RMUL2025/User/component/ahrs.c

406 lines
13 KiB
C
Raw Permalink Normal View History

2025-03-11 21:32:41 +08:00
/*
AHRS算法
MadgwickAHRS
*/
#include "ahrs.h"
#include <string.h>
#include "user_math.h"
#define BETA_IMU (0.033f)
#define BETA_AHRS (0.041f)
/* 2 * proportional gain (Kp) */
static float beta = BETA_IMU;
/**
* @brief 使姿
*
* @param ahrs 姿
* @param accl
* @param gyro
* @return int8_t 0
*/
static int8_t AHRS_UpdateIMU(AHRS_t *ahrs, const AHRS_Accl_t *accl,
const AHRS_Gyro_t *gyro) {
if (ahrs == NULL) return -1;
if (accl == NULL) return -1;
if (gyro == NULL) return -1;
beta = BETA_IMU;
float ax = accl->x;
float ay = accl->y;
float az = accl->z;
float gx = gyro->x;
float gy = gyro->y;
float gz = gyro->z;
float recip_norm;
float s0, s1, s2, s3;
float q_dot1, q_dot2, q_dot3, q_dot4;
float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2, _8q1, _8q2, q0q0, q1q1, q2q2,
q3q3;
/* Rate of change of quaternion from gyroscope */
q_dot1 = 0.5f * (-ahrs->quat.q1 * gx - ahrs->quat.q2 * gy -
ahrs->quat.q3 * gz);
q_dot2 = 0.5f * (ahrs->quat.q0 * gx + ahrs->quat.q2 * gz -
ahrs->quat.q3 * gy);
q_dot3 = 0.5f * (ahrs->quat.q0 * gy - ahrs->quat.q1 * gz +
ahrs->quat.q3 * gx);
q_dot4 = 0.5f * (ahrs->quat.q0 * gz + ahrs->quat.q1 * gy -
ahrs->quat.q2 * gx);
/* Compute feedback only if accelerometer measurement valid (avoids NaN in
* accelerometer normalisation) */
if (!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
/* Normalise accelerometer measurement */
recip_norm = InvSqrt(ax * ax + ay * ay + az * az);
ax *= recip_norm;
ay *= recip_norm;
az *= recip_norm;
/* Auxiliary variables to avoid repeated arithmetic */
_2q0 = 2.0f * ahrs->quat.q0;
_2q1 = 2.0f * ahrs->quat.q1;
_2q2 = 2.0f * ahrs->quat.q2;
_2q3 = 2.0f * ahrs->quat.q3;
_4q0 = 4.0f * ahrs->quat.q0;
_4q1 = 4.0f * ahrs->quat.q1;
_4q2 = 4.0f * ahrs->quat.q2;
_8q1 = 8.0f * ahrs->quat.q1;
_8q2 = 8.0f * ahrs->quat.q2;
q0q0 = ahrs->quat.q0 * ahrs->quat.q0;
q1q1 = ahrs->quat.q1 * ahrs->quat.q1;
q2q2 = ahrs->quat.q2 * ahrs->quat.q2;
q3q3 = ahrs->quat.q3 * ahrs->quat.q3;
/* Gradient decent algorithm corrective step */
s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay;
s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * ahrs->quat.q1 -
_2q0 * ay - _4q1 + _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az;
s2 = 4.0f * q0q0 * ahrs->quat.q2 + _2q0 * ax + _4q2 * q3q3 -
_2q3 * ay - _4q2 + _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az;
s3 = 4.0f * q1q1 * ahrs->quat.q3 - _2q1 * ax +
4.0f * q2q2 * ahrs->quat.q3 - _2q2 * ay;
/* normalise step magnitude */
recip_norm = InvSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3);
s0 *= recip_norm;
s1 *= recip_norm;
s2 *= recip_norm;
s3 *= recip_norm;
/* Apply feedback step */
q_dot1 -= beta * s0;
q_dot2 -= beta * s1;
q_dot3 -= beta * s2;
q_dot4 -= beta * s3;
}
/* Integrate rate of change of quaternion to yield quaternion */
