#include "InterpolationTestsF32.h" #include #include "Error.h" #define SNR_THRESHOLD 120 /* Reference patterns are generated with a double precision computation. */ #define REL_ERROR (8.0e-5) void InterpolationTestsF32::test_linear_interp_f32() { const float32_t *inp = input.ptr(); float32_t *outp = output.ptr(); unsigned long nb; for(nb = 0; nb < input.nbSamples(); nb++) { outp[nb] = arm_linear_interp_f32(&S,inp[nb]); } ASSERT_EMPTY_TAIL(output); ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD); ASSERT_REL_ERROR(output,ref,REL_ERROR); } void InterpolationTestsF32::test_bilinear_interp_f32() { const float32_t *inp = input.ptr(); float32_t *outp = output.ptr(); float32_t x,y; unsigned long nb; for(nb = 0; nb < input.nbSamples(); nb += 2) { x = inp[nb]; y = inp[nb+1]; *outp++=arm_bilinear_interp_f32(&SBI,x,y); } ASSERT_EMPTY_TAIL(output); ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD); ASSERT_REL_ERROR(output,ref,REL_ERROR); } void InterpolationTestsF32::test_spline_square_f32() { const float32_t *inpX = inputX.ptr(); const float32_t *inpY = inputY.ptr(); const float32_t *outX = outputX.ptr(); float32_t *outp = output.ptr(); float32_t *buf = buffer.ptr(); // ((2*4-1)*sizeof(float32_t)) float32_t *coef = splineCoefs.ptr(); // ((3*(4-1))*sizeof(float32_t)) arm_spline_instance_f32 S; arm_spline_init_f32(&S, ARM_SPLINE_PARABOLIC_RUNOUT, inpX, inpY, 4, coef, buf); arm_spline_f32(&S, outX, outp, 20); ASSERT_EMPTY_TAIL(buffer); ASSERT_EMPTY_TAIL(splineCoefs); ASSERT_EMPTY_TAIL(output); ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD); } void InterpolationTestsF32::test_spline_sine_f32() { const float32_t *inpX = inputX.ptr(); const float32_t *inpY = inputY.ptr(); const float32_t *outX = outputX.ptr(); float32_t *outp = output.ptr(); float32_t *buf = buffer.ptr(); // ((2*9-1)*sizeof(float32_t)) float32_t *coef = splineCoefs.ptr(); // ((3*(9-1))*sizeof(float32_t)) arm_spline_instance_f32 S; arm_spline_init_f32(&S, ARM_SPLINE_NATURAL, inpX, inpY, 9, coef, buf); arm_spline_f32(&S, outX, outp, 33); ASSERT_EMPTY_TAIL(buffer); ASSERT_EMPTY_TAIL(splineCoefs); ASSERT_EMPTY_TAIL(output); ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD); } void InterpolationTestsF32::test_spline_ramp_f32() { const float32_t *inpX = inputX.ptr(); const float32_t *inpY = inputY.ptr(); const float32_t *outX = outputX.ptr(); float32_t *outp = output.ptr(); float32_t *buf = buffer.ptr(); // ((2*3-1)*sizeof(float32_t)) float32_t *coef = splineCoefs.ptr(); // ((3*(3-1))*sizeof(float32_t)) arm_spline_instance_f32 S; arm_spline_init_f32(&S, ARM_SPLINE_PARABOLIC_RUNOUT, inpX, inpY, 3, coef, buf); arm_spline_f32(&S, outX, outp, 30); ASSERT_EMPTY_TAIL(buffer); ASSERT_EMPTY_TAIL(splineCoefs); ASSERT_EMPTY_TAIL(output); ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD); } void