r1-7-12
This commit is contained in:
		
							parent
							
								
									2f3e6caa8d
								
							
						
					
					
						commit
						500f6bd1d8
					
				
							
								
								
									
										63
									
								
								src/rc_lidar/caijian.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										63
									
								
								src/rc_lidar/caijian.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,63 @@
 | 
				
			|||||||
 | 
					#!/usr/bin/env python3
 | 
				
			||||||
 | 
					import rclpy
 | 
				
			||||||
 | 
					from rclpy.node import Node
 | 
				
			||||||
 | 
					from sensor_msgs.msg import PointCloud2, PointField
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					import struct
 | 
				
			||||||
 | 
					from sklearn.cluster import DBSCAN
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class LidarFilterNode(Node):
 | 
				
			||||||
 | 
					    def __init__(self):
 | 
				
			||||||
 | 
					        super().__init__('caijian_node')
 | 
				
			||||||
 | 
					        self.publisher_ = self.create_publisher(PointCloud2, '/livox/lidar_filtered', 10)
 | 
				
			||||||
 | 
					        self.subscription = self.create_subscription(
 | 
				
			||||||
 | 
					            PointCloud2,
 | 
				
			||||||
 | 
					            '/livox/lidar/pointcloud',
 | 
				
			||||||
 | 
					            self.filter_callback,
 | 
				
			||||||
 | 
					            10)
 | 
				
			||||||
 | 
					        self.get_logger().info('caijian_node started, numpy filtering z in [1.5,3]m, distance<=12m, remove isolated points')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def filter_callback(self, msg):
 | 
				
			||||||
 | 
					        num_points = msg.width * msg.height
 | 
				
			||||||
 | 
					        data = np.frombuffer(msg.data, dtype=np.uint8)
 | 
				
			||||||
 | 
					        points = np.zeros((num_points, 4), dtype=np.float32)  # x, y, z, intensity
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        for i in range(num_points):
 | 
				
			||||||
 | 
					            offset = i * msg.point_step
 | 
				
			||||||
 | 
					            x = struct.unpack_from('f', data, offset)[0]
 | 
				
			||||||
 | 
					            y = struct.unpack_from('f', data, offset + 4)[0]
 | 
				
			||||||
 | 
					            z = struct.unpack_from('f', data, offset + 8)[0]
 | 
				
			||||||
 | 
					            intensity = struct.unpack_from('f', data, offset + 12)[0]
 | 
				
			||||||
 | 
					            points[i] = [x, y, z, intensity]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        z_mask = (points[:,2] >= 1.5) & (points[:,2] <= 3.0)
 | 
				
			||||||
 | 
					        dist_mask = np.linalg.norm(points[:,:3], axis=1) <= 16.0
 | 
				
			||||||
 | 
					        mask = z_mask & dist_mask
 | 
				
			||||||
 | 
					        filtered_points = points[mask]
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 使用DBSCAN去除孤立点
 | 
				
			||||||
 | 
					        if filtered_points.shape[0] > 0:
 | 
				
			||||||
 | 
					            clustering = DBSCAN(eps=0.3, min_samples=5).fit(filtered_points[:,:3])
 | 
				
			||||||
 | 
					            core_mask = clustering.labels_ != -1
 | 
				
			||||||
 | 
					            filtered_points = filtered_points[core_mask]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        fields = [
 | 
				
			||||||
 | 
					            PointField(name='x', offset=0, datatype=PointField.FLOAT32, count=1),
 | 
				
			||||||
 | 
					            PointField(name='y', offset=4, datatype=PointField.FLOAT32, count=1),
 | 
				
			||||||
 | 
					            PointField(name='z', offset=8, datatype=PointField.FLOAT32, count=1),
 | 
				
			||||||
 | 
					            PointField(name='intensity', offset=12, datatype=PointField.FLOAT32, count=1),
 | 
				
			||||||
 | 
					        ]
 | 
				
			||||||
 | 
					        filtered_points_list = filtered_points.tolist()
 | 
				
			||||||
 | 
					        import sensor_msgs_py.point_cloud2 as pc2
 | 
				
			||||||
 | 
					        filtered_msg = pc2.create_cloud(msg.header, fields, filtered_points_list)
 | 
				
			||||||
 | 
					        self.publisher_.publish(filtered_msg)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def main(args=None):
 | 
				
			||||||
 | 
					    rclpy.init(args=args)
 | 
				
			||||||
 | 
					    node = LidarFilterNode()
 | 
				
			||||||
 | 
					    rclpy.spin(node)
 | 
				
			||||||
 | 
					    node.destroy_node()
 | 
				
			||||||
 | 
					    rclpy.shutdown()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    main()
 | 
				
			||||||
							
								
								
									
										90
									
								
								src/rc_lidar/circlr.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										90
									
								
								src/rc_lidar/circlr.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,90 @@
 | 
				
			|||||||
 | 
					import rclpy
 | 
				
			||||||
 | 
					from rclpy.node import Node
 | 
				
			||||||
 | 
					from sensor_msgs.msg import PointCloud2
 | 
				
			||||||
 | 
					from geometry_msgs.msg import PointStamped
 | 
				
			||||||
 | 
					from sensor_msgs_py import point_cloud2 as pc2
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					from sklearn.cluster import DBSCAN
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def statistical_outlier_removal(points, k=20, std_ratio=2.0):
 | 
				
			||||||
 | 
					    from sklearn.neighbors import NearestNeighbors
 | 
				
			||||||
 | 
					    nbrs = NearestNeighbors(n_neighbors=k+1).fit(points)
 | 
				
			||||||
 | 
					    distances, _ = nbrs.kneighbors(points)
 | 
				
			||||||
 | 
					    mean_dist = np.mean(distances[:, 1:], axis=1)
 | 
				
			||||||
 | 
					    threshold = np.mean(mean_dist) + std_ratio * np.std(mean_dist)
 | 
				
			||||||
 | 
					    mask = mean_dist < threshold
 | 
				
			||||||
 | 
					    return points[mask]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class HoopFinder(Node):
 | 
				
			||||||
 | 
					    def __init__(self):
 | 
				
			||||||
 | 
					        super().__init__('find_hoop')
 | 
				
			||||||
 | 
					        self.sub = self.create_subscription(
 | 
				
			||||||
 | 
					            PointCloud2,
 | 
				
			||||||
 | 
					            '/livox/lidar_filtered',
 | 
				
			||||||
 | 
					            self.callback,
 | 
				
			||||||
 | 
					            10)
 | 
				
			||||||
 | 
					        self.pub = self.create_publisher(PointStamped, '/hoop_position', 10)
 | 
				
			||||||
 | 
					        self.buffer = []
 | 
				
			||||||
 | 
					        self.start_time = None
 | 
				
			||||||
 | 
					        self.hoop_history = []
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def callback(self, msg):
 | 
				
			||||||
 | 
					        # 采集0.4秒内的点云
 | 
				
			||||||
 | 
					        if self.start_time is None:
 | 
				
			||||||
 | 
					            self.start_time = time.time()
 | 
				
			||||||
 | 
					        for p in pc2.read_points(msg, field_names=("x", "y", "z", "intensity"), skip_nans=True):
 | 
				
			||||||
 | 
					            self.buffer.append([p[0], p[1], p[2], p[3]])
 | 
				
			||||||
 | 
					        if time.time() - self.start_time < 0.4:
 | 
				
			||||||
 | 
					            return
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        points = np.array(self.buffer)
 | 
				
			||||||
 | 
					        self.buffer = []
 | 
				
			||||||
 | 
					        self.start_time = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # 高度滤波
 | 
				
			||||||
 | 
					        filtered = points[(points[:,2] > 1.0) & (points[:,2] < 3.0)]
 | 
				
			||||||
 | 
					        if len(filtered) == 0:
 | 
				
			||||||
 | 
					            return
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # 统计离群点滤波
 | 
				
			||||||
 | 
					        filtered = statistical_outlier_removal(filtered[:,:3], k=20, std_ratio=2.0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # DBSCAN聚类
 | 
				
			||||||
 | 
					        clustering = DBSCAN(eps=0.3, min_samples=10).fit(filtered)
 | 
				
			||||||
 | 
					        labels = clustering.labels_
 | 
				
			||||||
 | 
					        unique_labels = set(labels)
 | 
				
			||||||
 | 
					        hoop_pos = None
 | 
				
			||||||
 | 
					        max_cluster_size = 0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        for label in unique_labels:
 | 
				
			||||||
 | 
					            if label == -1:
 | 
				
			||||||
 | 
					                continue
 | 
				
			||||||
 | 
					            cluster = filtered[labels == label]
 | 
				
			||||||
 | 
					            if len(cluster) > max_cluster_size:
 | 
				
			||||||
 | 
					                max_cluster_size = len(cluster)
 | 
				
			||||||
 | 
					                hoop_pos = np.mean(cluster, axis=0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # 均值滤波输出
 | 
				
			||||||
 | 
					        if hoop_pos is not None:
 | 
				
			||||||
 | 
					            self.hoop_history.append(hoop_pos)
 | 
				
			||||||
 | 
					            if len(self.hoop_history) > 5:
 | 
				
			||||||
 | 
					                self.hoop_history.pop(0)
 | 
				
			||||||
 | 
					            smooth_pos = np.mean(self.hoop_history, axis=0)
 | 
				
			||||||
 | 
					            pt = PointStamped()
 | 
				
			||||||
 | 
					            pt.header = msg.header
 | 
				
			||||||
 | 
					            pt.point.x = float(smooth_pos[0])
 | 
				
			||||||
 | 
					            pt.point.y = float(smooth_pos[1])
 | 
				
			||||||
 | 
					            pt.point.z = float(smooth_pos[2])
 | 
				
			||||||
 | 
					            self.pub.publish(pt)
 | 
				
			||||||
 | 
					            self.get_logger().info(f"Hoop position (smoothed): {smooth_pos}")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def main(args=None):
 | 
				
			||||||
 | 
					    rclpy.init(args=args)
 | 
				
			||||||
 | 
					    node = HoopFinder()
 | 
				
			||||||
 | 
					    rclpy.spin(node)
 | 
				
			||||||
 | 
					    node.destroy_node()
 | 
				
			||||||
 | 
					    rclpy.shutdown()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    main()
 | 
				
			||||||
							
								
								
