT[7] configuration
#10
11
Boot from ROM due to both BOOTCFG0 pin assertion and FOPT[7] configuration
#11
SSRS0
Sticky System Reset Status Register 0
0x8
8
read-write
0x82
0xFF
SWAKEUP
Sticky Low Leakage Wakeup Reset
0
1
read-write
0
Reset not caused by LLWU module wakeup source
#0
1
Reset caused by LLWU module wakeup source
#1
SLVD
Sticky Low-Voltage Detect Reset
1
1
read-write
0
Reset not caused by LVD trip or POR
#0
1
Reset caused by LVD trip or POR
#1
SWDOG
Sticky Watchdog
5
1
read-write
0
Reset not caused by watchdog timeout
#0
1
Reset caused by watchdog timeout
#1
SPIN
Sticky External Reset Pin
6
1
read-write
0
Reset not caused by external reset pin
#0
1
Reset caused by external reset pin
#1
SPOR
Sticky Power-On Reset
7
1
read-write
0
Reset not caused by POR
#0
1
Reset caused by POR
#1
SSRS1
Sticky System Reset Status Register 1
0x9
8
read-write
0
0xFF
SLOCKUP
Sticky Core Lockup
1
1
read-write
0
Reset not caused by core LOCKUP event
#0
1
Reset caused by core LOCKUP event
#1
SSW
Sticky Software
2
1
read-write
0
Reset not caused by software setting of SYSRESETREQ bit
#0
1
Reset caused by software setting of SYSRESETREQ bit
#1
SMDM_AP
Sticky MDM-AP System Reset Request
3
1
read-write
0
Reset not caused by host debugger system setting of the System Reset Request bit
#0
1
Reset caused by host debugger system setting of the System Reset Request bit
#1
SSACKERR
Sticky Stop Mode Acknowledge Error Reset
5
1
read-write
0
Reset not caused by peripheral failure to acknowledge attempt to enter stop mode
#0
1
Reset caused by peripheral failure to acknowledge attempt to enter stop mode
#1
GPIOA
General Purpose Input/Output
GPIO
GPIOA_
0x400FF000
0
0x18
registers
PORTA
30
PDOR
Port Data Output Register
0
32
read-write
0
0xFFFFFFFF
PDO
Port Data Output
0
32
read-write
0
Logic level 0 is driven on pin, provided pin is configured for general-purpose output.
#0
1
Logic level 1 is driven on pin, provided pin is configured for general-purpose output.
#1
PSOR
Port Set Output Register
0x4
32
write-only
0
0xFFFFFFFF
PTSO
Port Set Output
0
32
write-only
0
Corresponding bit in PDORn does not change.
#0
1
Corresponding bit in PDORn is set to logic 1.
#1
PCOR
Port Clear Output Register
0x8
32
write-only
0
0xFFFFFFFF
PTCO
Port Clear Output
0
32
write-only
0
Corresponding bit in PDORn does not change.
#0
1
Corresponding bit in PDORn is cleared to logic 0.
#1
PTOR
Port Toggle Output Register
0xC
32
write-only
0
0xFFFFFFFF
PTTO
Port Toggle Output
0
32
write-only
0
Corresponding bit in PDORn does not change.
#0
1
Corresponding bit in PDORn is set to the inverse of its existing logic state.
#1
PDIR
Port Data Input Register
0x10
32
read-only
0
0xFFFFFFFF
PDI
Port Data Input
0
32
read-only
0
Pin logic level is logic 0, or is not configured for use by digital function.
#0
1
Pin logic level is logic 1.
#1
PDDR
Port Data Direction Register
0x14
32
read-write
0
0xFFFFFFFF
PDD
Port Data Direction
0
32
read-write
0
Pin is configured as general-purpose input, for the GPIO function.
#0
1
Pin is configured as general-purpose output, for the GPIO function.
#1
GPIOB
General Purpose Input/Output
GPIO
GPIOB_
0x400FF040
0
0x18
registers
PORTB
31
PDOR
Port Data Output Register
0
32
read-write
0
0xFFFFFFFF
PDO
Port Data Output
0
32
read-write
0
Logic level 0 is driven on pin, provided pin is configured for general-purpose output.
