// This file is part of a joint effort between Eigen, a lightweight C++ template library
// for linear algebra, and MPFR C++, a C++ interface to MPFR library (http://www.holoborodko.com/pavel/)
//
// Copyright (C) 2010-2012 Pavel Holoborodko <pavel@holoborodko.com>
// Copyright (C) 2010 Konstantin Holoborodko <konstantin@holoborodko.com>
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MPREALSUPPORT_MODULE_H
#define EIGEN_MPREALSUPPORT_MODULE_H

#include "../../Eigen/Core"
#include <mpreal.h>

namespace Eigen {

/**
  * \defgroup MPRealSupport_Module MPFRC++ Support module
  * \code
  * #include <Eigen/MPRealSupport>
  * \endcode
  *
  * This module provides support for multi precision floating point numbers
  * via the <a href="http://www.holoborodko.com/pavel/mpfr">MPFR C++</a>
  * library which itself is built upon <a href="http://www.mpfr.org/">MPFR</a>/<a href="http://gmplib.org/">GMP</a>.
  *
  * \warning MPFR C++ is licensed under the GPL.
  *
  * You can find a copy of MPFR C++ that is known to be compatible in the unsupported/test/mpreal folder.
  *
  * Here is an example:
  *
\code
#include <iostream>
#include <Eigen/MPRealSupport>
#include <Eigen/LU>
using namespace mpfr;
using namespace Eigen;
int main()
{
  // set precision to 256 bits (double has only 53 bits)
  mpreal::set_default_prec(256);
  // Declare matrix and vector types with multi-precision scalar type
  typedef Matrix<mpreal,Dynamic,Dynamic>  MatrixXmp;
  typedef Matrix<mpreal,Dynamic,1>        VectorXmp;

  MatrixXmp A = MatrixXmp::Random(100,100);
  VectorXmp b = VectorXmp::Random(100);

  // Solve Ax=b using LU
  VectorXmp x = A.lu().solve(b);
  std::cout << "relative error: " << (A*x - b).norm() / b.norm() << std::endl;
  return 0;
}
\endcode
  *
  */

template <>
struct NumTraits<mpfr::mpreal> : GenericNumTraits<mpfr::mpreal> {
  enum {
    IsInteger = 0,
    IsSigned = 1,
    IsComplex = 0,
    RequireInitialization = 1,
    ReadCost = HugeCost,
    AddCost = HugeCost,
    MulCost = HugeCost
  };

  typedef mpfr::mpreal Real;
  typedef mpfr::mpreal NonInteger;

  static inline Real highest(long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::maxval(Precision); }
  static inline Real lowest(long Precision = mpfr::mpreal::get_default_prec()) { return -mpfr::maxval(Precision); }

  // Constants
  static inline Real Pi(long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_pi(Precision); }
  static inline Real Euler(long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_euler(Precision); }
  static inline Real Log2(long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_log2(Precision); }
  static inline Real Catalan(long Precision = mpfr::mpreal::get_default_prec()) {
    return mpfr::const_catalan(Precision);
  }

  static inline Real epsilon(long Precision = mpfr::mpreal::get_default_prec()) {
    return mpfr::machine_epsilon(Precision);
  }
  static inline Real epsilon(const Real& x) { return mpfr::machine_epsilon(x); }

#ifdef MPREAL_HAVE_DYNAMIC_STD_NUMERIC_LIMITS
  static inline int digits10(long Precision = mpfr::mpreal::get_default_prec()) {
    return std::numeric_limits<Real>::digits10(Precision);
  }
  static inline int digits10(const Real& x) { return std::numeric_limits<Real>::digits10(x); }

  static inline int digits() { return std::numeric_limits<Real>::digits(); }
  static inline int digits(const Real& x) { return std::numeric_limits<Real>::digits(x); }
#endif

  static inline Real dummy_precision() {
    mpfr_prec_t weak_prec = ((mpfr::mpreal::get_default_prec() - 1) * 90) / 100;
    return mpfr::machine_epsilon(weak_prec);
  }
};