									
										59
									
								
								src/rc_lidar/find.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										59
									
								
								src/rc_lidar/find.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,59 @@
 | 
				
			|||||||
 | 
					import rclpy
 | 
				
			||||||
 | 
					from rclpy.node import Node
 | 
				
			||||||
 | 
					from sensor_msgs.msg import PointCloud2
 | 
				
			||||||
 | 
					from geometry_msgs.msg import PointStamped
 | 
				
			||||||
 | 
					from sensor_msgs_py import point_cloud2 as pc2
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					from sklearn.cluster import DBSCAN
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class HoopFinder(Node):
 | 
				
			||||||
 | 
					    def __init__(self):
 | 
				
			||||||
 | 
					        super().__init__('find_hoop')
 | 
				
			||||||
 | 
					        self.sub = self.create_subscription(
 | 
				
			||||||
 | 
					            PointCloud2,
 | 
				
			||||||
 | 
					            '/livox/lidar',
 | 
				
			||||||
 | 
					            self.callback,
 | 
				
			||||||
 | 
					            10)
 | 
				
			||||||
 | 
					        self.pub = self.create_publisher(PointStamped, '/hoop_position', 10)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def callback(self, msg):
 | 
				
			||||||
 | 
					        points = []
 | 
				
			||||||
 | 
					        for p in pc2.read_points(msg, field_names=("x", "y", "z", "intensity"), skip_nans=True):
 | 
				
			||||||
 | 
					            points.append([p[0], p[1], p[2], p[3]])
 | 
				
			||||||
 | 
					        points = np.array(points)
 | 
				
			||||||
 | 
					        filtered = points[(points[:,2] > 1.0) & (points[:,2] < 3.0)]
 | 
				
			||||||
 | 
					        if len(filtered) == 0:
 | 
				
			||||||
 | 
					            return
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        clustering = DBSCAN(eps=0.3, min_samples=10).fit(filtered[:,:3])
 | 
				
			||||||
 | 
					        labels = clustering.labels_
 | 
				
			||||||
 | 
					        unique_labels = set(labels)
 | 
				
			||||||
 | 
					        hoop_pos = None
 | 
				
			||||||
 | 
					        max_cluster_size = 0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        for label in unique_labels:
 | 
				
			||||||
 | 
					            if label == -1:
 | 
				
			||||||
 | 
					                continue
 | 
				
			||||||
 | 
					            cluster = filtered[labels == label]
 | 
				
			||||||
 | 
					            if len(cluster) > max_cluster_size:
 | 
				
			||||||
 | 
					                max_cluster_size = len(cluster)
 | 
				
			||||||
 | 
					                hoop_pos = np.mean(cluster[:,:3], axis=0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if hoop_pos is not None:
 | 
				
			||||||
 | 
					            pt = PointStamped()
 | 
				
			||||||
 | 
					            pt.header = msg.header
 | 
				
			||||||
 | 
					            pt.point.x = float(hoop_pos[0])
 | 
				
			||||||
 | 
					            pt.point.y = float(hoop_pos[1])
 | 
				
			||||||
 | 
					            pt.point.z = float(hoop_pos[2])
 | 
				
			||||||
 | 
					            self.pub.publish(pt)
 | 
				
			||||||
 | 
					            self.get_logger().info(f"Hoop position: {hoop_pos}")
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					def main(args=None):
 | 
				
			||||||
 | 
					    rclpy.init(args=args)
 | 
				
			||||||
 | 
					    node = HoopFinder()
 | 
				
			||||||
 | 
					    rclpy.spin(node)
 | 
				
			||||||
 | 
					    node.destroy_node()
 | 
				
			||||||
 | 
					    rclpy.shutdown()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    main()
 | 
				
			||||||
							
								
								
									
										63
									
								
								src/rc_lidar/fliter.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										63
									
								
								src/rc_lidar/fliter.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,63 @@
 | 
				
			|||||||
 | 
					#!/usr/bin/env python3
 | 
				
			||||||
 | 
					import rclpy
 | 
				
			||||||
 | 
					from rclpy.node import Node
 | 
				
			||||||
 | 
					from sensor_msgs.msg import PointCloud2, PointField
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					import struct
 | 
				
			||||||
 | 
					from sklearn.cluster import DBSCAN
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class LidarFilterNode(Node):
 | 
				
			||||||
 | 
					    def __init__(self):
 | 
				
			||||||
 | 
					        super().__init__('caijian_node')
 | 
				
			||||||
 | 
					        self.publisher_ = self.create_publisher(PointCloud2, '/livox/lidar_filtered', 10)
 | 
				
			||||||
 | 
					        self.subscription = self.create_subscription(
 | 
				
			||||||
 | 
					            PointCloud2,
 | 
				
			||||||
 | 
					            '/livox/lidar/pointcloud',
 | 
				
			||||||
 | 
					            self.filter_callback,
 | 
				
			||||||
 | 
					            10)
 | 
				
			||||||
 | 
					        self.get_logger().info('caijian_node started, numpy filtering z in [1.5,3]m, distance<=12m, remove isolated points')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def filter_callback(self, msg):
 | 
				
			||||||
 | 
					        num_points = msg.width * msg.height
 | 
				
			||||||
 | 
					        data = np.frombuffer(msg.data, dtype=np.uint8)
 | 
				
			||||||
 | 
					        points = np.zeros((num_points, 4), dtype=np.float32)  # x, y, z, intensity
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        for i in range(num_points):
 | 
				
			||||||
 | 
					            offset = i * msg.point_step
 | 
				
			||||||
 | 
					            x = struct.unpack_from('f', data, offset)[0]
 | 
				
			||||||
 | 
					            y = struct.unpack_from('f', data, offset + 4)[0]
 | 
				
			||||||
 | 
					            z = struct.unpack_from('f', data, offset + 8)[0]
 | 
				
			||||||
 | 
					            intensity = struct.unpack_from('f', data, offset + 12)[0]
 | 
				
			||||||
 | 
					            points[i] = [x, y, z, intensity]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        z_mask = (points[:,2] >= 1.5) & (points[:,2] <= 3.0)
 | 
				
			||||||
 | 
					        dist_mask = np.linalg.norm(points[:,:3], axis=1) <= 12.0
 | 
				
			||||||
 | 
					        mask = z_mask & dist_mask
 | 
				
			||||||
 | 
					        filtered_points = points[mask]
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 使用DBSCAN去除孤立点
 | 
				
			||||||
 | 
					        if filtered_points.shape[0] > 0:
 | 
				
			||||||
 | 
					            clustering = DBSCAN(eps=0.3, min_samples=5).fit(filtered_points[:,:3])
 | 
				
			||||||
 | 
					            core_mask = clustering.labels_ != -1
 | 
				
			||||||
 | 
					            filtered_points = filtered_points[core_mask]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        fields = [
 | 
				
			||||||
 | 
					            PointField(name='x', offset=0, datatype=PointField.FLOAT32, count=1),
 | 
				
			||||||
 | 
					            PointField(name='y', offset=4, datatype=PointField.FLOAT32, count=1),
 | 
				
			||||||
 | 
					            PointField(name='z', offset=8, datatype=PointField.FLOAT32, count=1),
 | 
				
			||||||
 | 
					            PointField(name='intensity', offset=12, datatype=PointField.FLOAT32, count=1),
 | 
				
			||||||
 | 
					        ]
 | 
				
			||||||
 | 
					        filtered_points_list = filtered_points.tolist()
 | 
				
			||||||
 | 
					        import sensor_msgs_py.point_cloud2 as pc2
 | 
				
			||||||
 | 
					        filtered_msg = pc2.create_cloud(msg.header, fields, filtered_points_list)
 | 
				
			||||||
 | 
					        self.publisher_.publish(filtered_msg)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def main(args=None):
 | 
				
			||||||
 | 
					    rclpy.init(args=args)
 | 
				
			||||||
 | 
					    node = LidarFilterNode()
 | 
				
			||||||
 | 
					    rclpy.spin(node)
 | 
				
			||||||
 | 
					    node.destroy_node()
 | 
				
			||||||
 | 
					    rclpy.shutdown()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    main()
 | 
				
			||||||
							
								
								
									
										340
									
								
								src/rc_lidar/juxing.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										340
									
								
								src/rc_lidar/juxing.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,340 @@
 | 
				
			|||||||
 | 
					import rclpy
 | 
				
			||||||
 | 
					from rclpy.node import Node
 | 
				
			||||||
 | 
					from sensor_msgs.msg import PointCloud2, PointField
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					import struct
 | 
				
			||||||
 | 
					from sklearn.cluster import DBSCAN
 | 
				
			||||||
 | 
					import cv2
 | 
				
			||||||
 | 
					from visualization_msgs.msg import Marker
 | 
				
			||||||
 | 
					from sklearn.linear_model import RANSACRegressor
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def ransac_line_3d(points, threshold=0.05, min_inliers=20):
 | 
				
			||||||
 | 
					    best_inliers = []
 | 
				
			||||||
 | 
					    best_line = None
 | 
				
			||||||
 | 
					    N = len(points)
 | 
				
			||||||
 | 
					    if N < min_inliers:
 | 
				
			||||||
 | 
					        return None, []
 | 
				
			||||||
 | 
					    for _ in range(100):
 | 
				
			||||||
 | 
					        idx = np.random.choice(N, 2, replace=False)
 | 
				
			||||||
 | 
					        p1, p2 = points[idx]
 | 
				
			||||||
 | 
					        v = p2 - p1
 | 
				
			||||||
 | 
					        v = v / np.linalg.norm(v)
 | 
				
			||||||
 | 
					        dists = np.linalg.norm(np.cross(points - p1, v), axis=1)
 | 
				