#0
1
Logic level 1 is driven on pin, provided pin is configured for general-purpose output.
#1
PSOR
Port Set Output Register
0x4
32
write-only
0
0xFFFFFFFF
PTSO
Port Set Output
0
32
write-only
0
Corresponding bit in PDORn does not change.
#0
1
Corresponding bit in PDORn is set to logic 1.
#1
PCOR
Port Clear Output Register
0x8
32
write-only
0
0xFFFFFFFF
PTCO
Port Clear Output
0
32
write-only
0
Corresponding bit in PDORn does not change.
#0
1
Corresponding bit in PDORn is cleared to logic 0.
#1
PTOR
Port Toggle Output Register
0xC
32
write-only
0
0xFFFFFFFF
PTTO
Port Toggle Output
0
32
write-only
0
Corresponding bit in PDORn does not change.
#0
1
Corresponding bit in PDORn is set to the inverse of its existing logic state.
#1
PDIR
Port Data Input Register
0x10
32
read-only
0
0xFFFFFFFF
PDI
Port Data Input
0
32
read-only
0
Pin logic level is logic 0, or is not configured for use by digital function.
#0
1
Pin logic level is logic 1.
#1
PDDR
Port Data Direction Register
0x14
32
read-write
0
0xFFFFFFFF
PDD
Port Data Direction
0
32
read-write
0
Pin is configured as general-purpose input, for the GPIO function.
#0
1
Pin is configured as general-purpose output, for the GPIO function.
#1
MTB
Micro Trace Buffer
MTB_
0xF0000000
0
0x1000
registers
POSITION
MTB Position Register
0
32
read-write
0
0x3
WRAP
This field is set to 1 automatically when the POINTER value wraps as determined by the MTB_MASTER[MASK] field in the MASTER Trace Control Register
2
1
read-write
POINTER
Trace Packet Address Pointer[28:0]
3
29
read-write
MASTER
MTB Master Register
0x4
32
read-write
0x80
0xFFFFFFE0
MASK
Mask
0
5
read-write
TSTARTEN
Trace Start Input Enable
5
1
read-write
TSTOPEN
Trace Stop Input Enable
6
1
read-write
SFRWPRIV
Special Function Register Write Privilege
7
1
read-write
RAMPRIV
RAM Privilege
8
1
read-write
HALTREQ
Halt Request
9
1
read-write
EN
Main Trace Enable
31
1
read-write
FLOW
MTB Flow Register
0x8
32
read-write
0
0x4
AUTOSTOP
If this field is 1 and WATERMARK is equal to MTB_POSITION[POINTER], then MTB_MASTER[EN] is automatically set to 0
0
1
read-write
AUTOHALT
If this field is 1 and WATERMARK is equal to MTB_POSITION[POINTER], then MTB_MASTER[HALTREQ] is automatically set to 1
1
1
read-write
WATERMARK
WATERMARK[28:0]
3
29
read-write
BASE
MTB Base Register
0xC
32
read-only
0
0
BASEADDR
This value is defined with a hardwired signal and the expression: 0x2000_0000 - (RAM_Size/4)
0
32
read-only
MODECTRL
Integration Mode Control Register
0xF00
32
read-only
0
0xFFFFFFFF
MODECTRL
Hardwired to 0x0000_0000
0
32
read-only
TAGSET
Claim TAG Set Register
0xFA0
32
read-only
0
0xFFFFFFFF
TAGSET
Hardwired to 0x0000_0000
0
32
read-only
TAGCLEAR
Claim TAG Clear Register
0xFA4
32
read-only
0
0xFFFFFFFF
TAGCLEAR
Hardwired to 0x0000_0000
0
32
read-only
LOCKACCESS
Lock Access Register
0xFB0
32
read-only
0
0xFFFFFFFF
LOCKACCESS
Hardwired to 0x0000_0000
0
32
read-only
LOCKSTAT
Lock Status Register
0xFB4
32
read-only
0
0xFFFFFFFF
LOCKSTAT
Hardwired to 0x0000_0000
0
32
read-only
AUTHSTAT
Authentication Status Register
0xFB8
32
read-only
0
0xFFFFFFFF
BIT0
Connected to DBGEN.