ahrs->quat.q0 += q_dot1 * ahrs->inv_sample_freq;
ahrs->quat.q1 += q_dot2 * ahrs->inv_sample_freq;
ahrs->quat.q2 += q_dot3 * ahrs->inv_sample_freq;
ahrs->quat.q3 += q_dot4 * ahrs->inv_sample_freq;
/* Normalise quaternion */
recip_norm = InvSqrt(ahrs->quat.q0 * ahrs->quat.q0 +
ahrs->quat.q1 * ahrs->quat.q1 +
ahrs->quat.q2 * ahrs->quat.q2 +
ahrs->quat.q3 * ahrs->quat.q3);
ahrs->quat.q0 *= recip_norm;
ahrs->quat.q1 *= recip_norm;
ahrs->quat.q2 *= recip_norm;
ahrs->quat.q3 *= recip_norm;
return 0;
}
/**
* @brief 姿
*
* @param ahrs 姿
* @param magn
* @param sample_freq
* @return int8_t 0
*/
int8_t AHRS_Init(AHRS_t *ahrs, const AHRS_Magn_t *magn, float sample_freq) {
if (ahrs == NULL) return -1;
ahrs->inv_sample_freq = 1.0f / sample_freq;
ahrs->quat.q0 = 1.0f;
ahrs->quat.q1 = 0.0f;
ahrs->quat.q2 = 0.0f;
ahrs->quat.q3 = 0.0f;
if (magn) {
float yaw = -atan2(magn->y, magn->x);
if ((magn->x == 0.0f) && (magn->y == 0.0f) && (magn->z == 0.0f)) {
ahrs->quat.q0 = 0.800884545f;
ahrs->quat.q1 = 0.00862364192f;
ahrs->quat.q2 = -0.00283267116f;
ahrs->quat.q3 = 0.598749936f;
} else if ((yaw < (M_PI / 2.0f)) || (yaw > 0.0f)) {
ahrs->quat.q0 = 0.997458339f;
ahrs->quat.q1 = 0.000336312107f;
ahrs->quat.q2 = -0.0057230792f;
ahrs->quat.q3 = 0.0740156546;
} else if ((yaw < M_PI) || (yaw > (M_PI / 2.0f))) {
ahrs->quat.q0 = 0.800884545f;
ahrs->quat.q1 = 0.00862364192f;
ahrs->quat.q2 = -0.00283267116f;
ahrs->quat.q3 = 0.598749936f;
} else if ((yaw < 90.0f) || (yaw > M_PI)) {
ahrs->quat.q0 = 0.800884545f;
ahrs->quat.q1 = 0.00862364192f;
ahrs->quat.q2 = -0.00283267116f;
ahrs->quat.q3 = 0.598749936f;
} else if ((yaw < 90.0f) || (yaw > 0.0f)) {
ahrs->quat.q0 = 0.800884545f;
ahrs->quat.q1 = 0.00862364192f;
ahrs->quat.q2 = -0.00283267116f;
ahrs->quat.q3 = 0.598749936f;
}
}
return 0;
}
/**
* @brief 姿
* @note NED(North East Down)
*
* @param ahrs 姿
* @param accl
* @param gyro
* @param magn
* @return int8_t 0
*/
int8_t AHRS_Update(AHRS_t *ahrs, const AHRS_Accl_t *accl,
const AHRS_Gyro_t *gyro, const AHRS_Magn_t *magn) {
if (ahrs == NULL) return -1;
if (accl == NULL) return -1;
if (gyro == NULL) return -1;
beta = BETA_AHRS;
float recip_norm;
float s0, s1, s2, s3;
float q_dot1, q_dot2, q_dot3, q_dot4;
float hx, hy;
float _2q0mx, _2q0my, _2q0mz, _2q1mx, _2bx, _2bz, _4bx, _4bz, _2q0, _2q1,
_2q2, _2q3, _2q0q2, _2q2q3, q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3,
q2q2, q2q3, q3q3;
if (magn == NULL) return AHRS_UpdateIMU(ahrs, accl, gyro);
float mx = magn->x;
float my = magn->y;
float mz = magn->z;
/* Use IMU algorithm if magnetometer measurement invalid (avoids NaN in */
/* magnetometer normalisation) */
if ((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {
return AHRS_UpdateIMU(ahrs, accl, gyro);
}
float ax = accl->x;
float ay = accl->y;
float az = accl->z;
float gx = gyro->x;
float gy = gyro->y;
float gz = gyro->z;
/* Rate of change of quaternion from gyroscope */
q_dot1 = 0.5f * (-ahrs->quat.q1 * gx - ahrs->quat.q2 * gy -