			||||||
 | 
					        inliers = np.where(dists < threshold)[0]
 | 
				
			||||||
 | 
					        if len(inliers) > len(best_inliers):
 | 
				
			||||||
 | 
					            best_inliers = inliers
 | 
				
			||||||
 | 
					            best_line = (p1, p2)
 | 
				
			||||||
 | 
					        if len(best_inliers) > N * 0.5:
 | 
				
			||||||
 | 
					            break
 | 
				
			||||||
 | 
					    return best_line, best_inliers
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def fit_rectangle_pca(cluster):
 | 
				
			||||||
 | 
					    # 用PCA找主方向和边界点
 | 
				
			||||||
 | 
					    pts = cluster[:, :3]
 | 
				
			||||||
 | 
					    mean = np.mean(pts, axis=0)
 | 
				
			||||||
 | 
					    cov = np.cov(pts.T)
 | 
				
			||||||
 | 
					    eigvals, eigvecs = np.linalg.eigh(cov)
 | 
				
			||||||
 | 
					    order = np.argsort(eigvals)[::-1]
 | 
				
			||||||
 | 
					    main_dir = eigvecs[:, order[0]]
 | 
				
			||||||
 | 
					    second_dir = eigvecs[:, order[1]]
 | 
				
			||||||
 | 
					    # 投影到主方向和次方向
 | 
				
			||||||
 | 
					    proj_main = np.dot(pts - mean, main_dir)
 | 
				
			||||||
 | 
					    proj_second = np.dot(pts - mean, second_dir)
 | 
				
			||||||
 | 
					    # 找四个角点
 | 
				
			||||||
 | 
					    corners = []
 | 
				
			||||||
 | 
					    for xm in [np.min(proj_main), np.max(proj_main)]:
 | 
				
			||||||
 | 
					        for xs in [np.min(proj_second), np.max(proj_second)]:
 | 
				
			||||||
 | 
					            idx = np.argmin((proj_main - xm)**2 + (proj_second - xs)**2)
 | 
				
			||||||
 | 
					            corners.append(pts[idx])
 | 
				
			||||||
 | 
					    return corners
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def rectangle_score(pts):
 | 
				
			||||||
 | 
					    # 评估4个点是否接近矩形
 | 
				
			||||||
 | 
					    d = [np.linalg.norm(pts[i] - pts[(i+1)%4]) for i in range(4)]
 | 
				
			||||||
 | 
					    diag1 = np.linalg.norm(pts[0] - pts[2])
 | 
				
			||||||
 | 
					    diag2 = np.linalg.norm(pts[1] - pts[3])
 | 
				
			||||||
 | 
					    w = max(d)
 | 
				
			||||||
 | 
					    h = min(d)
 | 
				
			||||||
 | 
					    ratio = w / h if h > 0 else 0
 | 
				
			||||||
 | 
					    ideal_ratio = 1.8 / 1.05
 | 
				
			||||||
 | 
					    score = abs(ratio - ideal_ratio) + abs(diag1 - diag2) / max(diag1, diag2)
 | 
				
			||||||
 | 
					    return score
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					def classify_lines(lines):
 | 
				
			||||||
 | 
					    # lines: 每条线是 [x, y, z, intensity]
 | 
				
			||||||
 | 
					    # 假设 lines 是8个端点,两两为一条线
 | 
				
			||||||
 | 
					    vertical_lines = []
 | 
				
			||||||
 | 
					    horizontal_lines = []
 | 
				
			||||||
 | 
					    for i in range(0, len(lines), 2):
 | 
				
			||||||
 | 
					        p1 = np.array(lines[i][:3])
 | 
				
			||||||
 | 
					        p2 = np.array(lines[i+1][:3])
 | 
				
			||||||
 | 
					        vec = p2 - p1
 | 
				
			||||||
 | 
					        length = np.linalg.norm(vec)
 | 
				
			||||||
 | 
					        # 计算与地面的夹角(假设地面为z轴为0,垂直为z方向)
 | 
				
			||||||
 | 
					        dz = abs(vec[2])
 | 
				
			||||||
 | 
					        dxy = np.linalg.norm(vec[:2])
 | 
				
			||||||
 | 
					        # 垂直线:z方向分量大,长度约1.05m
 | 
				
			||||||
 | 
					        if dz > dxy and 0.95 < length < 1.15:
 | 
				
			||||||
 | 
					            vertical_lines.append((i, i+1, length))
 | 
				
			||||||
 | 
					        # 水平线:z方向分量小,长度约1.8m
 | 
				
			||||||
 | 
					        elif dz < dxy and 1.7 < length < 1.9:
 | 
				
			||||||
 | 
					            horizontal_lines.append((i, i+1, length))
 | 
				
			||||||
 | 
					    return vertical_lines, horizontal_lines
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def find_best_rectangle_from_lines(lines):
 | 
				
			||||||
 | 
					    vertical_lines, horizontal_lines = classify_lines(lines)
 | 
				
			||||||
 | 
					    # 只选出2条垂直线和2条水平线
 | 
				
			||||||
 | 
					    if len(vertical_lines) < 2 or len(horizontal_lines) < 2:
 | 
				
			||||||
 | 
					        return None
 | 
				
			||||||
 | 
					    # 取长度最接近目标的两条
 | 
				
			||||||
 | 
					    vertical_lines = sorted(vertical_lines, key=lambda x: abs(x[2]-1.05))[:2]
 | 
				
			||||||
 | 
					    horizontal_lines = sorted(horizontal_lines, key=lambda x: abs(x[2]-1.8))[:2]
 | 
				
			||||||
 | 
					    # 组合4个端点
 | 
				
			||||||
 | 
					    indices = [vertical_lines[0][0], vertical_lines[0][1],
 | 
				
			||||||
 | 
					                vertical_lines[1][0], vertical_lines[1][1],
 | 
				
			||||||
 | 
					                horizontal_lines[0][0], horizontal_lines[0][1],
 | 
				
			||||||
 | 
					                horizontal_lines[1][0], horizontal_lines[1][1]]
 | 
				
			||||||
 | 
					    # 去重,只保留4个顶点
 | 
				
			||||||
 | 
					    unique_indices = list(set(indices))
 | 
				
			||||||
 | 
					    if len(unique_indices) < 4:
 | 
				
			||||||
 | 
					        return None
 | 
				
			||||||
 | 
					    pts = [lines[idx] for idx in unique_indices[:4]]
 | 
				
			||||||
 | 
					    # 按矩形评分排序
 | 
				
			||||||
 | 
					    from itertools import permutations
 | 
				
			||||||
 | 
					    best_score = float('inf')
 | 
				
			||||||
 | 
					    best_rect = None
 | 
				
			||||||
 | 
					    for order in permutations(range(4)):
 | 
				
			||||||
 | 
					        ordered = [pts[i] for i in order]
 | 
				
			||||||
 | 
					        score = rectangle_score(np.array([p[:3] for p in ordered]))
 | 
				
			||||||
 | 
					        if score < best_score:
 | 
				
			||||||
 | 
					            best_score = score
 | 
				
			||||||
 | 
					            best_rect = ordered
 | 
				
			||||||
 | 
					    return best_rect
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class BasketballFrameDetector(Node):
 | 
				
			||||||
 | 
					    def __init__(self):
 | 
				
			||||||
 | 
					        super().__init__('basketball_frame_detector')
 | 
				
			||||||
 | 
					        self.subscription = self.create_subscription(
 | 
				
			||||||
 | 
					            PointCloud2,
 | 
				
			||||||
 | 
					            '/livox/lidar_filtered',
 | 
				
			||||||
 | 
					            self.pointcloud_callback,
 | 
				
			||||||
 | 
					            10
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        self.publisher = self.create_publisher(
 | 
				
			||||||
 | 
					            PointCloud2,
 | 
				
			||||||
 | 
					            '/basketball_frame_cloud',
 | 
				
			||||||
 | 
					            10
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        self.marker_pub = self.create_publisher(
 | 
				
			||||||
 | 
					            Marker,
 | 
				
			||||||
 | 
					            '/basketball_frame_lines',
 | 
				
			||||||
 | 
					            10
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        self.pointcloud_buffer = []
 | 
				
			||||||
 | 
					        self.max_buffer_size = 10  # 减少缓冲帧数,加快响应
 | 
				
			||||||
 | 
					        self.center_buffer = []
 | 
				
			||||||
 | 
					        self.center_buffer_size = 5
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def pointcloud_callback(self, msg):
 | 
				
			||||||
 | 
					        points = self.pointcloud2_to_xyz(msg)
 | 
				
			||||||
 | 
					        if points.shape[0] == 0:
 | 
				
			||||||
 | 
					            return  # 跳过空点云
 | 
				
			||||||
 | 
					        self.pointcloud_buffer.append(points)
 | 
				
			||||||
 | 
					        # 只保留非空点云
 | 
				
			||||||
 | 
					        self.pointcloud_buffer = [arr for arr in self.pointcloud_buffer if arr.shape[0] > 0]
 | 
				
			||||||
 | 
					        if len(self.pointcloud_buffer) > self.max_buffer_size:
 | 
				
			||||||
 | 
					            self.pointcloud_buffer.pop(0)
 | 
				
			||||||
 | 
					        all_points = np.vstack(self.pointcloud_buffer)
 | 
				
			||||||
 | 
					        xy_points = all_points[:, :2]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if len(xy_points) < 10:
 | 
				
			||||||
 | 
					            self.get_logger().info('点数太少,跳过')
 | 
				
			||||||
 | 
					            return
 | 
				
			||||||
 | 
					        clustering = DBSCAN(eps=0.3, min_samples=10).fit(xy_points)
 | 
				
			||||||
 | 
					        labels = clustering.labels_
 | 
				
			||||||
 | 
					        unique_labels = set(labels)
 | 
				
			||||||
 | 
					        found = False
 | 
				
			||||||
 | 
					        for label in unique_labels:
 | 
				
			||||||
 | 
					            if label == -1:
 | 
				
			||||||
 | 
					                continue
 | 
				
			||||||
 | 
					            cluster = all_points[labels == label]
 | 
				
			||||||
 | 
					            if len(cluster) < 30:
 | 
				
			||||||
 | 
					                continue
 | 
				
			||||||
 | 
					            min_x, min_y = np.min(cluster[:, :2], axis=0)
 | 
				
			||||||
 | 
					            max_x, max_y = np.max(cluster[:, :2], axis=0)
 | 
				
			||||||
 | 
					            width = abs(max_x - min_x)
 | 
				
			||||||
 | 
					            height = abs(max_y - min_y)
 | 
				
			||||||
 | 
					            if 1.5 < width < 2.1 and 0.7 < height < 1.3:
 | 
				
			||||||
 | 
					                cloud_msg = self.xyz_array_to_pointcloud2(cluster, msg.header)
 | 
				