0
1
read-only
BIT1
Hardwired to 1.
1
1
read-only
BIT2
Connected to NIDEN or DBGEN signal.
2
1
read-only
BIT3
Hardwired to 1.
3
1
read-only
DEVICEARCH
Device Architecture Register
0xFBC
32
read-only
0x47700A31
0xFFFFFFFF
DEVICEARCH
Hardwired to 0x4770_0A31.
0
32
read-only
DEVICECFG
Device Configuration Register
0xFC8
32
read-only
0
0xFFFFFFFF
DEVICECFG
Hardwired to 0x0000_0000.
0
32
read-only
DEVICETYPID
Device Type Identifier Register
0xFCC
32
read-only
0x31
0xFFFFFFFF
DEVICETYPID
Hardwired to 0x0000_0031.
0
32
read-only
8
0x4
4,5,6,7,0,1,2,3
PERIPHID%s
Peripheral ID Register
0xFD0
32
read-only
0
0
PERIPHID
Peripheral ID4 is hardwired to 0x0000_0004; ID0 to 0x0000_0032; ID1 to 0x0000_00B9; ID2 to 0x0000_001B; and all the others to 0x0000_0000
0
32
read-only
4
0x4
0,1,2,3
COMPID%s
Component ID Register
0xFF0
32
read-only
0
0
COMPID
Component ID
0
32
read-only
MTBDWT
MTB data watchpoint and trace
MTBDWT_
0xF0001000
0
0x1000
registers
CTRL
MTB DWT Control Register
0
32
read-only
0x2F000000
0xFFFFFFFF
DWTCFGCTRL
DWT configuration controls
0
28
read-only
NUMCMP
Number of comparators
28
4
read-only
2
0x10
0,1
COMP%s
MTB_DWT Comparator Register
0x20
32
read-write
0
0xFFFFFFFF
COMP
Reference value for comparison
0
32
read-write
2
0x10
0,1
MASK%s
MTB_DWT Comparator Mask Register
0x24
32
read-write
0
0xFFFFFFFF
MASK
MASK
0
5
read-write
FCT0
MTB_DWT Comparator Function Register 0
0x28
32
read-write
0
0xFFFFFFFF
FUNCTION
Function
0
4
read-write
0000
Disabled.
#0000
0100
Instruction fetch.
#0100
0101
Data operand read.
#0101
0110
Data operand write.
#0110
0111
Data operand (read + write).
#0111
DATAVMATCH
Data Value Match
8
1
read-write
0
Perform address comparison.
#0
1
Perform data value comparison.
#1
DATAVSIZE
Data Value Size
10
2
read-write
00
Byte.
#00
01
Halfword.
#01
10
Word.
#10
11
Reserved. Any attempts to use this value results in UNPREDICTABLE behavior.
#11
DATAVADDR0
Data Value Address 0
12
4
read-write
MATCHED
Comparator match
24
1
read-only
0
No match.
#0
1
Match occurred.
#1
FCT1
MTB_DWT Comparator Function Register 1
0x38
32
read-write
0
0xFFFFFFFF
FUNCTION
Function
0
4
read-write
0000
Disabled.
#0000
0100
Instruction fetch.
#0100
0101
Data operand read.
#0101
0110
Data operand write.
#0110
0111
Data operand (read + write).
#0111
MATCHED
Comparator match
24
1
read-only
0
No match.
#0
1
Match occurred.
#1
TBCTRL
MTB_DWT Trace Buffer Control Register
0x200
32
read-write
0x20000000
0xFFFFFFFF
ACOMP0
Action based on Comparator 0 match
0
1
read-write
0
Trigger TSTOP based on the assertion of MTBDWT_FCT0[MATCHED].
