//===================================================== // Copyright (C) 2008 Gael Guennebaud //===================================================== // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. // #ifndef EIGEN2_INTERFACE_HH #define EIGEN2_INTERFACE_HH // #include #include #include #include #include #include #include "btl.hh" using namespace Eigen; template class eigen2_interface { public: enum { IsFixedSize = (SIZE != Dynamic) }; typedef real real_type; typedef std::vector stl_vector; typedef std::vector stl_matrix; typedef Eigen::Matrix gene_matrix; typedef Eigen::Matrix gene_vector; static inline std::string name(void) { #if defined(EIGEN_VECTORIZE_SSE) if (SIZE == Dynamic) return "eigen2"; else return "tiny_eigen2"; #elif defined(EIGEN_VECTORIZE_ALTIVEC) || defined(EIGEN_VECTORIZE_VSX) if (SIZE == Dynamic) return "eigen2"; else return "tiny_eigen2"; #else if (SIZE == Dynamic) return "eigen2_novec"; else return "tiny_eigen2_novec"; #endif } static void free_matrix(gene_matrix& A, int N) {} static void free_vector(gene_vector& B) {} static BTL_DONT_INLINE void matrix_from_stl(gene_matrix& A, stl_matrix& A_stl) { A.resize(A_stl[0].size(), A_stl.size()); for (int j = 0; j < A_stl.size(); j++) { for (int i = 0; i < A_stl[j].size(); i++) { A.coeffRef(i, j) = A_stl[j][i]; } } } static BTL_DONT_INLINE void vector_from_stl(gene_vector& B, stl_vector& B_stl) { B.resize(B_stl.size(), 1); for (int i = 0; i < B_stl.size(); i++) { B.coeffRef(i) = B_stl[i]; } } static BTL_DONT_INLINE void vector_to_stl(gene_vector& B, stl_vector& B_stl) { for (int i = 0; i < B_stl.size(); i++) { B_stl[i] = B.coeff(i); } } static BTL_DONT_INLINE void matrix_to_stl(gene_matrix& A, stl_matrix& A_stl) { int N = A_stl.size(); for (int j = 0; j < N; j++) { A_stl[j].resize(N); for (int i = 0; i < N; i++) { A_stl[j][i] = A.coeff(i, j); } } } static inline void matrix_matrix_product(const gene_matrix& A, const gene_matrix& B, gene_matrix& X, int N) { X = (A * B).lazy(); } static inline void transposed_matrix_matrix_product(const gene_matrix& A, const gene_matrix& B, gene_matrix& X, int N) { X = (A.transpose() * B.transpose()).lazy(); } static inline void ata_product(const gene_matrix& A, gene_matrix& X, int N) { X = (A.transpose() * A).lazy(); } static inline void aat_product(const gene_matrix& A, gene_matrix& X, int N) { X = (A * A.transpose()).lazy(); } static inline void matrix_vector_product(const gene_matrix& A, const gene_vector& B, gene_vector& X, int N) { X = (A * B) /*.lazy()*/; } static inline void atv_product(gene_matrix& A, gene_vector& B, gene_vector& X, int N) { X = (A.transpose() * B) /*.lazy()*/; } static inline void axpy(real coef, const gene_vector& X, gene_vector& Y, int N) { Y += coef * X; } static inline void axpby(real a, const gene_vector& X, real b, gene_vector& Y, int N) { Y = a * X + b * Y; } static inline void copy_matrix(const gene_matrix& source, gene_matrix& cible, int N) { cible = source; } static inline void copy_vector(const gene_vector& source, gene_vector& cible, int N) { cible = source; } static inline void trisolve_lower(const gene_matrix& L, const gene_vector& B, gene_vector& X, int N) { X = L.template marked().solveTriangular(B); } static inline void trisolve_lower_matrix(const gene_matrix& L, const gene_matrix& B, gene_matrix& X, int N) { X = L.template marked().solveTriangular(B); } static inline void cholesky(const gene_matrix& X, gene_matrix& C, int N) { C = X.llt().matrixL(); // C = X; // Cholesky::computeInPlace(C); // Cholesky::computeInPlaceBlock(C); } static inline void lu_decomp(const gene_matrix& X, gene_matrix& C, int N) { C = X.lu().matrixLU(); // C = X.inverse(); } static inline void tridiagonalization(const gene_matrix& X, gene_matrix& C, int N) { C = Tridiagonalization(X).packedMatrix(); } static inline void hessenberg(const gene_matrix& X, gene_matrix& C, int N) { C = HessenbergDecomposition(X).packedMatrix(); } }; #endif