ahrs->quat.q3 * gz);
q_dot2 = 0.5f * (ahrs->quat.q0 * gx + ahrs->quat.q2 * gz -
ahrs->quat.q3 * gy);
q_dot3 = 0.5f * (ahrs->quat.q0 * gy - ahrs->quat.q1 * gz +
ahrs->quat.q3 * gx);
q_dot4 = 0.5f * (ahrs->quat.q0 * gz + ahrs->quat.q1 * gy -
ahrs->quat.q2 * gx);
/* Compute feedback only if accelerometer measurement valid (avoids NaN in
* accelerometer normalisation) */
if (!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
/* Normalise accelerometer measurement */
recip_norm = InvSqrt(ax * ax + ay * ay + az * az);
ax *= recip_norm;
ay *= recip_norm;
az *= recip_norm;
/* Normalise magnetometer measurement */
recip_norm = InvSqrt(mx * mx + my * my + mz * mz);
mx *= recip_norm;
my *= recip_norm;
mz *= recip_norm;
/* Auxiliary variables to avoid repeated arithmetic */
_2q0mx = 2.0f * ahrs->quat.q0 * mx;
_2q0my = 2.0f * ahrs->quat.q0 * my;
_2q0mz = 2.0f * ahrs->quat.q0 * mz;
_2q1mx = 2.0f * ahrs->quat.q1 * mx;
_2q0 = 2.0f * ahrs->quat.q0;
_2q1 = 2.0f * ahrs->quat.q1;
_2q2 = 2.0f * ahrs->quat.q2;
_2q3 = 2.0f * ahrs->quat.q3;
_2q0q2 = 2.0f * ahrs->quat.q0 * ahrs->quat.q2;
_2q2q3 = 2.0f * ahrs->quat.q2 * ahrs->quat.q3;
q0q0 = ahrs->quat.q0 * ahrs->quat.q0;
q0q1 = ahrs->quat.q0 * ahrs->quat.q1;
q0q2 = ahrs->quat.q0 * ahrs->quat.q2;
q0q3 = ahrs->quat.q0 * ahrs->quat.q3;
q1q1 = ahrs->quat.q1 * ahrs->quat.q1;
q1q2 = ahrs->quat.q1 * ahrs->quat.q2;
q1q3 = ahrs->quat.q1 * ahrs->quat.q3;
q2q2 = ahrs->quat.q2 * ahrs->quat.q2;
q2q3 = ahrs->quat.q2 * ahrs->quat.q3;
q3q3 = ahrs->quat.q3 * ahrs->quat.q3;
/* Reference direction of Earth's magnetic field */
hx = mx * q0q0 - _2q0my * ahrs->quat.q3 +
_2q0mz * ahrs->quat.q2 + mx * q1q1 +
_2q1 * my * ahrs->quat.q2 + _2q1 * mz * ahrs->quat.q3 -
mx * q2q2 - mx * q3q3;
hy = _2q0mx * ahrs->quat.q3 + my * q0q0 -
_2q0mz * ahrs->quat.q1 + _2q1mx * ahrs->quat.q2 -
my * q1q1 + my * q2q2 + _2q2 * mz * ahrs->quat.q3 - my * q3q3;
// _2bx = sqrtf(hx * hx + hy * hy);
// 改为invsqrt
_2bx = 1.f / InvSqrt(hx * hx + hy * hy);
_2bz = -_2q0mx * ahrs->quat.q2 + _2q0my * ahrs->quat.q1 +
mz * q0q0 + _2q1mx * ahrs->quat.q3 - mz * q1q1 +
_2q2 * my * ahrs->quat.q3 - mz * q2q2 + mz * q3q3;
_4bx = 2.0f * _2bx;
_4bz = 2.0f * _2bz;
/* Gradient decent algorithm corrective step */
s0 = -_2q2 * (2.0f * q1q3 - _2q0q2 - ax) +
_2q1 * (2.0f * q0q1 + _2q2q3 - ay) -
_2bz * ahrs->quat.q2 *
(_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) +
(-_2bx * ahrs->quat.q3 + _2bz * ahrs->quat.q1) *
(_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) +
_2bx * ahrs->quat.q2 *
(_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
s1 = _2q3 * (2.0f * q1q3 - _2q0q2 - ax) +
_2q0 * (2.0f * q0q1 + _2q2q3 - ay) -
4.0f * ahrs->quat.q1 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) +
_2bz * ahrs->quat.q3 *
(_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) +
(_2bx * ahrs->quat.q2 + _2bz * ahrs->quat.q0) *
(_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) +