			||||||
 | 
					                self.publisher.publish(cloud_msg)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                # 用PCA直接找矩形四角
 | 
				
			||||||
 | 
					                corners = fit_rectangle_pca(cluster)
 | 
				
			||||||
 | 
					                from itertools import permutations
 | 
				
			||||||
 | 
					                best_score = float('inf')
 | 
				
			||||||
 | 
					                best_rect = None
 | 
				
			||||||
 | 
					                for order in permutations(range(4)):
 | 
				
			||||||
 | 
					                    ordered = [corners[i] for i in order]
 | 
				
			||||||
 | 
					                    score = rectangle_score(np.array(ordered))
 | 
				
			||||||
 | 
					                    if score < best_score:
 | 
				
			||||||
 | 
					                        best_score = score
 | 
				
			||||||
 | 
					                        best_rect = ordered
 | 
				
			||||||
 | 
					                rect_lines = best_rect
 | 
				
			||||||
 | 
					                if rect_lines is None or len(rect_lines) < 4:
 | 
				
			||||||
 | 
					                    self.get_logger().info('未找到合适矩形')
 | 
				
			||||||
 | 
					                    continue
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                # 发布最新的矩形
 | 
				
			||||||
 | 
					                marker = Marker()
 | 
				
			||||||
 | 
					                marker.header = msg.header
 | 
				
			||||||
 | 
					                marker.ns = "basketball_frame"
 | 
				
			||||||
 | 
					                marker.id = 0
 | 
				
			||||||
 | 
					                marker.type = Marker.LINE_LIST
 | 
				
			||||||
 | 
					                marker.action = Marker.ADD
 | 
				
			||||||
 | 
					                marker.scale.x = 0.08
 | 
				
			||||||
 | 
					                marker.color.r = 0.0
 | 
				
			||||||
 | 
					                marker.color.g = 1.0
 | 
				
			||||||
 | 
					                marker.color.b = 0.0
 | 
				
			||||||
 | 
					                marker.color.a = 1.0
 | 
				
			||||||
 | 
					                marker.points = []
 | 
				
			||||||
 | 
					                from geometry_msgs.msg import Point
 | 
				
			||||||
 | 
					                for i in range(4):
 | 
				
			||||||
 | 
					                    p1 = rect_lines[i]
 | 
				
			||||||
 | 
					                    p2 = rect_lines[(i+1)%4]
 | 
				
			||||||
 | 
					                    pt1 = Point(x=float(p1[0]), y=float(p1[1]), z=float(p1[2]))
 | 
				
			||||||
 | 
					                    pt2 = Point(x=float(p2[0]), y=float(p2[1]), z=float(p2[2]))
 | 
				
			||||||
 | 
					                    marker.points.append(pt1)
 | 
				
			||||||
 | 
					                    marker.points.append(pt2)
 | 
				
			||||||
 | 
					                self.marker_pub.publish(marker)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                # 分别发布4条最优边线
 | 
				
			||||||
 | 
					                for i in range(4):
 | 
				
			||||||
 | 
					                    edge_marker = Marker()
 | 
				
			||||||
 | 
					                    edge_marker.header = msg.header
 | 
				
			||||||
 | 
					                    edge_marker.ns = "basketball_frame_edges"
 | 
				
			||||||
 | 
					                    edge_marker.id = i
 | 
				
			||||||
 | 
					                    edge_marker.type = Marker.LINE_STRIP
 | 
				
			||||||
 | 
					                    edge_marker.action = Marker.ADD
 | 
				
			||||||
 | 
					                    edge_marker.scale.x = 0.12
 | 
				
			||||||
 | 
					                    colors = [
 | 
				
			||||||
 | 
					                        (1.0, 0.0, 0.0),
 | 
				
			||||||
 | 
					                        (0.0, 1.0, 0.0),
 | 
				
			||||||
 | 
					                        (0.0, 0.0, 1.0),
 | 
				
			||||||
 | 
					                        (1.0, 1.0, 0.0)
 | 
				
			||||||
 | 
					                    ]
 | 
				
			||||||
 | 
					                    edge_marker.color.r = colors[i][0]
 | 
				
			||||||
 | 
					                    edge_marker.color.g = colors[i][1]
 | 
				
			||||||
 | 
					                    edge_marker.color.b = colors[i][2]
 | 
				
			||||||
 | 
					                    edge_marker.color.a = 1.0
 | 
				
			||||||
 | 
					                    pt1 = Point(x=float(rect_lines[i][0]), y=float(rect_lines[i][1]), z=float(rect_lines[i][2]))
 | 
				
			||||||
 | 
					                    pt2 = Point(x=float(rect_lines[(i+1)%4][0]), y=float(rect_lines[(i+1)%4][1]), z=float(rect_lines[(i+1)%4][2]))
 | 
				
			||||||
 | 
					                    edge_marker.points = [pt1, pt2]
 | 
				
			||||||
 | 
					                    self.marker_pub.publish(edge_marker)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                # 中心点滑动平均
 | 
				
			||||||
 | 
					                center = np.mean(np.array(rect_lines), axis=0)
 | 
				
			||||||
 | 
					                self.center_buffer.append(center)
 | 
				
			||||||
 | 
					                if len(self.center_buffer) > self.center_buffer_size:
 | 
				
			||||||
 | 
					                    self.center_buffer.pop(0)
 | 
				
			||||||
 | 
					                stable_center = np.mean(self.center_buffer, axis=0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                # 发布中心点Marker
 | 
				
			||||||
 | 
					                center_marker = Marker()
 | 
				
			||||||
 | 
					                center_marker.header = msg.header
 | 
				
			||||||
 | 
					                center_marker.ns = "basketball_frame"
 | 
				
			||||||
 | 
					                center_marker.id = 1
 | 
				
			||||||
 | 
					                center_marker.type = Marker.SPHERE
 | 
				
			||||||
 | 
					                center_marker.action = Marker.ADD
 | 
				
			||||||
 | 
					                center_marker.scale.x = 0.15
 | 
				
			||||||
 | 
					                center_marker.scale.y = 0.15
 | 
				
			||||||
 | 
					                center_marker.scale.z = 0.15
 | 
				
			||||||
 | 
					                center_marker.color.r = 1.0
 | 
				
			||||||
 | 
					                center_marker.color.g = 0.0
 | 
				
			||||||
 | 
					                center_marker.color.b = 0.0
 | 
				
			||||||
 | 
					                center_marker.color.a = 1.0
 | 
				
			||||||
 | 
					                center_marker.pose.position.x = float(stable_center[0])
 | 
				
			||||||
 | 
					                center_marker.pose.position.y = float(stable_center[1])
 | 
				
			||||||
 | 
					                center_marker.pose.position.z = float(stable_center[2])
 | 
				
			||||||
 | 
					                center_marker.pose.orientation.x = 0.0
 | 
				
			||||||
 | 
					                center_marker.pose.orientation.y = 0.0
 | 
				
			||||||
 | 
					                center_marker.pose.orientation.z = 0.0
 | 
				
			||||||
 | 
					                center_marker.pose.orientation.w = 1.0
 | 
				
			||||||
 | 
					                self.marker_pub.publish(center_marker)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                # 计算法向量(篮板主方向,PCA最小特征值方向)
 | 
				
			||||||
 | 
					                pts = np.array(rect_lines)
 | 
				
			||||||
 | 
					                mean = np.mean(pts, axis=0)
 | 
				
			||||||
 | 
					                cov = np.cov(pts.T)
 | 
				
			||||||
 | 
					                eigvals, eigvecs = np.linalg.eigh(cov)
 | 
				
			||||||
 | 
					                order = np.argsort(eigvals)[::-1]
 | 
				
			||||||
 | 
					                normal_vec = eigvecs[:, order[2]]
 | 
				
			||||||
 | 
					                normal_vec = normal_vec / np.linalg.norm(normal_vec)
 | 
				
			||||||
 | 
					                # 向内侧偏移30cm
 | 
				
			||||||
 | 
					                offset_point = stable_center + 0.3 * normal_vec
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                # 发布偏移点Marker
 | 
				
			||||||
 | 
					                offset_marker = Marker()
 | 
				
			||||||
 | 
					                offset_marker.header = msg.header
 | 
				
			||||||
 | 
					                offset_marker.ns = "basketball_frame"
 | 
				
			||||||
 | 
					                offset_marker.id = 2
 | 
				
			||||||
 | 
					                offset_marker.type = Marker.SPHERE
 | 
				
			||||||
 | 
					                offset_marker.action = Marker.ADD
 | 
				
			||||||
 | 
					                offset_marker.scale.x = 0.12
 | 
				
			||||||
 | 
					                offset_marker.scale.y = 0.12
 | 
				
			||||||
 | 
					                offset_marker.scale.z = 0.12
 | 
				
			||||||
 | 
					                offset_marker.color.r = 0.0
 | 
				
			||||||
 | 
					                offset_marker.color.g = 0.0
 | 
				
			||||||
 | 
					                offset_marker.color.b = 1.0
 | 
				
			||||||
 | 
					                offset_marker.color.a = 1.0
 | 
				
			||||||
 | 
					                offset_marker.pose.position.x = float(offset_point[0])
 | 
				
			||||||
 | 
					                offset_marker.pose.position.y = float(offset_point[1])
 | 
				
			||||||
 | 
					                offset_marker.pose.position.z = float(offset_point[2])
 | 
				
			||||||
 | 
					                offset_marker.pose.orientation.x = 0.0
 | 
				
			||||||
 | 
					                offset_marker.pose.orientation.y = 0.0
 | 
				
			||||||
 | 
					                offset_marker.pose.orientation.z = 0.0
 | 
				
			||||||
 | 
					                offset_marker.pose.orientation.w = 1.0
 | 
				
			||||||
 | 
					                self.marker_pub.publish(offset_marker)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                found = True
 | 
				
