// g++-4.4 bench_gemm.cpp -I .. -O2 -DNDEBUG -lrt -fopenmp && OMP_NUM_THREADS=2 ./a.out // icpc bench_gemm.cpp -I .. -O3 -DNDEBUG -lrt -openmp && OMP_NUM_THREADS=2 ./a.out // Compilation options: // // -DSCALAR=std::complex // -DSCALARA=double or -DSCALARB=double // -DHAVE_BLAS // -DDECOUPLED // #include #include #include using namespace std; using namespace Eigen; #ifndef SCALAR // #define SCALAR std::complex #define SCALAR float #endif #ifndef SCALARA #define SCALARA SCALAR #endif #ifndef SCALARB #define SCALARB SCALAR #endif #ifdef ROWMAJ_A const int opt_A = RowMajor; #else const int opt_A = ColMajor; #endif #ifdef ROWMAJ_B const int opt_B = RowMajor; #else const int opt_B = ColMajor; #endif typedef SCALAR Scalar; typedef NumTraits::Real RealScalar; typedef Matrix A; typedef Matrix B; typedef Matrix C; typedef Matrix M; #ifdef HAVE_BLAS extern "C" { #include } static float fone = 1; static float fzero = 0; static double done = 1; static double szero = 0; static std::complex cfone = 1; static std::complex cfzero = 0; static std::complex cdone = 1; static std::complex cdzero = 0; static char notrans = 'N'; static char trans = 'T'; static char nonunit = 'N'; static char lower = 'L'; static char right = 'R'; static int intone = 1; #ifdef ROWMAJ_A const char transA = trans; #else const char transA = notrans; #endif #ifdef ROWMAJ_B const char transB = trans; #else const char transB = notrans; #endif template void blas_gemm(const A& a, const B& b, MatrixXf& c) { int M = c.rows(); int N = c.cols(); int K = a.cols(); int lda = a.outerStride(); int ldb = b.outerStride(); int ldc = c.rows(); sgemm_(&transA, &transB, &M, &N, &K, &fone, const_cast(a.data()), &lda, const_cast(b.data()), &ldb, &fone, c.data(), &ldc); } template void blas_gemm(const A& a, const B& b, MatrixXd& c) { int M = c.rows(); int N = c.cols(); int K = a.cols(); int lda = a.outerStride(); int ldb = b.outerStride(); int ldc = c.rows(); dgemm_(&transA, &transB, &M, &N, &K, &done, const_cast(a.data()), &lda, const_cast(b.data()), &ldb, &done, c.data(), &ldc); } template void blas_gemm(const A& a, const B& b, MatrixXcf& c) { int M = c.rows(); int N = c.cols(); int K = a.cols(); int lda = a.outerStride(); int ldb = b.outerStride(); int ldc = c.rows(); cgemm_(&transA, &transB, &M, &N, &K, (float*)&cfone, const_cast((const float*)a.data()), &lda, const_cast((const float*)b.data()), &ldb, (float*)&cfone, (float*)c.data(), &ldc); } template void blas_gemm(const A& a, const B& b, MatrixXcd& c) { int M = c.rows(); int N = c.cols(); int K = a.cols(); int lda = a.outerStride(); int ldb = b.outerStride(); int ldc = c.rows(); zgemm_(&transA, &transB, &M, &N, &K, (double*)&cdone, const_cast((const double*)a.data()), &lda, const_cast((const double*)b.data()), &ldb, (double*)&cdone, (double*)c.data(), &ldc); } #endif void matlab_cplx_cplx(const M& ar, const M& ai, const M& br, const M& bi, M& cr, M& ci) { cr.noalias() += ar * br; cr.noalias() -= ai * bi; ci.noalias() += ar * bi; ci.noalias() += ai * br; // [cr ci] += [ar ai] * br + [-ai ar] * bi } void matlab_real_cplx(const M& a, const M& br, const M& bi, M& cr, M& ci) { cr.noalias() += a * br; ci.noalias() += a * bi; } void matlab_cplx_real(const M& ar, const M& ai, const M& b, M& cr, M& ci) { cr.noalias() += ar * b; ci.noalias() += ai * b; } template EIGEN_DONT_INLINE void gemm(const A& a, const B& b, C& c) { c.noalias() += a * b; } int main(int argc, char** argv) { std::ptrdiff_t l1 = internal::queryL1CacheSize(); std::ptrdiff_t l2 = internal::queryTopLevelCacheSize(); std::cout << "L1 cache size = " << (l1 > 0 ? l1 / 1024 : -1) << " KB\n"; std::cout << "L2/L3 cache size = " << (l2 > 0 ? l2 / 1024 : -1) << " KB\n"; typedef internal::gebp_traits Traits; std::cout << "Register blocking = " << Traits::mr << " x " << Traits::nr << "\n"; int rep = 1; // number of repetitions per try int tries = 2; // number of tries, we keep the best int s = 2048; int m = s; int n = s; int p = s; int cache_size1 = -1, cache_size2 = l2, cache_size3 = 0; bool need_help = false; for (int i = 1; i < argc;) { if (argv[i][0] == '-') { if (argv[i][1] == 's') { ++i; s = atoi(argv[i++]); m = n = p = s; if (argv[i][0] != '-') { n = atoi(argv[i++]); p = atoi(argv[i++]); } } else if (argv[i][1] == 'c') { ++i; cache_size1 = atoi(argv[i++]); if (argv[i][0] != '-') { cache_size2 = atoi(argv[i++]); if (argv[i][0] != '-') cache_size3 = atoi(argv[i++]); } } else if (argv[i][1] == 't') { tries = atoi(argv[++i]); ++i; } else if (argv[i][1] == 'p') { ++i; rep = atoi(argv[i++]); } } else { need_help = true; break; } } if (need_help) { std::cout << argv[0] << " -s -c -t -p \n"; std::cout << " : size\n"; std::cout << " : rows columns depth\n"; return 1; } #if EIGEN_VERSION_AT_LEAST(3, 2, 90) if (cache_size1 > 0) setCpuCacheSizes(cache_size1, cache_size2, cache_size3); #endif A a(m, p); a.setRandom(); B b(p, n); b.setRandom(); C c(m, n); c.setOnes(); C rc = c; std::cout << "Matrix sizes = " << m << "x" << p << " * " << p << "x" << n << "\n"; std::ptrdiff_t mc(m), nc(n), kc(p); internal::computeProductBlockingSizes(kc, mc, nc); std::cout << "blocking size (mc x kc) = " << mc << " x " << kc << " x " << nc << "\n"; C r = c; // check the parallel product is correct #if defined EIGEN_HAS_OPENMP Eigen::initParallel(); int procs = omp_get_max_threads(); if (procs > 1) { #ifdef HAVE_BLAS blas_gemm(a, b, r); #else omp_set_num_threads(1); r.noalias() += a * b; omp_set_num_threads(procs); #endif c.noalias() += a * b; if (!r.isApprox(c)) std::cerr << "Warning, your parallel product is crap!\n\n"; } #elif defined HAVE_BLAS blas_gemm(a, b, r); c.noalias() += a * b; if (!r.isApprox(c)) { std::cout << (r - c).norm() / r.norm() << "\n"; std::cerr << "Warning, your product is crap!\n\n"; } #else if (1. * m * n * p < 2000. * 2000 * 2000) { gemm(a, b, c); r.noalias() += a.cast().lazyProduct(b.cast()); if (!r.isApprox(c)) { std::cout << (r - c).norm() / r.norm() << "\n"; std::cerr << "Warning, your product is crap!\n\n"; } } #endif #ifdef HAVE_BLAS BenchTimer tblas; c = rc; BENCH(tblas, tries, rep, blas_gemm(a, b, c)); std::cout << "blas cpu " << tblas.best(CPU_TIMER) / rep << "s \t" << (double(m) * n * p * rep * 2 / tblas.best(CPU_TIMER)) * 1e-9 << " GFLOPS \t(" << tblas.total(CPU_TIMER) << "s)\n"; std::cout << "blas real " << tblas.best(REAL_TIMER) / rep << "s \t" << (double(m) * n * p * rep * 2 / tblas.best(REAL_TIMER)) * 1e-9 << " GFLOPS \t(" << tblas.total(REAL_TIMER) << "s)\n"; #endif // warm start if (b.norm() + a.norm() == 123.554) std::cout << "\n"; BenchTimer tmt; c = rc; BENCH(tmt, tries, rep, gemm(a, b, c)); std::cout << "eigen cpu " << tmt.best(CPU_TIMER) / rep << "s \t" << (double(m) * n * p * rep * 2 / tmt.best(CPU_TIMER)) * 1e-9 << " GFLOPS \t(" << tmt.total(CPU_TIMER) << "s)\n"; std::cout << "eigen real " << tmt.best(REAL_TIMER) / rep << "s \t" << (double(m) * n * p * rep * 2 / tmt.best(REAL_TIMER)) * 1e-9 << " GFLOPS \t(" << tmt.total(REAL_TIMER) << "s)\n"; #ifdef EIGEN_HAS_OPENMP if (procs > 1) { BenchTimer tmono; omp_set_num_threads(1); Eigen::setNbThreads(1); c = rc; BENCH(tmono, tries, rep, gemm(a, b, c)); std::cout << "eigen mono cpu " << tmono.best(CPU_TIMER) / rep << "s \t" << (double(m) * n * p * rep * 2 / tmono.best(CPU_TIMER)) * 1e-9 << " GFLOPS \t(" << tmono.total(CPU_TIMER) << "s)\n"; std::cout << "eigen mono real " << tmono.best(REAL_TIMER) / rep << "s \t" << (double(m) * n * p * rep * 2 / tmono.best(REAL_TIMER)) * 1e-9 << " GFLOPS \t(" << tmono.total(REAL_TIMER) << "s)\n"; std::cout << "mt speed up x" << tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER) << " => " << (100.0 * tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER)) / procs << "%\n"; } #endif if (1. * m * n * p < 30 * 30 * 30) { BenchTimer tmt; c = rc; BENCH(tmt, tries, rep, c.noalias() += a.lazyProduct(b)); std::cout << "lazy cpu " << tmt.best(CPU_TIMER) / rep << "s \t" << (double(m) * n * p * rep * 2 / tmt.best(CPU_TIMER)) * 1e-9 << " GFLOPS \t(" << tmt.total(CPU_TIMER) << "s)\n"; std::cout << "lazy real " << tmt.best(REAL_TIMER) / rep << "s \t" << (double(m) * n * p * rep * 2 / tmt.best(REAL_TIMER)) * 1e-9 << " GFLOPS \t(" << tmt.total(REAL_TIMER) << "s)\n"; } #ifdef DECOUPLED if ((NumTraits::IsComplex) && (NumTraits::IsComplex)) { M ar(m, p); ar.setRandom(); M ai(m, p); ai.setRandom(); M br(p, n); br.setRandom(); M bi(p, n); bi.setRandom(); M cr(m, n); cr.setRandom(); M ci(m, n); ci.setRandom(); BenchTimer t; BENCH(t, tries, rep, matlab_cplx_cplx(ar, ai, br, bi, cr, ci)); std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER) / rep << "s \t" << (double(m) * n * p * rep * 2 / t.best(CPU_TIMER)) * 1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n"; std::cout << "\"matlab\" real " << t.best(REAL_TIMER) / rep << "s \t" << (double(m) * n * p * rep * 2 / t.best(REAL_TIMER)) * 1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n"; } if ((!NumTraits::IsComplex) && (NumTraits::IsComplex)) { M a(m, p); a.setRandom(); M br(p, n); br.setRandom(); M bi(p, n); bi.setRandom(); M cr(m, n); cr.setRandom(); M ci(m, n); ci.setRandom(); BenchTimer t; BENCH(t, tries, rep, matlab_real_cplx(a, br, bi, cr, ci)); std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER) / rep << "s \t" << (double(m) * n * p * rep * 2 / t.best(CPU_TIMER)) * 1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n"; std::cout << "\"matlab\" real " << t.best(REAL_TIMER) / rep << "s \t" << (double(m) * n * p * rep * 2 / t.best(REAL_TIMER)) * 1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n"; } if ((NumTraits::IsComplex) && (!NumTraits::IsComplex)) { M ar(m, p); ar.setRandom(); M ai(m, p); ai.setRandom(); M b(p, n); b.setRandom(); M cr(m, n); cr.setRandom(); M ci(m, n); ci.setRandom(); BenchTimer t; BENCH(t, tries, rep, matlab_cplx_real(ar, ai, b, cr, ci)); std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER) / rep << "s \t" << (double(m) * n * p * rep * 2 / t.best(CPU_TIMER)) * 1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n"; std::cout << "\"matlab\" real " << t.best(REAL_TIMER) / rep << "s \t" << (double(m) * n * p * rep * 2 / t.best(REAL_TIMER)) * 1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n"; } #endif return 0; }