// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "common.h"

struct scalar_norm1_op {
  typedef RealScalar result_type;
  inline RealScalar operator()(const Scalar &a) const { return numext::norm1(a); }
};
namespace Eigen {
namespace internal {
template <>
struct functor_traits<scalar_norm1_op> {
  enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 };
};
}  // namespace internal
}  // namespace Eigen

// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
RealScalar EIGEN_CAT(REAL_SCALAR_SUFFIX, EIGEN_BLAS_FUNC(asum))(int *n, RealScalar *px, int *incx) {
  //   std::cerr << "__asum " << *n << " " << *incx << "\n";
  Complex *x = reinterpret_cast<Complex *>(px);

  if (*n <= 0) return 0;

  if (*incx == 1)
    return make_vector(x, *n).unaryExpr<scalar_norm1_op>().sum();
  else
    return make_vector(x, *n, std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum();
}

int EIGEN_CAT(i, EIGEN_BLAS_FUNC(amax))(int *n, RealScalar *px, int *incx) {
  if (*n <= 0) return 0;
  Scalar *x = reinterpret_cast<Scalar *>(px);

  DenseIndex ret;
  if (*incx == 1)
    make_vector(x, *n).unaryExpr<scalar_norm1_op>().maxCoeff(&ret);
  else
    make_vector(x, *n, std::abs(*incx)).unaryExpr<scalar_norm1_op>().maxCoeff(&ret);
  return int(ret) + 1;
}

int EIGEN_CAT(i, EIGEN_BLAS_FUNC(amin))(int *n, RealScalar *px, int *incx) {
  if (*n <= 0) return 0;
  Scalar *x = reinterpret_cast<Scalar *>(px);

  DenseIndex ret;
  if (*incx == 1)
    make_vector(x, *n).unaryExpr<scalar_norm1_op>().minCoeff(&ret);
  else
    make_vector(x, *n, std::abs(*incx)).unaryExpr<scalar_norm1_op>().minCoeff(&ret);
  return int(ret) + 1;
}

// computes a dot product of a conjugated vector with another vector.
int EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pres) {
  //   std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n";
  Scalar *res = reinterpret_cast<Scalar *>(pres);

  if (*n <= 0) {
    *res = Scalar(0);
    return 0;
  }

  Scalar *x = reinterpret_cast<Scalar *>(px);
  Scalar *y = reinterpret_cast<Scalar *>(py);

  if (*incx == 1 && *incy == 1)
    *res = (make_vector(x, *n).dot(make_vector(y, *n)));
  else if (*incx > 0 && *incy > 0)
    *res = (make_vector(x, *n, *incx).dot(make_vector(y, *n, *incy)));
  else if (*incx < 0 && *incy > 0)
    *res = (make_vector(x, *n, -*incx).reverse().dot(make_vector(y, *n, *incy)));
  else if (*incx > 0 && *incy < 0)
    *res = (make_vector(x, *n, *incx).dot(make_vector(y, *n, -*incy).reverse()));
  else if (*incx < 0 && *incy < 0)
    *res = (make_vector(x, *n, -*incx).reverse().dot(make_vector(y, *n, -*incy).reverse()));
  return 0;
}

// computes a vector-vector dot product without complex conjugation.
int EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pres) {
  Scalar *res = reinterpret_cast<Scalar *>(pres);

  if (*n <= 0) {
    *res = Scalar(0);
    return 0;
  }

  Scalar *x = reinterpret_cast<Scalar *>(px);
  Scalar *y = reinterpret_cast<Scalar *>(py);

  if (*incx == 1 && *incy == 1)
    *res = (make_vector(x, *n).cwiseProduct(make_vector(y, *n))).sum();
  else if (*incx > 0 && *incy > 0)
    *res = (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, *incy))).sum();
  else if (*incx < 0 && *incy > 0)
    *res = (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, *incy))).sum();
  else if (*incx > 0 && *incy < 0)
    *res = (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum();
  else if (*incx < 0 && *incy < 0)
    *res = (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum();
  return 0;
}

RealScalar EIGEN_CAT(REAL_SCALAR_SUFFIX, EIGEN_BLAS_FUNC(nrm2))(int *n, RealScalar *px, int *incx) {
  //   std::cerr << "__nrm2 " << *n << " " << *incx << "\n";
  if (*n <= 0) return 0;

  Scalar *x = reinterpret_cast<Scalar *>(px);

  if (*incx == 1) return make_vector(x, *n).stableNorm();

  return make_vector(x, *n, *incx).stableNorm();
}

int EIGEN_BLAS_FUNC(EIGEN_CAT(REAL_SCALAR_SUFFIX, rot))(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy,
                                                        RealScalar *pc, RealScalar *ps) {
  if (*n <= 0) return 0;

  Scalar *x = reinterpret_cast<Scalar *>(px);
  Scalar *y = reinterpret_cast<Scalar *>(py);
  RealScalar c = *pc;
  RealScalar s = *ps;

  StridedVectorType vx(make_vector(x, *n, std::abs(*incx)));
  StridedVectorType vy(make_vector(y, *n, std::abs(*incy)));

  Reverse<StridedVectorType> rvx(vx);
  Reverse<StridedVectorType> rvy(vy);

  // TODO implement mixed real-scalar rotations
  if (*incx < 0 && *incy > 0)
    internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c, s));
  else if (*incx > 0 && *incy < 0)
    internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c, s));
  else
    internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation<Scalar>(c, s));

  return 0;
}

int EIGEN_BLAS_FUNC(EIGEN_CAT(REAL_SCALAR_SUFFIX, scal))(int *n, RealScalar *palpha, RealScalar *px, int *incx) {
  if (*n <= 0) return 0;

  Scalar *x = reinterpret_cast<Scalar *>(px);
  RealScalar alpha = *palpha;

  //   std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n";

  if (*incx == 1)
    make_vector(x, *n) *= alpha;
  else
    make_vector(x, *n, std::abs(*incx)) *= alpha;

  return 0;
}