#include "arm_vec_math.h" #include "FastMathF32.h" #include #include "Error.h" #include "Test.h" #define SNR_THRESHOLD 119 #define SNR_ATAN2_THRESHOLD 120 /* Reference patterns are generated with a double precision computation. */ #define REL_ERROR (1.0e-6) #define ABS_ERROR (1.0e-5) #define REL_ERROR_ATAN (5.0e-7) #define ABS_ERROR_ATAN (5.0e-7) void FastMathF32::test_atan2_scalar_f32() { const float32_t *inp = input.ptr(); float32_t *outp = output.ptr(); float32_t res; unsigned long i; arm_status status=ARM_MATH_SUCCESS; for(i=0; i < ref.nbSamples(); i++) { status=arm_atan2_f32(inp[2*i],inp[2*i+1],&res); outp[i]=res; ASSERT_TRUE((status == ARM_MATH_SUCCESS)); } //printf("%f %f %f\n",inp[2*i],inp[2*i+1],outp[i]); //ASSERT_SNR(ref,output,(float32_t)SNR_ATAN2_THRESHOLD); ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR_ATAN,REL_ERROR_ATAN); } void FastMathF32::test_cos_f32() { const float32_t *inp = input.ptr(); float32_t *outp = output.ptr(); unsigned long i; for(i=0; i < ref.nbSamples(); i++) { outp[i]=arm_cos_f32(inp[i]); } ASSERT_SNR(ref,output,(float32_t)SNR_THRESHOLD); ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR); } void FastMathF32::test_sin_f32() { const float32_t *inp = input.ptr(); float32_t *outp = output.ptr(); unsigned long i; for(i=0; i < ref.nbSamples(); i++) { outp[i]=arm_sin_f32(inp[i]); } ASSERT_SNR(ref,output,(float32_t)SNR_THRESHOLD); ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR); } void FastMathF32::test_sqrt_f32() { const float32_t *inp = input.ptr(); float32_t *outp = output.ptr(); arm_status status; unsigned long i; for(i=0; i < ref.nbSamples(); i++) { status=arm_sqrt_f32(inp[i],&outp[i]); ASSERT_TRUE((status == ARM_MATH_SUCCESS) || ((inp[i] < 0.0f) && (status == ARM_MATH_ARGUMENT_ERROR))); } ASSERT_SNR(ref,output,(float32_t)SNR_THRESHOLD); ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR); } void FastMathF32::test_vlog_f32() { const float32_t *inp = input.ptr(); float32_t *outp = output.ptr(); arm_vlog_f32(inp,outp,ref.nbSamples()); ASSERT_SNR(ref,output,(float32_t)SNR_THRESHOLD); ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR); ASSERT_EMPTY_TAIL(output); } void FastMathF32::test_vexp_f32() { const float32_t *inp = input.ptr(); float32_t *outp = output.ptr(); arm_vexp_f32(inp,outp,ref.nbSamples()); ASSERT_SNR(ref,output,(float32_t)SNR_THRESHOLD); ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR); ASSERT_EMPTY_TAIL(output); } void FastMathF32::setUp(Testing::testID_t id,std::vector& paramsArgs,Client::PatternMgr *mgr) { (void)paramsArgs; switch(id) { case FastMathF32::TEST_COS_F32_1: { input.reload(FastMathF32::ANGLES1_F32_ID,mgr); ref.reload(FastMathF32::COS1_F32_ID,mgr); output.create(ref.nbSamples(),FastMathF32::OUT_F32_ID,mgr); } break; case FastMathF32::TEST_SIN_F32_2: { input.reload(FastMathF32::ANGLES1_F32_ID,mgr); ref.reload(FastMathF32::SIN1_F32_ID,mgr); output.create(ref.nbSamples(),FastMathF32::OUT_F32_ID,mgr); } break; case FastMathF32::TEST_SQRT_F32_3: { input.reload(FastMathF32::SQRTINPUT1_F32_ID,mgr); ref.reload(FastMathF32::SQRT1_F32_ID,mgr); output.create(ref.nbSamples(),FastMathF32::OUT_F32_ID,mgr); } break; case FastMathF32::TEST_VLOG_F32_4: { input.reload(FastMathF32::LOGINPUT1_F32_ID,mgr); ref.reload(FastMathF32::LOG1_F32_ID,mgr); output.create(ref.nbSamples(),FastMathF32::OUT_F32_ID,mgr); } break; case FastMathF32::TEST_VLOG_F32_5: { input.reload(FastMathF32::LOGINPUT1_F32_ID,mgr,3); ref.reload(FastMathF32::LOG1_F32_ID,mgr,3); output.create(ref.nbSamples(),FastMathF32::OUT_F32_ID,mgr); } break; case FastMathF32::TEST_VLOG_F32_6: { input.reload(FastMathF32::LOGINPUT1_F32_ID,mgr,8); ref.reload(FastMathF32::LOG1_F32_ID,mgr,8); output.create(ref.nbSamples(),FastMathF32::OUT_F32_ID,mgr); } break; case FastMathF32::TEST_VLOG_F32_7: { input.reload(FastMathF32::LOGINPUT1_F32_ID,mgr,11); ref.reload(FastMathF32::LOG1_F32_ID,mgr,11); output.create(ref.nbSamples(),FastMathF32::OUT_F32_ID,mgr); } break; case FastMathF32::TEST_VEXP_F32_8: { input.reload(FastMathF32::EXPINPUT1_F32_ID,mgr); ref.reload(FastMathF32::EXP1_F32_ID,mgr); output.create(ref.nbSamples(),FastMathF32::OUT_F32_ID,mgr); } break; case FastMathF32::TEST_VEXP_F32_9: { input.reload(FastMathF32::EXPINPUT1_F32_ID,mgr,3); ref.reload(FastMathF32::EXP1_F32_ID,mgr,3); output.create(ref.nbSamples(),FastMathF32::OUT_F32_ID,mgr); } break; case FastMathF32::TEST_VEXP_F32_10: { input.reload(FastMathF32::EXPINPUT1_F32_ID,mgr,8); ref.reload(FastMathF32::EXP1_F32_ID,mgr,8); output.create(ref.nbSamples(),FastMathF32::OUT_F32_ID,mgr); } break; case FastMathF32::TEST_VEXP_F32_11: { input.reload(FastMathF32::EXPINPUT1_F32_ID,mgr,11); ref.reload(FastMathF32::EXP1_F32_ID,mgr,11); output.create(ref.nbSamples(),FastMathF32::OUT_F32_ID,mgr); } break; case FastMathF32::TEST_ATAN2_SCALAR_F32_12: { input.reload(FastMathF32::ATAN2INPUT1_F32_ID,mgr); ref.reload(FastMathF32::ATAN2_F32_ID,mgr); output.create(ref.nbSamples(),FastMathF32::OUT_F32_ID,mgr); } break; } } void FastMathF32::tearDown(Testing::testID_t id,Client::PatternMgr *mgr) { (void)id; output.dump(mgr); }