#include "BayesF32.h" #include #include "Error.h" #include "Test.h" void BayesF32::test_gaussian_naive_bayes_predict_f32() { const float32_t *inp = input.ptr(); float32_t *bufp = outputProbas.ptr(); float32_t *tempp = temp.ptr(); int16_t *p = outputPredicts.ptr(); for(int i=0; i < this->nbPatterns ; i ++) { *p = arm_gaussian_naive_bayes_predict_f32(&bayes, inp, bufp,tempp); inp += this->vecDim; bufp += this->classNb; p++; } ASSERT_REL_ERROR(outputProbas,probas,(float32_t)5e-6); ASSERT_EQ(outputPredicts,predicts); } void BayesF32::setUp(Testing::testID_t id,std::vector& paramsArgs,Client::PatternMgr *mgr) { (void)paramsArgs; switch(id) { case BayesF32::TEST_GAUSSIAN_NAIVE_BAYES_PREDICT_F32_1: input.reload(BayesF32::INPUTS1_F32_ID,mgr); params.reload(BayesF32::PARAMS1_F32_ID,mgr); dims.reload(BayesF32::DIMS1_S16_ID,mgr); const int16_t *dimsp=dims.ptr(); const float32_t *paramsp = params.ptr(); this->nbPatterns=dimsp[0]; this->classNb=dimsp[1]; this->vecDim=dimsp[2]; this->theta=paramsp; this->sigma=paramsp + (this->classNb * this->vecDim); this->classPrior=paramsp + 2*(this->classNb * this->vecDim); this->epsilon=paramsp[this->classNb + 2*(this->classNb * this->vecDim)]; //printf("%f %f %f\n",this->theta[0],this->sigma[0],this->classPrior[0]); // Reference patterns are not loaded when we are in dump mode probas.reload(BayesF32::PROBAS1_F32_ID,mgr); predicts.reload(BayesF32::PREDICTS1_S16_ID,mgr); outputProbas.create(this->nbPatterns*this->classNb,BayesF32::OUT_PROBA_F32_ID,mgr); temp.create(this->nbPatterns*this->classNb,BayesF32::OUT_PROBA_F32_ID,mgr); outputPredicts.create(this->nbPatterns,BayesF32::OUT_PREDICT_S16_ID,mgr); bayes.vectorDimension=this->vecDim; bayes.numberOfClasses=this->classNb; bayes.theta=this->theta; bayes.sigma=this->sigma; bayes.classPriors=this->classPrior; bayes.epsilon=this->epsilon; break; } } void BayesF32::tearDown(Testing::testID_t id,Client::PatternMgr *mgr) { (void)id; outputProbas.dump(mgr); outputPredicts.dump(mgr); }