namespace internal {

template <>
inline mpfr::mpreal random<mpfr::mpreal>() {
  return mpfr::random();
}

template <>
inline mpfr::mpreal random<mpfr::mpreal>(const mpfr::mpreal& a, const mpfr::mpreal& b) {
  return a + (b - a) * random<mpfr::mpreal>();
}

inline bool isMuchSmallerThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps) {
  return mpfr::abs(a) <= mpfr::abs(b) * eps;
}

inline bool isApprox(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps) {
  return mpfr::isEqualFuzzy(a, b, eps);
}

inline bool isApproxOrLessThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps) {
  return a <= b || mpfr::isEqualFuzzy(a, b, eps);
}

template <>
inline long double cast<mpfr::mpreal, long double>(const mpfr::mpreal& x) {
  return x.toLDouble();
}

template <>
inline double cast<mpfr::mpreal, double>(const mpfr::mpreal& x) {
  return x.toDouble();
}

template <>
inline long cast<mpfr::mpreal, long>(const mpfr::mpreal& x) {
  return x.toLong();
}

template <>
inline int cast<mpfr::mpreal, int>(const mpfr::mpreal& x) {
  return int(x.toLong());
}

// Specialize GEBP kernel and traits for mpreal (no need for peeling, nor complicated stuff)
// This also permits to directly call mpfr's routines and avoid many temporaries produced by mpreal
template <>
class gebp_traits<mpfr::mpreal, mpfr::mpreal, false, false> {
 public:
  typedef mpfr::mpreal ResScalar;
  enum {
    Vectorizable = false,
    LhsPacketSize = 1,
    RhsPacketSize = 1,
    ResPacketSize = 1,
    NumberOfRegisters = 1,
    nr = 1,
    mr = 1,
    LhsProgress = 1,
    RhsProgress = 1
  };
  typedef ResScalar LhsPacket;
  typedef ResScalar RhsPacket;
  typedef ResScalar ResPacket;
  typedef LhsPacket LhsPacket4Packing;
};

template <typename Index, typename DataMapper, bool ConjugateLhs, bool ConjugateRhs>
struct gebp_kernel<mpfr::mpreal, mpfr::mpreal, Index, DataMapper, 1, 1, ConjugateLhs, ConjugateRhs> {
  typedef mpfr::mpreal mpreal;

  EIGEN_DONT_INLINE void operator()(const DataMapper& res, const mpreal* blockA, const mpreal* blockB, Index rows,
                                    Index depth, Index cols, const mpreal& alpha, Index strideA = -1,
                                    Index strideB = -1, Index offsetA = 0, Index offsetB = 0) {
    if (rows == 0 || cols == 0 || depth == 0) return;

    mpreal acc1(0, mpfr_get_prec(blockA[0].mpfr_srcptr())), tmp(0, mpfr_get_prec(blockA[0].mpfr_srcptr()));

    if (strideA == -1) strideA = depth;
    if (strideB == -1) strideB = depth;

    for (Index i = 0; i < rows; ++i) {
      for (Index j = 0; j < cols; ++j) {
        const mpreal* A = blockA + i * strideA + offsetA;
        const mpreal* B = blockB + j * strideB + offsetB;

        acc1 = 0;
        for (Index k = 0; k < depth; k++) {
          mpfr_mul(tmp.mpfr_ptr(), A[k].mpfr_srcptr(), B[k].mpfr_srcptr(), mpreal::get_default_rnd());
          mpfr_add(acc1.mpfr_ptr(), acc1.mpfr_ptr(), tmp.mpfr_ptr(), mpreal::get_default_rnd());
        }

        mpfr_mul(acc1.mpfr_ptr(), acc1.mpfr_srcptr(), alpha.mpfr_srcptr(), mpreal::get_default_rnd());
        mpfr_add(res(i, j).mpfr_ptr(), res(i, j).mpfr_srcptr(), acc1.mpfr_srcptr(), mpreal::get_default_rnd());
      }
    }
  }
};
}  // end namespace internal
}  // namespace Eigen

#endif  // EIGEN_MPREALSUPPORT_MODULE_H