#include "BIQUADF32.h" #include #include "Error.h" #define SNR_THRESHOLD 98 /* Reference patterns are generated with a double precision computation. */ #define REL_ERROR (1.2e-3) void BIQUADF32::test_biquad_cascade_df1_ref() { float32_t *statep = state.ptr(); float32_t *debugstatep = debugstate.ptr(); const float32_t *coefsp = coefs.ptr(); const float32_t *inputp = inputs.ptr(); float32_t *outp = output.ptr(); #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) arm_biquad_mod_coef_f32 *coefsmodp = (arm_biquad_mod_coef_f32*)vecCoefs.ptr(); #endif int blockSize; /* Python script is generating different tests with different blockSize and numTaps. We loop on those configs. */ blockSize = inputs.nbSamples() >> 1; /* The filter is initialized with the coefs, blockSize and numTaps. */ #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) arm_biquad_cascade_df1_mve_init_f32(&this->Sdf1,3,coefsp,coefsmodp,statep); #else arm_biquad_cascade_df1_init_f32(&this->Sdf1,3,coefsp,statep); #endif /* Python script is filtering a 2*blockSize number of samples. We do the same filtering in two pass to check (indirectly that the state management of the fir is working.) */ arm_biquad_cascade_df1_f32(&this->Sdf1,inputp,outp,blockSize); memcpy(debugstatep,statep,3*4*sizeof(float32_t)); debugstatep += 3*4; outp += blockSize; inputp += blockSize; arm_biquad_cascade_df1_f32(&this->Sdf1,inputp,outp,blockSize); outp += blockSize; memcpy(debugstatep,statep,3*4*sizeof(float32_t)); debugstatep += 3*4; ASSERT_EMPTY_TAIL(output); ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD); ASSERT_REL_ERROR(output,ref,REL_ERROR); } void BIQUADF32::test_biquad_cascade_df2T_ref() { float32_t *statep = state.ptr(); const float32_t *coefsp = coefs.ptr(); const float32_t *inputp = inputs.ptr(); float32_t *outp = output.ptr(); int blockSize; /* Python script is generating different tests with different blockSize and numTaps. We loop on those configs. */ blockSize = inputs.nbSamples() >> 1; /* The filter is initialized with the coefs, blockSize and numTaps. */ #if !defined(ARM_MATH_NEON) arm_biquad_cascade_df2T_init_f32(&this->Sdf2T,3,coefsp,statep); #else float32_t *vecCoefsPtr = vecCoefs.ptr(); // Those Neon coefs must be computed from original coefs arm_biquad_cascade_df2T_compute_coefs_f32(3,coefsp,vecCoefsPtr); arm_biquad_cascade_df2T_init_f32(&this->Sdf2T, 3, vecCoefsPtr, statep); #endif /* Python script is filtering a 2*blockSize number of samples. We do the same filtering in two pass to check (indirectly that the state management of the fir is working.) */ arm_biquad_cascade_df2T_f32(&this->Sdf2T,inputp,outp,blockSize); outp += blockSize; inputp += blockSize; arm_biquad_cascade_df2T_f32(&this->Sdf2T,inputp,outp,blockSize); outp += blockSize; ASSERT_EMPTY_TAIL(output); ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD); ASSERT_REL_ERROR(output,ref,REL_ERROR); } void BIQUADF32::test_biquad_cascade_df1_rand() { float32_t *statep = state.ptr(); const float32_t *coefsp = coefs.ptr(); const int16_t *configsp = configs.ptr(); const float32_t *inputp = inputs.ptr(); float32_t *outp = output.ptr(); #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) arm_biquad_mod_coef_f32 *coefsmodp = (arm_biquad_mod_coef_f32*)vecCoefs.ptr(); #endif int blockSize; int numStages; unsigned long i; for(i=0;i < configs.nbSamples(); i+=2) { /* Python script is generating different tests with different blockSize and numTaps. We loop on those configs. */ numStages = configsp[0]; blockSize = configsp[1]; configsp += 2; /* The filter is initialized with the coefs, blockSize and numTaps. */ #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) arm_biquad_cascade_df1_mve_init_f32(&this->Sdf1,numStages,coefsp,coefsmodp,statep); #else arm_biquad_cascade_df1_init_f32(&this->Sdf1,numStages,coefsp,statep); #endif /* Python script is filtering a 2*blockSize number of samples. We do the same filtering in two pass to check (indirectly that the state management of the fir is working.) */ arm_biquad_cascade_df1_f32(&this->Sdf1,inputp,outp,blockSize); inputp += blockSize; outp += blockSize; coefsp += numStages * 5; } ASSERT_EMPTY_TAIL(output); ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD); ASSERT_REL_ERROR(output,ref,REL_ERROR); } void BIQUADF32::test_biquad_cascade_df2T_rand() { float32_t *statep = state.ptr(); const int16_t *configsp = configs.ptr(); #if !defined(ARM_MATH_NEON) const float32_t *coefsp = coefs.ptr(); #else float32_t *coefsp = coefs.ptr(); #endif const float32_t *inputp = inputs.ptr(); float32_t *outp = output.ptr(); int blockSize; int numStages; unsigned long i; for(i=0;i < configs.nbSamples(); i+=2) { /* Python script is generating different tests with different blockSize and numTaps. We loop on those configs. */ numStages = configsp[0]; blockSize = configsp[1]; configsp += 2; /* The filter is initialized with the coefs, blockSize and numTaps. */ #if !defined(ARM_MATH_NEON) arm_biquad_cascade_df2T_init_f32(&this->Sdf2T,numStages,coefsp,statep); #else float32_t *vecCoefsPtr = vecCoefs.ptr(); // Those Neon coefs must be computed from original coefs arm_biquad_cascade_df2T_compute_coefs_f32(numStages,coefsp,vecCoefsPtr); arm_biquad_cascade_df2T_init_f32(&this->Sdf2T, numStages, vecCoefsPtr, statep); #endif coefsp += numStages * 5; /* Python script is filtering a 2*blockSize number of samples. We do the same filtering in two pass to check (indirectly that the state management of the fir is working.) */ arm_biquad_cascade_df2T_f32(&this->Sdf2T,inputp,outp,blockSize); outp += blockSize; inputp += blockSize; } ASSERT_EMPTY_TAIL(output); ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD); ASSERT_REL_ERROR(output,ref,REL_ERROR); } void BIQUADF32::test_biquad_cascade_stereo_df2T_rand() { float32_t *statep = state.ptr(); const int16_t *configsp = configs.ptr(); const float32_t *coefsp = coefs.ptr(); const float32_t *inputp = inputs.ptr(); float32_t *outp = output.ptr(); int blockSize; int numStages; unsigned long i; for(i=0;i < configs.nbSamples(); i+=2) { /* Python script is generating different tests with different blockSize and numTaps. We loop on those configs. */ numStages = configsp[0]; blockSize = configsp[1]; configsp += 2; /* The filter is initialized with the coefs, blockSize and numTaps. */ arm_biquad_cascade_stereo_df2T_init_f32(&this->SStereodf2T,numStages,coefsp,statep); coefsp += numStages * 5; /* Python script is filtering a 2*blockSize number of samples. We do the same filtering in two pass to check (indirectly that the state management of the fir is working.) */ arm_biquad_cascade_stereo_df2T_f32(&this->SStereodf2T,inputp,outp,blockSize); outp += 2*blockSize; inputp += 2*blockSize; } ASSERT_EMPTY_TAIL(output); ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD); ASSERT_REL_ERROR(output,ref,REL_ERROR); } void BIQUADF32::setUp(Testing::testID_t id,std::vector& params,Client::PatternMgr *mgr) { (void)params; switch(id) { case BIQUADF32::TEST_BIQUAD_CASCADE_DF1_REF_1: debugstate.create(2*64,BIQUADF32::STATE_F32_ID,mgr); inputs.reload(BIQUADF32::BIQUADINPUTS_F32_ID,mgr); coefs.reload(BIQUADF32::BIQUADCOEFS_F32_ID,mgr); ref.reload(BIQUADF32::BIQUADREFS_F32_ID,mgr); #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) /* Max num stages is 47 in Python script */ vecCoefs.create(32*47,BIQUADF32::OUT_F32_ID,mgr); #endif break; case BIQUADF32::TEST_BIQUAD_CASCADE_DF2T_REF_2: vecCoefs.create(64,BIQUADF32::OUT_F32_ID,mgr); inputs.reload(BIQUADF32::BIQUADINPUTS_F32_ID,mgr); coefs.reload(BIQUADF32::BIQUADCOEFS_F32_ID,mgr); ref.reload(BIQUADF32::BIQUADREFS_F32_ID,mgr); break; case BIQUADF32::TEST_BIQUAD_CASCADE_DF1_RAND_3: inputs.reload(BIQUADF32::ALLBIQUADINPUTS_F32_ID,mgr); coefs.reload(BIQUADF32::ALLBIQUADCOEFS_F32_ID,mgr); ref.reload(BIQUADF32::ALLBIQUADREFS_F32_ID,mgr); configs.reload(BIQUADF32::ALLBIQUADCONFIGS_S16_ID,mgr); #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) /* Max num stages is 47 in Python script */ vecCoefs.create(32*47,BIQUADF32::OUT_F32_ID,mgr); #endif break; case BIQUADF32::TEST_BIQUAD_CASCADE_DF2T_RAND_4: vecCoefs.create(512,BIQUADF32::OUT_F32_ID,mgr); inputs.reload(BIQUADF32::ALLBIQUADINPUTS_F32_ID,mgr); coefs.reload(BIQUADF32::ALLBIQUADCOEFS_F32_ID,mgr); ref.reload(BIQUADF32::ALLBIQUADREFS_F32_ID,mgr); configs.reload(BIQUADF32::ALLBIQUADCONFIGS_S16_ID,mgr); break; case BIQUADF32::TEST_BIQUAD_CASCADE_STEREO_DF2T_RAND_5: inputs.reload(BIQUADF32::ALLBIQUADSTEREOINPUTS_F32_ID,mgr); coefs.reload(BIQUADF32::ALLBIQUADCOEFS_F32_ID,mgr); ref.reload(BIQUADF32::ALLBIQUADSTEREOREFS_F32_ID,mgr); configs.reload(BIQUADF32::ALLBIQUADCONFIGS_S16_ID,mgr); break; } output.create(ref.nbSamples(),BIQUADF32::OUT_F32_ID,mgr); state.create(128,BIQUADF32::STATE_F32_ID,mgr); } void BIQUADF32::tearDown(Testing::testID_t id,Client::PatternMgr *mgr) { (void)id; output.dump(mgr); switch(id) { case BIQUADF32::TEST_BIQUAD_CASCADE_DF1_REF_1: debugstate.dump(mgr); break; } }