InterpolationTestsF32::setUp(Testing::testID_t id,std::vector& params,Client::PatternMgr *mgr) { const int16_t *pConfig; Testing::nbSamples_t nb=MAX_NB_SAMPLES; (void)params; switch(id) { case InterpolationTestsF32::TEST_LINEAR_INTERP_F32_1: input.reload(InterpolationTestsF32::INPUT_F32_ID,mgr,nb); y.reload(InterpolationTestsF32::YVAL_F32_ID,mgr,nb); ref.reload(InterpolationTestsF32::REF_LINEAR_F32_ID,mgr,nb); S.nValues=y.nbSamples(); /**< nValues */ /* Those values must be coherent with the ones in the Python script generating the patterns */ S.x1=0.0; /**< x1 */ S.xSpacing=1.0; /**< xSpacing */ S.pYData=y.ptr(); /**< pointer to the table of Y values */ break; case InterpolationTestsF32::TEST_BILINEAR_INTERP_F32_2: input.reload(InterpolationTestsF32::INPUTBI_F32_ID,mgr,nb); config.reload(InterpolationTestsF32::CONFIGBI_S16_ID,mgr,nb); y.reload(InterpolationTestsF32::YVALBI_F32_ID,mgr,nb); ref.reload(InterpolationTestsF32::REF_BILINEAR_F32_ID,mgr,nb); pConfig = config.ptr(); SBI.numRows = pConfig[1]; SBI.numCols = pConfig[0]; SBI.pData = y.ptr(); break; case TEST_SPLINE_SQUARE_F32_3: inputX.reload(InterpolationTestsF32::INPUT_SPLINE_SQU_X_F32_ID,mgr,4); inputY.reload(InterpolationTestsF32::INPUT_SPLINE_SQU_Y_F32_ID,mgr,4); outputX.reload(InterpolationTestsF32::OUTPUT_SPLINE_SQU_X_F32_ID,mgr,20); ref.reload(InterpolationTestsF32::REF_SPLINE_SQU_F32_ID,mgr,20); splineCoefs.create(3*(4-1),InterpolationTestsF32::COEFS_SPLINE_F32_ID,mgr); buffer.create(2*4-1,InterpolationTestsF32::TEMP_SPLINE_F32_ID,mgr); output.create(20,InterpolationTestsF32::OUT_SAMPLES_F32_ID,mgr); break; case TEST_SPLINE_SINE_F32_4: inputX.reload(InterpolationTestsF32::INPUT_SPLINE_SIN_X_F32_ID,mgr,9); inputY.reload(InterpolationTestsF32::INPUT_SPLINE_SIN_Y_F32_ID,mgr,9); outputX.reload(InterpolationTestsF32::OUTPUT_SPLINE_SIN_X_F32_ID,mgr,33); ref.reload(InterpolationTestsF32::REF_SPLINE_SIN_F32_ID,mgr,33); splineCoefs.create(3*(9-1),InterpolationTestsF32::COEFS_SPLINE_F32_ID,mgr); buffer.create(2*9-1,InterpolationTestsF32::TEMP_SPLINE_F32_ID,mgr); output.create(33,InterpolationTestsF32::OUT_SAMPLES_F32_ID,mgr); break; case TEST_SPLINE_RAMP_F32_5: inputX.reload(InterpolationTestsF32::INPUT_SPLINE_RAM_X_F32_ID,mgr,3); inputY.reload(InterpolationTestsF32::INPUT_SPLINE_RAM_Y_F32_ID,mgr,3); outputX.reload(InterpolationTestsF32::OUTPUT_SPLINE_RAM_X_F32_ID,mgr,30); ref.reload(InterpolationTestsF32::REF_SPLINE_RAM_F32_ID,mgr,30); splineCoefs.create(3*(3-1),InterpolationTestsF32::COEFS_SPLINE_F32_ID,mgr); buffer.create(2*3-1,InterpolationTestsF32::TEMP_SPLINE_F32_ID,mgr); output.create(30,InterpolationTestsF32::OUT_SAMPLES_F32_ID,mgr); break; } output.create(ref.nbSamples(),InterpolationTestsF32::OUT_SAMPLES_F32_ID,mgr); } void InterpolationTestsF32::tearDown(Testing::testID_t id,Client::PatternMgr *mgr) { (void)id; output.dump(mgr); }