(_2bx * ahrs->quat.q3 - _4bz * ahrs->quat.q1) *
(_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
s2 = -_2q0 * (2.0f * q1q3 - _2q0q2 - ax) +
_2q3 * (2.0f * q0q1 + _2q2q3 - ay) -
4.0f * ahrs->quat.q2 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) +
(-_4bx * ahrs->quat.q2 - _2bz * ahrs->quat.q0) *
(_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) +
(_2bx * ahrs->quat.q1 + _2bz * ahrs->quat.q3) *
(_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) +
(_2bx * ahrs->quat.q0 - _4bz * ahrs->quat.q2) *
(_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
s3 = _2q1 * (2.0f * q1q3 - _2q0q2 - ax) +
_2q2 * (2.0f * q0q1 + _2q2q3 - ay) +
(-_4bx * ahrs->quat.q3 + _2bz * ahrs->quat.q1) *
(_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) +
(-_2bx * ahrs->quat.q0 + _2bz * ahrs->quat.q2) *
(_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) +
_2bx * ahrs->quat.q1 *
(_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
/* normalise step magnitude */
recip_norm = InvSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3);
s0 *= recip_norm;
s1 *= recip_norm;
s2 *= recip_norm;
s3 *= recip_norm;
/* Apply feedback step */
q_dot1 -= beta * s0;
q_dot2 -= beta * s1;
q_dot3 -= beta * s2;
q_dot4 -= beta * s3;
}
/* Integrate rate of change of quaternion to yield quaternion */
ahrs->quat.q0 += q_dot1 * ahrs->inv_sample_freq;
ahrs->quat.q1 += q_dot2 * ahrs->inv_sample_freq;
ahrs->quat.q2 += q_dot3 * ahrs->inv_sample_freq;
ahrs->quat.q3 += q_dot4 * ahrs->inv_sample_freq;
/* Normalise quaternion */
recip_norm = InvSqrt(ahrs->quat.q0 * ahrs->quat.q0 +
ahrs->quat.q1 * ahrs->quat.q1 +
ahrs->quat.q2 * ahrs->quat.q2 +
ahrs->quat.q3 * ahrs->quat.q3);
ahrs->quat.q0 *= recip_norm;
ahrs->quat.q1 *= recip_norm;
ahrs->quat.q2 *= recip_norm;
ahrs->quat.q3 *= recip_norm;
return 0;
}
/**
* @brief 姿
*
* @param eulr
* @param ahrs 姿
* @return int8_t 0
*/
int8_t AHRS_GetEulr(AHRS_Eulr_t *eulr, const AHRS_t *ahrs) {
if (eulr == NULL) return -1;
if (ahrs == NULL) return -1;
const float sinr_cosp = 2.0f * (ahrs->quat.q0 * ahrs->quat.q1 +
ahrs->quat.q2 * ahrs->quat.q3);
const float cosr_cosp =
1.0f - 2.0f * (ahrs->quat.q1 * ahrs->quat.q1 +
ahrs->quat.q2 * ahrs->quat.q2);
eulr->pit = atan2f(sinr_cosp, cosr_cosp);
const float sinp = 2.0f * (ahrs->quat.q0 * ahrs->quat.q2 -
ahrs->quat.q3 * ahrs->quat.q1);
if (fabsf(sinp) >= 1.0f)
eulr->rol = copysignf(M_PI / 2.0f, sinp);
else
eulr->rol = asinf(sinp);
const float siny_cosp = 2.0f * (ahrs->quat.q0 * ahrs->quat.q3 +
ahrs->quat.q1 * ahrs->quat.q2);
const float cosy_cosp =
1.0f - 2.0f * (ahrs->quat.q2 * ahrs->quat.q2 +
ahrs->quat.q3 * ahrs->quat.q3);
eulr->yaw = atan2f(siny_cosp, cosy_cosp);
#if 0
eulr->yaw *= M_RAD2DEG_MULT;
eulr->rol *= M_RAD2DEG_MULT;
eulr->pit *= M_RAD2DEG_MULT;
#endif
return 0;
}
/**
* \brief
*
* \param eulr
*/
void AHRS_ResetEulr(AHRS_Eulr_t *eulr) { memset(eulr, 0, sizeof(*eulr)); }