			||||||
 | 
					                break
 | 
				
			||||||
 | 
					        if not found:
 | 
				
			||||||
 | 
					            self.get_logger().info('本帧未找到矩形')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def pointcloud2_to_xyz(self, cloud_msg):
 | 
				
			||||||
 | 
					        fmt = 'ffff'
 | 
				
			||||||
 | 
					        points = []
 | 
				
			||||||
 | 
					        for i in range(cloud_msg.width):
 | 
				
			||||||
 | 
					            offset = i * cloud_msg.point_step
 | 
				
			||||||
 | 
					            x, y, z, intensity = struct.unpack_from(fmt, cloud_msg.data, offset)
 | 
				
			||||||
 | 
					            points.append([x, y, z, intensity])
 | 
				
			||||||
 | 
					        return np.array(points)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def xyz_array_to_pointcloud2(self, points, header):
 | 
				
			||||||
 | 
					        msg = PointCloud2()
 | 
				
			||||||
 | 
					        msg.header = header
 | 
				
			||||||
 | 
					        msg.height = 1
 | 
				
			||||||
 | 
					        msg.width = len(points)
 | 
				
			||||||
 | 
					        msg.is_dense = True
 | 
				
			||||||
 | 
					        msg.is_bigendian = False
 | 
				
			||||||
 | 
					        msg.point_step = 16
 | 
				
			||||||
 | 
					        msg.row_step = msg.point_step * msg.width
 | 
				
			||||||
 | 
					        msg.fields = [
 | 
				
			||||||
 | 
					            PointField(name='x', offset=0, datatype=7, count=1),
 | 
				
			||||||
 | 
					            PointField(name='y', offset=4, datatype=7, count=1),
 | 
				
			||||||
 | 
					            PointField(name='z', offset=8, datatype=7, count=1),
 | 
				
			||||||
 | 
					            PointField(name='intensity', offset=12, datatype=7, count=1),
 | 
				
			||||||
 | 
					        ]
 | 
				
			||||||
 | 
					        msg.data = b''.join([struct.pack('ffff', *p) for p in points])
 | 
				
			||||||
 | 
					        return msg
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def main(args=None):
 | 
				
			||||||
 | 
					    rclpy.init(args=args)
 | 
				
			||||||
 | 
					    node = BasketballFrameDetector()
 | 
				
			||||||
 | 
					    rclpy.spin(node)
 | 
				
			||||||
 | 
					    node.destroy_node()
 | 
				
			||||||
 | 
					    rclpy.shutdown()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    main()
 | 
				
			||||||
							
								
								
									
										0
									
								
								src/rc_lidar/line.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								src/rc_lidar/line.py
									
									
									
									
									
										Normal file
									
								
							
							
								
								
									
										75
									
								
								src/rc_lidar/pcd2pgm.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										75
									
								
								src/rc_lidar/pcd2pgm.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,75 @@
 | 
				
			|||||||
 | 
					import rclpy
 | 
				
			||||||
 | 
					from rclpy.node import Node
 | 
				
			||||||
 | 
					from sensor_msgs.msg import PointCloud2
 | 
				
			||||||
 | 
					from nav_msgs.msg import OccupancyGrid
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					import struct
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class PointCloudToGrid(Node):
 | 
				
			||||||
 | 
					    def __init__(self):
 | 
				
			||||||
 | 
					        super().__init__('pointcloud_to_grid')
 | 
				
			||||||
 | 
					        self.subscription = self.create_subscription(
 | 
				
			||||||
 | 
					            PointCloud2,
 | 
				
			||||||
 | 
					            '/livox/lidar_filtered',
 | 
				
			||||||
 | 
					            self.pointcloud_callback,
 | 
				
			||||||
 | 
					            10)
 | 
				
			||||||
 | 
					        self.publisher = self.create_publisher(OccupancyGrid, '/lidar_grid', 10)
 | 
				
			||||||
 | 
					        self.grid_size = 2000
 | 
				
			||||||
 | 
					        self.resolution = 0.02
 | 
				
			||||||
 | 
					        self.origin_x = -20.0
 | 
				
			||||||
 | 
					        self.origin_y = -20.0 
 | 
				
			||||||
 | 
					        self.points_buffer = []
 | 
				
			||||||
 | 
					        self.last_header = None
 | 
				
			||||||
 | 
					        # 定时器每0.5秒触发一次
 | 
				
			||||||
 | 
					        self.timer = self.create_timer(0.5, self.publish_grid)
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					    def pointcloud_callback(self, msg):
 | 
				
			||||||
 | 
					        points = self.pointcloud2_to_xyz_array(msg)
 | 
				
			||||||
 | 
					        self.points_buffer.append(points)
 | 
				
			||||||
 | 
					        self.last_header = msg.header  # 保存最新header用于地图消息
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def publish_grid(self):
 | 
				
			||||||
 | 
					        if not self.points_buffer:
 | 
				
			||||||
 | 
					            return
 | 
				
			||||||
 | 
					        # 合并0.5秒内所有点
 | 
				
			||||||
 | 
					        all_points = np.concatenate(self.points_buffer, axis=0)
 | 
				
			||||||
 | 
					        grid = np.zeros((self.grid_size, self.grid_size), dtype=np.int8)
 | 
				
			||||||
 | 
					        for x, y, z in all_points:
 | 
				
			||||||
 | 
					            if z < 2.0:
 | 
				
			||||||
 | 
					                ix = int((x - self.origin_x) / self.resolution)
 | 
				
			||||||
 | 
					                iy = int((y - self.origin_y) / self.resolution)
 | 
				
			||||||
 | 
					                if 0 <= ix < self.grid_size and 0 <= iy < self.grid_size:
 | 
				
			||||||
 | 
					                    grid[iy, ix] = 100
 | 
				
			||||||
 | 
					        grid_msg = OccupancyGrid()
 | 
				
			||||||
 | 
					        if self.last_header:
 | 
				
			||||||
 | 
					            grid_msg.header = self.last_header
 | 
				
			||||||
 | 
					        grid_msg.info.resolution = self.resolution
 | 
				
			||||||
 | 
					        grid_msg.info.width = self.grid_size
 | 
				
			||||||
 | 
					        grid_msg.info.height = self.grid_size
 | 
				
			||||||
 | 
					        grid_msg.info.origin.position.x = self.origin_x
 | 
				
			||||||
 | 
					        grid_msg.info.origin.position.y = self.origin_y
 | 
				
			||||||
 | 
					        grid_msg.data = grid.flatten().tolist()
 | 
				
			||||||
 | 
					        self.publisher.publish(grid_msg)
 | 
				
			||||||
 | 
					        self.points_buffer.clear()  # 清空缓存
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def pointcloud2_to_xyz_array(self, cloud_msg):
 | 
				
			||||||
 | 
					        # 解析 PointCloud2 数据为 numpy 数组
 | 
				
			||||||
 | 
					        fmt = 'fff'  # x, y, z
 | 
				
			||||||
 | 
					        point_step = cloud_msg.point_step
 | 
				
			||||||
 | 
					        data = cloud_msg.data
 | 
				
			||||||
 | 
					        points = []
 | 
				
			||||||
 | 
					        for i in range(0, len(data), point_step):
 | 
				
			||||||
 | 
					            x, y, z = struct.unpack_from(fmt, data, i)
 | 
				
			||||||
 | 
					            points.append([x, y, z])
 | 
				
			||||||
 | 
					        return np.array(points)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def main(args=None):
 | 
				
			||||||
 | 
					    rclpy.init(args=args)
 | 
				
			||||||
 | 
					    node = PointCloudToGrid()
 | 
				
			||||||
 | 
					    rclpy.spin(node)
 | 
				
			||||||
 | 
					    node.destroy_node()
 | 
				
			||||||
 | 
					    rclpy.shutdown()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    main()
 | 
				
			||||||
							
								
								
									
										55
									
								
								src/rc_lidar/save_pcd.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										55
									
								
								src/rc_lidar/save_pcd.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,55 @@
 | 
				
			|||||||
 | 
					import rclpy
 | 
				
			||||||
 | 
					from rclpy.node import Node
 | 
				
			||||||
 | 
					from sensor_msgs.msg import PointCloud2
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					import open3d as o3d
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class PointCloudSaver(Node):
 | 
				
			||||||
 | 
					    def __init__(self):
 | 
				
			||||||
 | 
					        super().__init__('pcd_saver')
 | 
				
			||||||
 | 
					        self.subscription = self.create_subscription(
 | 
				
			||||||
 | 
					            PointCloud2,
 | 
				
			||||||
 | 
					            '/livox/lidar_filtered',
 | 
				
			||||||
 | 
					            self.listener_callback,
 | 
				
			||||||
 | 
					            10)
 | 
				
			||||||
 | 
					        self.point_clouds = []
 | 
				
			||||||
 | 
					        self.start_time = time.time()
 | 
				
			||||||
 | 
					        self.timer = self.create_timer(3.0, self.save_and_exit)
 | 
				
			||||||
 | 
					        self.saving = False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def listener_callback(self, msg):
 | 
				
			||||||
 | 
					        if not self.saving:
 | 
				
			||||||
 | 
					            pc = self.pointcloud2_to_xyz_array(msg)
 | 
				
			||||||
 | 
					            if pc is not None:
 | 
				
			||||||
 | 
					                self.point_clouds.append(pc)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def pointcloud2_to_xyz_array(self, cloud_msg):
 | 
				
			||||||
 | 
					        # 仅支持 x, y, z 均为 float32 且无 padding 的点云
 | 
				
			||||||
 | 
					        import struct
 | 
				
			||||||
 | 
					        points = []
 | 
				
			||||||
 | 
					        point_step = cloud_msg.point_step
 | 
				
			||||||
 | 
					        for i in range(cloud_msg.width * cloud_msg.height):
 | 
				
			||||||
 | 
					            offset = i * point_step
 | 
				
			||||||
 | 
					            x, y, z = struct.unpack_from('fff', cloud_msg.data, offset)
 | 
				
			||||||
 | 
					            points.append([x, y, z])
 | 
				
			||||||
 | 
					        return np.array(points)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def save_and_exit(self):
 | 
				
			||||||
 | 
					        if not self.saving:
 | 
				
			||||||
 | 
					            self.saving = True
 | 
				
			||||||
 | 
					            if self.point_clouds:
 | 
				
			||||||
 | 
					                all_points = np.vstack(self.point_clouds)
 | 
				
			||||||
 | 
					                pcd = o3d.geometry.PointCloud()
 | 
				
			||||||
 | 
					                pcd.points = o3d.utility.Vector3dVector(all_points)
 | 
				
			||||||
 | 
					                o3d.io.write_point_cloud("output.pcd", pcd)
 | 
				
			||||||
 | 
					                self.get_logger().info("Saved output.pcd")
 | 
				
			||||||
 | 
					            rclpy.shutdown()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def main(args=None):
 | 
				
			||||||
 | 
					    rclpy.init(args=args)
 | 
				
			||||||
 | 
					    saver = PointCloudSaver()
 | 
				
			||||||
 | 
					    rclpy.spin(saver)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    main()
 | 
				
			||||||
							
								
								