#0
1
Trigger TSTART based on the assertion of MTBDWT_FCT0[MATCHED].
#1
ACOMP1
Action based on Comparator 1 match
1
1
read-write
0
Trigger TSTOP based on the assertion of MTBDWT_FCT1[MATCHED].
#0
1
Trigger TSTART based on the assertion of MTBDWT_FCT1[MATCHED].
#1
NUMCOMP
Number of Comparators
28
4
read-only
DEVICECFG
Device Configuration Register
0xFC8
32
read-only
0
0xFFFFFFFF
DEVICECFG
Hardwired to 0x0000_0000.
0
32
read-only
DEVICETYPID
Device Type Identifier Register
0xFCC
32
read-only
0x4
0xFFFFFFFF
DEVICETYPID
Hardwired to 0x0000_0004.
0
32
read-only
8
0x4
4,5,6,7,0,1,2,3
PERIPHID%s
Peripheral ID Register
0xFD0
32
read-only
0
0
PERIPHID
Peripheral ID1 is hardwired to 0x0000_00E0; ID2 to 0x0000_0008; and all the others to 0x0000_0000.
0
32
read-only
4
0x4
0,1,2,3
COMPID%s
Component ID Register
0xFF0
32
read-only
0
0
COMPID
Component ID
0
32
read-only
ROM
System ROM
ROM_
0xF0002000
0
0x1000
registers
3
0x4
0,1,2
ENTRY%s
Entry
0
32
read-only
0
0
ENTRY
ENTRY
0
32
read-only
TABLEMARK
End of Table Marker Register
0xC
32
read-only
0
0xFFFFFFFF
MARK
Hardwired to 0x0000_0000
0
32
read-only
SYSACCESS
System Access Register
0xFCC
32
read-only
0x1
0xFFFFFFFF
SYSACCESS
Hardwired to 0x0000_0001
0
32
read-only
8
0x4
4,5,6,7,0,1,2,3
PERIPHID%s
Peripheral ID Register
0xFD0
32
read-only
0
0
PERIPHID
Peripheral ID1 is hardwired to 0x0000_00E0; ID2 to 0x0000_0008; and all the others to 0x0000_0000.
0
32
read-only
4
0x4
0,1,2,3
COMPID%s
Component ID Register
0xFF0
32
read-only
0
0
COMPID
Component ID
0
32
read-only
MCM
Core Platform Miscellaneous Control Module
MCM_
0xF0003000
0x8
0x3C
registers
PLASC
Crossbar Switch (AXBS) Slave Configuration
0x8
16
read-only
0x7
0xFFFF
ASC
Each bit in the ASC field indicates whether there is a corresponding connection to the crossbar switch's slave input port.
0
8
read-only
0
A bus slave connection to AXBS input port n is absent.
#0
1
A bus slave connection to AXBS input port n is present.
#1
PLAMC
Crossbar Switch (AXBS) Master Configuration
0xA
16
read-only
0x1
0xFFFF
AMC
Each bit in the AMC field indicates whether there is a corresponding connection to the AXBS master input port.
0
8
read-only
0
A bus master connection to AXBS input port n is absent
#0
1
A bus master connection to AXBS input port n is present
#1
PLACR
Platform Control Register
0xC
32
read-write
0
0xFFFFFFFF
EFDS
Enable Flash Data Speculation
14
1
read-write
0
Disable flash data speculation.
#0
1
Enable flash data speculation.
#1
DFCS
Disable Flash Controller Speculation
15
1
read-write
0
Enable flash controller speculation.
#0
1
Disable flash controller speculation.
#1
ESFC
Enable Stalling Flash Controller
16
1
read-write
0
Disable stalling flash controller when flash is busy.
#0
1
Enable stalling flash controller when flash is busy.
#1
CPO
Compute Operation Control Register
0x40
32
read-write
0
0xFFFFFFFF
CPOREQ
Compute Operation Request
0
1
read-write
0
Request is cleared.
#0
1
Request Compute Operation.
