#include "BinaryTestsF32.h" #include #include "Error.h" #define SNR_THRESHOLD 120 /* Reference patterns are generated with a double precision computation. */ #define REL_ERROR (1.0e-6) #define ABS_ERROR (1.0e-5) /* Upper bound of maximum matrix dimension used by Python */ #define MAXMATRIXDIM 40 static void checkInnerTail(float32_t *b) { ASSERT_TRUE(b[0] == 0); ASSERT_TRUE(b[1] == 0); ASSERT_TRUE(b[2] == 0); ASSERT_TRUE(b[3] == 0); } #define LOADDATA2() \ const float32_t *inp1=input1.ptr(); \ const float32_t *inp2=input2.ptr(); \ \ float32_t *ap=a.ptr(); \ float32_t *bp=b.ptr(); \ \ float32_t *outp=output.ptr(); \ int16_t *dimsp = dims.ptr(); \ int nbMatrixes = dims.nbSamples() / 3;\ int rows,internal,columns; \ int i; #define PREPAREDATA2() \ in1.numRows=rows; \ in1.numCols=internal; \ memcpy((void*)ap,(const void*)inp1,2*sizeof(float32_t)*rows*internal);\ in1.pData = ap; \ \ in2.numRows=internal; \ in2.numCols=columns; \ memcpy((void*)bp,(const void*)inp2,2*sizeof(float32_t)*internal*columns);\ in2.pData = bp; \ \ out.numRows=rows; \ out.numCols=columns; \ out.pData = outp; void BinaryTestsF32::test_mat_mult_f32() { LOADDATA2(); arm_status status; for(i=0;i < nbMatrixes ; i ++) { rows = *dimsp++; internal = *dimsp++; columns = *dimsp++; PREPAREDATA2(); status=arm_mat_mult_f32(&this->in1,&this->in2,&this->out); ASSERT_TRUE(status==ARM_MATH_SUCCESS); outp += (rows * columns); checkInnerTail(outp); } ASSERT_EMPTY_TAIL(output); ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD); ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR); } void BinaryTestsF32::test_mat_cmplx_mult_f32() { LOADDATA2(); arm_status status; for(i=0;i < nbMatrixes ; i ++) { rows = *dimsp++; internal = *dimsp++; columns = *dimsp++; PREPAREDATA2(); status=arm_mat_cmplx_mult_f32(&this->in1,&this->in2,&this->out); ASSERT_TRUE(status==ARM_MATH_SUCCESS); outp += (2*rows * columns); checkInnerTail(outp); } ASSERT_EMPTY_TAIL(output); ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD); ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR); } void BinaryTestsF32::setUp(Testing::testID_t id,std::vector& params,Client::PatternMgr *mgr) { (void)params; switch(id) { case TEST_MAT_MULT_F32_1: input1.reload(BinaryTestsF32::INPUTS1_F32_ID,mgr); input2.reload(BinaryTestsF32::INPUTS2_F32_ID,mgr); dims.reload(BinaryTestsF32::DIMSBINARY1_S16_ID,mgr); ref.reload(BinaryTestsF32::REFMUL1_F32_ID,mgr); output.create(ref.nbSamples(),BinaryTestsF32::OUT_F32_ID,mgr); a.create(MAXMATRIXDIM*MAXMATRIXDIM,BinaryTestsF32::TMPA_F32_ID,mgr); b.create(MAXMATRIXDIM*MAXMATRIXDIM,BinaryTestsF32::TMPB_F32_ID,mgr); break; case TEST_MAT_CMPLX_MULT_F32_2: input1.reload(BinaryTestsF32::INPUTSC1_F32_ID,mgr); input2.reload(BinaryTestsF32::INPUTSC2_F32_ID,mgr); dims.reload(BinaryTestsF32::DIMSBINARY1_S16_ID,mgr); ref.reload(BinaryTestsF32::REFCMPLXMUL1_F32_ID,mgr); output.create(ref.nbSamples(),BinaryTestsF32::OUT_F32_ID,mgr); a.create(2*MAXMATRIXDIM*MAXMATRIXDIM,BinaryTestsF32::TMPA_F32_ID,mgr); b.create(2*MAXMATRIXDIM*MAXMATRIXDIM,BinaryTestsF32::TMPB_F32_ID,mgr); break; } } void BinaryTestsF32::tearDown(Testing::testID_t id,Client::PatternMgr *mgr) { (void)id; output.dump(mgr); }