									
										102
									
								
								src/rc_lidar/simple.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										102
									
								
								src/rc_lidar/simple.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,102 @@
 | 
				
			|||||||
 | 
					import rclpy
 | 
				
			||||||
 | 
					from rclpy.node import Node
 | 
				
			||||||
 | 
					from sensor_msgs.msg import PointCloud2, PointField
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					import struct
 | 
				
			||||||
 | 
					from sklearn.cluster import DBSCAN
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class BasketballFrameDetector(Node):
 | 
				
			||||||
 | 
					    def __init__(self):
 | 
				
			||||||
 | 
					        super().__init__('basketball_frame_detector')
 | 
				
			||||||
 | 
					        self.subscription = self.create_subscription(
 | 
				
			||||||
 | 
					            PointCloud2,
 | 
				
			||||||
 | 
					            '/livox/lidar_filtered',
 | 
				
			||||||
 | 
					            self.pointcloud_callback,
 | 
				
			||||||
 | 
					            10
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        self.publisher = self.create_publisher(
 | 
				
			||||||
 | 
					            PointCloud2,
 | 
				
			||||||
 | 
					            '/basketball_frame_cloud',
 | 
				
			||||||
 | 
					            10
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        self.pointcloud_buffer = []
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def pointcloud_callback(self, msg):
 | 
				
			||||||
 | 
					        points = self.pointcloud2_to_xyz(msg)
 | 
				
			||||||
 | 
					        self.pointcloud_buffer.append(points)
 | 
				
			||||||
 | 
					        self.get_logger().info(f'已保存点云组数: {len(self.pointcloud_buffer)}')
 | 
				
			||||||
 | 
					        if len(self.pointcloud_buffer) < 10:
 | 
				
			||||||
 | 
					            return
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # 合并10组点云
 | 
				
			||||||
 | 
					        all_points = np.vstack(self.pointcloud_buffer)
 | 
				
			||||||
 | 
					        xy_points = all_points[:, :2]
 | 
				
			||||||
 | 
					        self.get_logger().info(f'合并后点数: {xy_points.shape[0]}')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # 清空缓存,准备下一批
 | 
				
			||||||
 | 
					        self.pointcloud_buffer = []
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # 聚类识别
 | 
				
			||||||
 | 
					        if len(xy_points) < 10:
 | 
				
			||||||
 | 
					            return
 | 
				
			||||||
 | 
					        clustering = DBSCAN(eps=0.3, min_samples=10).fit(xy_points)
 | 
				
			||||||
 | 
					        labels = clustering.labels_
 | 
				
			||||||
 | 
					        unique_labels = set(labels)
 | 
				
			||||||
 | 
					        for label in unique_labels:
 | 
				
			||||||
 | 
					            if label == -1:
 | 
				
			||||||
 | 
					                continue
 | 
				
			||||||
 | 
					            cluster = all_points[labels == label]
 | 
				
			||||||
 | 
					            if len(cluster) < 30:
 | 
				
			||||||
 | 
					                continue
 | 
				
			||||||
 | 
					            min_x, min_y = np.min(cluster[:, :2], axis=0)
 | 
				
			||||||
 | 
					            max_x, max_y = np.max(cluster[:, :2], axis=0)
 | 
				
			||||||
 | 
					            width = abs(max_x - min_x)
 | 
				
			||||||
 | 
					            height = abs(max_y - min_y)
 | 
				
			||||||
 | 
					            self.get_logger().info(
 | 
				
			||||||
 | 
					                f'聚类: label={label}, width={width:.2f}, height={height:.2f}, 点数={len(cluster)}'
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					            if 1.6 < width < 2.0 and 0.8 < height < 1.2:
 | 
				
			||||||
 | 
					                self.get_logger().info(
 | 
				
			||||||
 | 
					                    f'可能是篮球框: label={label}, width={width:.2f}, height={height:.2f}, 点数={len(cluster)}'
 | 
				
			||||||
 | 
					                )
 | 
				
			||||||
 | 
					                # 发布识别到的篮球框点云
 | 
				
			||||||
 | 
					                cloud_msg = self.xyz_array_to_pointcloud2(cluster, msg.header)
 | 
				
			||||||
 | 
					                self.publisher.publish(cloud_msg)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def pointcloud2_to_xyz(self, cloud_msg):
 | 
				
			||||||
 | 
					        fmt = 'ffff'  # x, y, z, intensity
 | 
				
			||||||
 | 
					        points = []
 | 
				
			||||||
 | 
					        for i in range(cloud_msg.width):
 | 
				
			||||||
 | 
					            offset = i * cloud_msg.point_step
 | 
				
			||||||
 | 
					            x, y, z, intensity = struct.unpack_from(fmt, cloud_msg.data, offset)
 | 
				
			||||||
 | 
					            points.append([x, y, z, intensity])
 | 
				
			||||||
 | 
					        return np.array(points)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def xyz_array_to_pointcloud2(self, points, header):
 | 
				
			||||||
 | 
					        # 构造 PointCloud2 消息
 | 
				
			||||||
 | 
					        msg = PointCloud2()
 | 
				
			||||||
 | 
					        msg.header = header
 | 
				
			||||||
 | 
					        msg.height = 1
 | 
				
			||||||
 | 
					        msg.width = len(points)
 | 
				
			||||||
 | 
					        msg.is_dense = True
 | 
				
			||||||
 | 
					        msg.is_bigendian = False
 | 
				
			||||||
 | 
					        msg.point_step = 16
 | 
				
			||||||
 | 
					        msg.row_step = msg.point_step * msg.width
 | 
				
			||||||
 | 
					        msg.fields = [
 | 
				
			||||||
 | 
					            PointField(name='x', offset=0, datatype=7, count=1),
 | 
				
			||||||
 | 
					            PointField(name='y', offset=4, datatype=7, count=1),
 | 
				
			||||||
 | 
					            PointField(name='z', offset=8, datatype=7, count=1),
 | 
				
			||||||
 | 
					            PointField(name='intensity', offset=12, datatype=7, count=1),
 | 
				
			||||||
 | 
					        ]
 | 
				
			||||||
 | 
					        msg.data = b''.join([struct.pack('ffff', *p) for p in points])
 | 
				
			||||||
 | 
					        return msg
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def main(args=None):
 | 
				
			||||||
 | 
					    rclpy.init(args=args)
 | 
				
			||||||
 | 
					    node = BasketballFrameDetector()
 | 
				
			||||||
 | 
					    rclpy.spin(node)
 | 
				
			||||||
 | 
					    node.destroy_node()
 | 
				
			||||||
 | 
					    rclpy.shutdown()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    main()
 | 
				
			||||||
							
								
								
									
										126
									
								
								src/rc_lidar/simple_icp.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										126
									
								
								src/rc_lidar/simple_icp.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,126 @@
 | 
				
			|||||||
 | 
					#!/usr/bin/env python3
 | 
				
			||||||
 | 
					import rclpy
 | 
				
			||||||
 | 
					from rclpy.node import Node
 | 
				
			||||||
 | 
					from sensor_msgs.msg import PointCloud2
 | 
				
			||||||
 | 
					from sensor_msgs_py import point_cloud2
 | 
				
			||||||
 | 
					from geometry_msgs.msg import PoseStamped
 | 
				
			||||||
 | 
					import open3d as o3d
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					from transforms3d.quaternions import mat2quat
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class PointCloudLocalization(Node):
 | 
				
			||||||
 | 
					    def __init__(self):
 | 
				
			||||||
 | 
					        super().__init__('point_cloud_localizer')
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 加载参考点云地图 (PCD文件)
 | 
				
			||||||
 | 
					        self.reference_map = o3d.io.read_point_cloud("/home/robofish/RC2025/lankuang.pcd")  # 替换为你的PCD文件路径
 | 
				
			||||||
 | 
					        if not self.reference_map.has_points():
 | 
				
			||||||
 | 
					            self.get_logger().error("Failed to load reference map!")
 | 
				
			||||||
 | 
					            rclpy.shutdown()
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 预处理参考地图
 | 
				
			||||||
 | 
					        self.reference_map = self.reference_map.voxel_down_sample(voxel_size=0.05)
 | 
				
			||||||
 | 
					        self.reference_map.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0)[0]
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 创建ICP对象
 | 
				
			||||||
 | 
					        self.icp = o3d.pipelines.registration.registration_icp
 | 
				
			||||||
 | 
					        self.threshold = 0.5  # 匹配距离阈值 (米)
 | 
				
			||||||
 | 
					        self.trans_init = np.identity(4)  # 初始变换矩阵
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 订阅激光雷达点云
 | 
				
			||||||
 | 
					        self.subscription = self.create_subscription(
 | 
				
			||||||
 | 
					            PointCloud2,
 | 
				
			||||||
 | 
					            '/livox/lidar_filtered',
 | 
				
			||||||
 | 
					            self.lidar_callback,
 | 
				
			||||||
 | 
					            10)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 发布估计位置
 | 
				