#1
CPOACK
Compute Operation Acknowledge
1
1
read-only
0
Compute operation entry has not completed or compute operation exit has completed.
#0
1
Compute operation entry has completed or compute operation exit has not completed.
#1
CPOWOI
Compute Operation Wake-up on Interrupt
2
1
read-write
0
No effect.
#0
1
When set, the CPOREQ is cleared on any interrupt or exception vector fetch.
#1
FGPIOA
General Purpose Input/Output
FGPIO
FGPIOA_
0xF8000000
0
0x18
registers
PDOR
Port Data Output Register
0
32
read-write
0
0xFFFFFFFF
PDO
Port Data Output
0
32
read-write
0
Logic level 0 is driven on pin, provided pin is configured for general-purpose output.
#0
1
Logic level 1 is driven on pin, provided pin is configured for general-purpose output.
#1
PSOR
Port Set Output Register
0x4
32
write-only
0
0xFFFFFFFF
PTSO
Port Set Output
0
32
write-only
0
Corresponding bit in PDORn does not change.
#0
1
Corresponding bit in PDORn is set to logic 1.
#1
PCOR
Port Clear Output Register
0x8
32
write-only
0
0xFFFFFFFF
PTCO
Port Clear Output
0
32
write-only
0
Corresponding bit in PDORn does not change.
#0
1
Corresponding bit in PDORn is cleared to logic 0.
#1
PTOR
Port Toggle Output Register
0xC
32
write-only
0
0xFFFFFFFF
PTTO
Port Toggle Output
0
32
write-only
0
Corresponding bit in PDORn does not change.
#0
1
Corresponding bit in PDORn is set to the inverse of its existing logic state.
#1
PDIR
Port Data Input Register
0x10
32
read-only
0
0xFFFFFFFF
PDI
Port Data Input
0
32
read-only
0
Pin logic level is logic 0, or is not configured for use by digital function.
#0
1
Pin logic level is logic 1.
#1
PDDR
Port Data Direction Register
0x14
32
read-write
0
0xFFFFFFFF
PDD
Port Data Direction
0
32
read-write
0
Pin is configured as general-purpose input, for the GPIO function.
#0
1
Pin is configured as general-purpose output, for the GPIO function.
#1
FGPIOB
General Purpose Input/Output
FGPIO
FGPIOB_
0xF8000040
0
0x18
registers
PDOR
Port Data Output Register
0
32
read-write
0
0xFFFFFFFF
PDO
Port Data Output
0
32
read-write
0
Logic level 0 is driven on pin, provided pin is configured for general-purpose output.
#0
1
Logic level 1 is driven on pin, provided pin is configured for general-purpose output.
#1
PSOR
Port Set Output Register
0x4
32
write-only
0
0xFFFFFFFF
PTSO
Port Set Output
0
32
write-only
0
Corresponding bit in PDORn does not change.
#0
1
Corresponding bit in PDORn is set to logic 1.
#1
PCOR
Port Clear Output Register
0x8
32
write-only
0
0xFFFFFFFF
PTCO
Port Clear Output
0
32
write-only
0
Corresponding bit in PDORn does not change.
#0
1
Corresponding bit in PDORn is cleared to logic 0.
#1
PTOR
Port Toggle Output Register
0xC
32
write-only
0
0xFFFFFFFF
PTTO
Port Toggle Output
0
32
write-only
0
Corresponding bit in PDORn does not change.
#0
1
Corresponding bit in PDORn is set to the inverse of its existing logic state.
#1
PDIR
Port Data Input Register
0x10
32
read-only
0
0xFFFFFFFF
PDI
Port Data Input
0
32
read-only
0
Pin logic level is logic 0, or is not configured for use by digital function.
#0
1
Pin logic level is logic 1.
#1
PDDR
Port Data Direction Register
0x14
32
read-write
0
0xFFFFFFFF
PDD
Port Data Direction
0
32
read-write
0
Pin is configured as general-purpose input, for the GPIO function.
#0
1
Pin is configured as general-purpose output, for the GPIO function.
#1