			||||||
 | 
					        self.pose_pub = self.create_publisher(PoseStamped, '/estimated_pose', 10)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        self.get_logger().info("Point Cloud Localization Node Initialized!")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def ros_pc2_to_o3d(self, ros_cloud):
 | 
				
			||||||
 | 
					        """将ROS PointCloud2转换为Open3D点云"""
 | 
				
			||||||
 | 
					        # 提取xyz坐标
 | 
				
			||||||
 | 
					        points = point_cloud2.read_points(ros_cloud, field_names=("x", "y", "z"), skip_nans=True)
 | 
				
			||||||
 | 
					        xyz = np.array([ [p[0], p[1], p[2]] for p in points ], dtype=np.float32)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        if xyz.shape[0] == 0:
 | 
				
			||||||
 | 
					            return None
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					        # 创建Open3D点云
 | 
				
			||||||
 | 
					        pcd = o3d.geometry.PointCloud()
 | 
				
			||||||
 | 
					        pcd.points = o3d.utility.Vector3dVector(xyz)
 | 
				
			||||||
 | 
					        return pcd
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def preprocess_pointcloud(self, pcd):
 | 
				
			||||||
 | 
					        """点云预处理"""
 | 
				
			||||||
 | 
					        # 降采样
 | 
				
			||||||
 | 
					        pcd = pcd.voxel_down_sample(voxel_size=0.03)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 移除离群点
 | 
				
			||||||
 | 
					        pcd, _ = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=1.0)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 移除地面 (可选)
 | 
				
			||||||
 | 
					        # plane_model, inliers = pcd.segment_plane(distance_threshold=0.1, ransac_n=3, num_iterations=100)
 | 
				
			||||||
 | 
					        # pcd = pcd.select_by_index(inliers, invert=True)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        return pcd
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def lidar_callback(self, msg):
 | 
				
			||||||
 | 
					        """处理新的激光雷达数据"""
 | 
				
			||||||
 | 
					        # 转换为Open3D格式
 | 
				
			||||||
 | 
					        current_pcd = self.ros_pc2_to_o3d(msg)
 | 
				
			||||||
 | 
					        if current_pcd is None:
 | 
				
			||||||
 | 
					            self.get_logger().warn("Received empty point cloud!")
 | 
				
			||||||
 | 
					            return
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 预处理当前点云
 | 
				
			||||||
 | 
					        current_pcd = self.preprocess_pointcloud(current_pcd)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 执行ICP配准
 | 
				
			||||||
 | 
					        reg_result = self.icp(
 | 
				
			||||||
 | 
					            current_pcd, self.reference_map, self.threshold,
 | 
				
			||||||
 | 
					            self.trans_init,
 | 
				
			||||||
 | 
					            o3d.pipelines.registration.TransformationEstimationPointToPoint(),
 | 
				
			||||||
 | 
					            o3d.pipelines.registration.ICPConvergenceCriteria(max_iteration=50)
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 更新变换矩阵
 | 
				
			||||||
 | 
					        self.trans_init = reg_result.transformation
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 提取位置和方向
 | 
				
			||||||
 | 
					        translation = reg_result.transformation[:3, 3]
 | 
				
			||||||
 | 
					        rotation_matrix = reg_result.transformation[:3, :3]
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 转换为四元数
 | 
				
			||||||
 | 
					        quaternion = mat2quat(reg_result.transformation[:3, :3])  # 注意返回顺序为 [w, x, y, z]
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 发布位姿
 | 
				
			||||||
 | 
					        pose_msg = PoseStamped()
 | 
				
			||||||
 | 
					        pose_msg.header.stamp = self.get_clock().now().to_msg()
 | 
				
			||||||
 | 
					        pose_msg.header.frame_id = "livox_frame"
 | 
				
			||||||
 | 
					        pose_msg.pose.position.x = translation[0]
 | 
				
			||||||
 | 
					        pose_msg.pose.position.y = translation[1]
 | 
				
			||||||
 | 
					        pose_msg.pose.position.z = translation[2]
 | 
				
			||||||
 | 
					        pose_msg.pose.orientation.x = quaternion[1]  # x
 | 
				
			||||||
 | 
					        pose_msg.pose.orientation.y = quaternion[2]  # y
 | 
				
			||||||
 | 
					        pose_msg.pose.orientation.z = quaternion[3]  # z
 | 
				
			||||||
 | 
					        pose_msg.pose.orientation.w = quaternion[0]  # w
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        self.pose_pub.publish(pose_msg)
 | 
				
			||||||
 | 
					        self.get_logger().info(f"Estimated Position: x={translation[0]:.2f}, y={translation[1]:.2f}, z={translation[2]:.2f}")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def main(args=None):
 | 
				
			||||||
 | 
					    rclpy.init(args=args)
 | 
				
			||||||
 | 
					    node = PointCloudLocalization()
 | 
				
			||||||
 | 
					    try:
 | 
				
			||||||
 | 
					        rclpy.spin(node)
 | 
				
			||||||
 | 
					    except KeyboardInterrupt:
 | 
				
			||||||
 | 
					        pass
 | 
				
			||||||
 | 
					    finally:
 | 
				
			||||||
 | 
					        node.destroy_node()
 | 
				
			||||||
 | 
					        rclpy.shutdown()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    main()
 | 
				
			||||||
							
								
								
									
										75
									
								
								src/rc_lidar/xiamian.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										75
									
								
								src/rc_lidar/xiamian.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,75 @@
 | 
				
			|||||||
 | 
					import rclpy
 | 
				
			||||||
 | 
					from rclpy.node import Node
 | 
				
			||||||
 | 
					from sensor_msgs.msg import PointCloud2
 | 
				
			||||||
 | 
					from nav_msgs.msg import OccupancyGrid
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					import struct
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class PointCloudToGrid(Node):
 | 
				
			||||||
 | 
					    def __init__(self):
 | 
				
			||||||
 | 
					        super().__init__('pointcloud_to_grid')
 | 
				
			||||||
 | 
					        self.subscription = self.create_subscription(
 | 
				
			||||||
 | 
					            PointCloud2,
 | 
				
			||||||
 | 
					            '/livox/lidar_filtered',
 | 
				
			||||||
 | 
					            self.pointcloud_callback,
 | 
				
			||||||
 | 
					            10)
 | 
				
			||||||
 | 
					        self.publisher = self.create_publisher(OccupancyGrid, '/lidar_grid', 10)
 | 
				
			||||||
 | 
					        self.grid_size = 2000
 | 
				
			||||||
 | 
					        self.resolution = 0.02
 | 
				
			||||||
 | 
					        self.origin_x = -20.0
 | 
				
			||||||
 | 
					        self.origin_y = -20.0 
 | 
				
			||||||
 | 
					        self.points_buffer = []
 | 
				
			||||||
 | 
					        self.last_header = None
 | 
				
			||||||
 | 
					        # 定时器每0.5秒触发一次
 | 
				
			||||||
 | 
					        self.timer = self.create_timer(0.5, self.publish_grid)
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					    def pointcloud_callback(self, msg):
 | 
				
			||||||
 | 
					        points = self.pointcloud2_to_xyz_array(msg)
 | 
				
			||||||
 | 
					        self.points_buffer.append(points)
 | 
				
			||||||
 | 
					        self.last_header = msg.header  # 保存最新header用于地图消息
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def publish_grid(self):
 | 
				
			||||||
 | 
					        if not self.points_buffer:
 | 
				
			||||||
 | 
					            return
 | 
				
			||||||
 | 
					        # 合并0.5秒内所有点
 | 
				
			||||||
 | 
					        all_points = np.concatenate(self.points_buffer, axis=0)
 | 
				
			||||||
 | 
					        grid = np.zeros((self.grid_size, self.grid_size), dtype=np.int8)
 | 
				
			||||||
 | 
					        for x, y, z in all_points:
 | 
				
			||||||
 | 
					            if z < 2.0:
 | 
				
			||||||
 | 
					                ix = int((x - self.origin_x) / self.resolution)
 | 
				
			||||||
 | 
					                iy = int((y - self.origin_y) / self.resolution)
 | 
				
			||||||
 | 
					                if 0 <= ix < self.grid_size and 0 <= iy < self.grid_size:
 | 
				
			||||||
 | 
					                    grid[iy, ix] = 100
 | 
				
			||||||
 | 
					        grid_msg = OccupancyGrid()
 | 
				
			||||||
 | 
					        if self.last_header:
 | 
				
			||||||
 | 
					            grid_msg.header = self.last_header
 | 
				
			||||||
 | 
					        grid_msg.info.resolution = self.resolution
 | 
				
			||||||
 | 
					        grid_msg.info.width = self.grid_size
 | 
				
			||||||
 | 
					        grid_msg.info.height = self.grid_size
 | 
				
			||||||
 | 
					        grid_msg.info.origin.position.x = self.origin_x
 | 
				
			||||||
 | 
					        grid_msg.info.origin.position.y = self.origin_y
 | 
				
			||||||
 | 
					        grid_msg.data = grid.flatten().tolist()
 | 
				
			||||||
 | 
					        self.publisher.publish(grid_msg)
 | 
				
			||||||
 | 
					        self.points_buffer.clear()  # 清空缓存
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def pointcloud2_to_xyz_array(self, cloud_msg):
 | 
				
			||||||
 | 
					        # 解析 PointCloud2 数据为 numpy 数组
 | 
				
			||||||
 | 
					        fmt = 'fff'  # x, y, z
 | 
				
			||||||
 | 
					        point_step = cloud_msg.point_step
 | 
				
			||||||
 | 
					        data = cloud_msg.data
 | 
				
			||||||
 | 
					        points = []
 | 
				
			||||||
 | 
					        for i in range(0, len(data), point_step):
 | 
				
			||||||
 | 
					            x, y, z = struct.unpack_from(fmt, data, i)
 | 
				
			||||||
 | 
					            points.append([x, y, z])
 | 
				
			||||||
 | 
					        return np.array(points)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def main(args=None):
 | 
				
			||||||
 | 
					    rclpy.init(args=args)
 | 
				
			||||||
 | 
					    node = PointCloudToGrid()
 | 
				
			||||||
 | 
					    rclpy.spin(node)
 | 
				
			||||||
 | 
					    node.destroy_node()
 | 
				
			||||||
 | 
					    rclpy.shutdown()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    main()
 | 
				
			||||||
							
								
								
									
										51
									
								
								src/rc_lidar/zhaoban.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										51
									
								
								src/rc_lidar/zhaoban.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,51 @@
 | 
				
			|||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					from sklearn.cluster import DBSCAN
 | 
				
			||||||
 | 
					from scipy.optimize import leastsq
 | 
				
			||||||
 | 
					import matplotlib.pyplot as plt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def fit_circle(x, y):
 | 
				
			||||||
 | 
					    # 拟合圆的函数
 | 
				
			||||||
 | 
					    def calc_R(xc, yc):
 | 
				
			||||||
 | 
					        return np.sqrt((x - xc)**2 + (y - yc)**2)
 | 
				
			||||||
 | 
					    def f(c):
 | 
				
			||||||
 | 
					        Ri = calc_R(*c)
 | 
				
			||||||
 | 
					        return Ri - Ri.mean()
 | 
				
			||||||
 | 
					    center_estimate = np.mean(x), np.mean(y)
 | 
				
			||||||
 | 
					    center, _ = leastsq(f, center_estimate)
 | 
				
			||||||
 | 
					    radius = calc_R(*center).mean()
 | 
				
			||||||
 | 
					    return center[0], center[1], radius
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def find_circle(points, eps=0.5, min_samples=10):
 | 
				
			||||||
 | 
					    # 聚类
 | 
				
			||||||
 | 
					    clustering = DBSCAN(eps=eps, min_samples=min_samples).fit(points)
 | 
				
			||||||
 | 
					    labels = clustering.labels_
 | 
				
			||||||
 | 
					    # 只取最大簇
 | 
				
			||||||
 | 
					    unique, counts = np.unique(labels[labels != -1], return_counts=True)
 | 
				
			||||||
 | 
					    if len(unique) == 0:
 | 
				
			||||||
 | 
					        raise ValueError("未找到有效聚类")
 | 
				
			||||||
 | 
					    main_cluster = unique[np.argmax(counts)]
 | 
				
			||||||
 | 
					    cluster_points = points[labels == main_cluster]
 | 
				
			||||||
 | 
					    x, y = cluster_points[:, 0], cluster_points[:, 1]
 | 
				
			||||||
 | 
					    # 拟合圆
 | 
				
			||||||
 | 
					    xc, yc, r = fit_circle(x, y)
 | 
				
			||||||
 | 
					    return xc, yc, r, cluster_points
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == "__main__":
 | 
				
			||||||
 | 
					    # 示例数据
 | 
				
			||||||
 | 
					    np.random.seed(0)
 | 
				
			||||||
 | 
					    angle = np.linspace(0, 2 * np.pi, 100)
 | 
				
			||||||
 | 
					    x = 5 + 3 * np.cos(angle) + np.random.normal(0, 0.1, 100)
 | 
				
			||||||
 | 
					    y = 2 + 3 * np.sin(angle) + np.random.normal(0, 0.1, 100)
 | 
				
			||||||
 | 
					    points = np.vstack((x, y)).T
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    xc, yc, r, cluster_points = find_circle(points)
 | 
				
			||||||
 | 
					    print(f"圆心: ({xc:.2f}, {yc:.2f}), 半径: {r:.2f}")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 可视化
 | 
				
			||||||
 | 
					    plt.scatter(points[:, 0], points[:, 1], label='所有点')
 | 
				
			||||||
 | 
					    plt.scatter(cluster_points[:, 0], cluster_points[:, 1], label='聚类点')
 | 
				
			||||||
 | 
					    circle = plt.Circle((xc, yc), r, color='r', fill=False, label='拟合圆')
 | 
				
			||||||
 | 
					    plt.gca().add_patch(circle)
 | 
				
			||||||
 | 
					    plt.legend()
 | 
				
			||||||
 | 
					    plt.axis('equal')
 | 
				
			||||||
 | 
					    plt.show()
 | 
				
			||||||
							
								
								
									
										0
									
								
								src/rc_lidar/zhaoyuan.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								src/rc_lidar/zhaoyuan.py
									
									
									
									
									
										Normal file
									
								
							@ -18,6 +18,8 @@ class R2SerialNode(Node):
 | 
				
			|||||||
        self.distance_port = self.get_parameter('distance_port').get_parameter_value().string_value
 | 
					        self.distance_port = self.get_parameter('distance_port').get_parameter_value().string_value
 | 
				
			||||||
        self.baud_rate = self.get_parameter('baud_rate').get_parameter_value().integer_value
 | 
					        self.baud_rate = self.get_parameter('baud_rate').get_parameter_value().integer_value
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
 | 
					        # 创建定时器
 | 
				
			||||||
 | 
					        # self.timer = self.create_timer(0.01, self.send_data)  # 每100ms发送一次数据
 | 
				
			||||||
        # 初始化串口
 | 
					        # 初始化串口
 | 
				
			||||||
        try:
 | 
					        try:
 | 
				
			||||||
            self.yaw_serial = serial.Serial(self.yaw_port, self.baud_rate, timeout=1)
 | 
					            self.yaw_serial = serial.Serial(self.yaw_port, self.baud_rate, timeout=1)
 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										36
									
								
								src/rm_driver/rm_serial_driver/script/pub_goal.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										36
									
								
								src/rm_driver/rm_serial_driver/script/pub_goal.py
									
									
									
									
									
										Executable file
									
								
							@ -0,0 +1,36 @@
 | 
				
			|||||||
 | 
					import rclpy
 | 
				
			||||||
 | 
					from rclpy.node import Node
 | 
				
			||||||
 | 
					from geometry_msgs.msg import PointStamped
 | 
				
			||||||
 | 
					from rm_msgs.msg import MoveGoal
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class ClickedGoalPublisher(Node):
 | 
				
			||||||
 | 
					    def __init__(self):
 | 
				
			||||||
 | 
					        super().__init__('clicked_goal_publisher')
 | 
				
			||||||
 | 
					        self.subscription = self.create_subscription(
 | 
				
			||||||
 | 
					            PointStamped,
 | 
				
			||||||
 | 
					            '/clicked_point',
 | 
				
			||||||
 | 
					            self.clicked_callback,
 | 
				
			||||||
 | 
					            10
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        self.publisher = self.create_publisher(MoveGoal, '/move_goal', 10)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def clicked_callback(self, msg):
 | 
				
			||||||
 | 
					        goal = MoveGoal()
 | 
				
			||||||
 | 
					        goal.x = msg.point.x
 | 
				
			||||||
 | 
					        goal.y = msg.point.y
 | 
				
			||||||
 | 
					        goal.angle = 0.0
 | 
				
			||||||
 | 
					        goal.max_speed = 0.0
 | 
				
			||||||
 | 
					        goal.tolerance = 0.1
 | 
				
			||||||
 | 
					        goal.rotor = False
 | 
				
			||||||
 | 
					        self.publisher.publish(goal)
 | 
				
			||||||
 | 
					        self.get_logger().info(f'发布目标: x={goal.x:.2f}, y={goal.y:.2f}')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def main(args=None):
 | 
				
			||||||
 | 
					    rclpy.init(args=args)
 | 
				
			||||||
 | 
					    node = ClickedGoalPublisher()
 | 
				
			||||||
 | 
					    rclpy.spin(node)
 | 
				
			||||||
 | 
					    node.destroy_node()
 | 
				
			||||||
 | 
					    rclpy.shutdown()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    main()
 | 
				
			||||||
@ -36,7 +36,7 @@ class SerialReceiver(Node):
 | 
				
			|||||||
        self.get_logger().info(f"打开串口 {SERIAL_PORT},波特率 {BAUDRATE}")
 | 
					        self.get_logger().info(f"打开串口 {SERIAL_PORT},波特率 {BAUDRATE}")
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
        # 创建定时器用于读取串口数据
 | 
					        # 创建定时器用于读取串口数据
 | 
				
			||||||
        self.timer = self.create_timer(0.01, self.read_serial_data)  # 10ms
 | 
					        self.timer = self.create_timer(0.001, self.read_serial_data)  # 10ms
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
        self.buffer = bytearray()
 | 
					        self.buffer = bytearray()
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
 | 
				
			|||||||
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							@ -50,7 +50,7 @@ private:
 | 
				
			|||||||
      initial_pose_sub_;
 | 
					      initial_pose_sub_;
 | 
				
			||||||
  rclcpp::Subscription<sensor_msgs::msg::PointCloud2>::SharedPtr
 | 
					  rclcpp::Subscription<sensor_msgs::msg::PointCloud2>::SharedPtr
 | 
				
			||||||
      pointcloud_sub_;
 | 
					      pointcloud_sub_;
 | 
				
			||||||
  // rclcpp::TimerBase::SharedPtr timer_;
 | 
					  rclcpp::TimerBase::SharedPtr timer_;
 | 
				
			||||||
  std::shared_ptr<tf2_ros::TransformBroadcaster> tf_broadcaster_;
 | 
					  std::shared_ptr<tf2_ros::TransformBroadcaster> tf_broadcaster_;
 | 
				
			||||||
  std::shared_ptr<tf2_ros::Buffer> tf_buffer_;
 | 
					  std::shared_ptr<tf2_ros::Buffer> tf_buffer_;
 | 
				
			||||||
  std::shared_ptr<tf2_ros::TransformListener> tf_listener_;
 | 
					  std::shared_ptr<tf2_ros::TransformListener> tf_listener_;
 | 
				
			||||||
 | 
				
			|||||||
@ -1,3 +1,3 @@
 | 
				
			|||||||
base_link2livox_frame:
 | 
					base_link2livox_frame:
 | 
				
			||||||
  xyz: "\"0.246 -0.135 0.397\""
 | 
					  xyz: "\"0.251 -0.1285 0.397\""
 | 
				
			||||||
  rpy: "\"0.0  0.0  0.0\""
 | 
					  rpy: "\"0.0  0.0  0.0\""
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user