rc_lidar
This commit is contained in:
		
							parent
							
								
									096e317353
								
							
						
					
					
						commit
						15e01f4892
					
				
							
								
								
									
										63
									
								
								caijian.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										63
									
								
								caijian.py
									
									
									
									
									
										Executable file
									
								
							@ -0,0 +1,63 @@
 | 
			
		||||
#!/usr/bin/env python3
 | 
			
		||||
import rclpy
 | 
			
		||||
from rclpy.node import Node
 | 
			
		||||
from sensor_msgs.msg import PointCloud2, PointField
 | 
			
		||||
import numpy as np
 | 
			
		||||
import struct
 | 
			
		||||
from sklearn.cluster import DBSCAN
 | 
			
		||||
 | 
			
		||||
class LidarFilterNode(Node):
 | 
			
		||||
    def __init__(self):
 | 
			
		||||
        super().__init__('caijian_node')
 | 
			
		||||
        self.publisher_ = self.create_publisher(PointCloud2, '/livox/lidar_filtered', 10)
 | 
			
		||||
        self.subscription = self.create_subscription(
 | 
			
		||||
            PointCloud2,
 | 
			
		||||
            '/livox/lidar/pointcloud',
 | 
			
		||||
            self.filter_callback,
 | 
			
		||||
            10)
 | 
			
		||||
        self.get_logger().info('caijian_node started, numpy filtering z in [1.5,3]m, distance<=12m, remove isolated points')
 | 
			
		||||
 | 
			
		||||
    def filter_callback(self, msg):
 | 
			
		||||
        num_points = msg.width * msg.height
 | 
			
		||||
        data = np.frombuffer(msg.data, dtype=np.uint8)
 | 
			
		||||
        points = np.zeros((num_points, 4), dtype=np.float32)  # x, y, z, intensity
 | 
			
		||||
 | 
			
		||||
        for i in range(num_points):
 | 
			
		||||
            offset = i * msg.point_step
 | 
			
		||||
            x = struct.unpack_from('f', data, offset)[0]
 | 
			
		||||
            y = struct.unpack_from('f', data, offset + 4)[0]
 | 
			
		||||
            z = struct.unpack_from('f', data, offset + 8)[0]
 | 
			
		||||
            intensity = struct.unpack_from('f', data, offset + 12)[0]
 | 
			
		||||
            points[i] = [x, y, z, intensity]
 | 
			
		||||
 | 
			
		||||
        z_mask = (points[:,2] >= 1.5) & (points[:,2] <= 3.0)
 | 
			
		||||
        dist_mask = np.linalg.norm(points[:,:3], axis=1) <= 12.0
 | 
			
		||||
        mask = z_mask & dist_mask
 | 
			
		||||
        filtered_points = points[mask]
 | 
			
		||||
        
 | 
			
		||||
        # 使用DBSCAN去除孤立点
 | 
			
		||||
        if filtered_points.shape[0] > 0:
 | 
			
		||||
            clustering = DBSCAN(eps=0.3, min_samples=5).fit(filtered_points[:,:3])
 | 
			
		||||
            core_mask = clustering.labels_ != -1
 | 
			
		||||
            filtered_points = filtered_points[core_mask]
 | 
			
		||||
 | 
			
		||||
        fields = [
 | 
			
		||||
            PointField(name='x', offset=0, datatype=PointField.FLOAT32, count=1),
 | 
			
		||||
            PointField(name='y', offset=4, datatype=PointField.FLOAT32, count=1),
 | 
			
		||||
            PointField(name='z', offset=8, datatype=PointField.FLOAT32, count=1),
 | 
			
		||||
            PointField(name='intensity', offset=12, datatype=PointField.FLOAT32, count=1),
 | 
			
		||||
        ]
 | 
			
		||||
        filtered_points_list = filtered_points.tolist()
 | 
			
		||||
        import sensor_msgs_py.point_cloud2 as pc2
 | 
			
		||||
        filtered_msg = pc2.create_cloud(msg.header, fields, filtered_points_list)
 | 
			
		||||
        self.publisher_.publish(filtered_msg)
 | 
			
		||||
 | 
			
		||||
def main(args=None):
 | 
			
		||||
    rclpy.init(args=args)
 | 
			
		||||
    node = LidarFilterNode()
 | 
			
		||||
    rclpy.spin(node)
 | 
			
		||||
    node.destroy_node()
 | 
			
		||||
    rclpy.shutdown()
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    main()
 | 
			
		||||
							
								
								
									
										75
									
								
								pcd2pgm.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										75
									
								
								pcd2pgm.py
									
									
									
									
									
										Executable file
									
								
							@ -0,0 +1,75 @@
 | 
			
		||||
import rclpy
 | 
			
		||||
from rclpy.node import Node
 | 
			
		||||
from sensor_msgs.msg import PointCloud2
 | 
			
		||||
from nav_msgs.msg import OccupancyGrid
 | 
			
		||||
import numpy as np
 | 
			
		||||
import struct
 | 
			
		||||
import time
 | 
			
		||||
 | 
			
		||||
class PointCloudToGrid(Node):
 | 
			
		||||
    def __init__(self):
 | 
			
		||||
        super().__init__('pointcloud_to_grid')
 | 
			
		||||
        self.subscription = self.create_subscription(
 | 
			
		||||
            PointCloud2,
 | 
			
		||||
            '/livox/lidar_filtered',
 | 
			
		||||
            self.pointcloud_callback,
 | 
			
		||||
            10)
 | 
			
		||||
        self.publisher = self.create_publisher(OccupancyGrid, '/lidar_grid', 10)
 | 
			
		||||
        self.grid_size = 2000
 | 
			
		||||
        self.resolution = 0.02
 | 
			
		||||
        self.origin_x = -20.0
 | 
			
		||||
        self.origin_y = -20.0 
 | 
			
		||||
        self.points_buffer = []
 | 
			
		||||
        self.last_header = None
 | 
			
		||||
        # 定时器每0.5秒触发一次
 | 
			
		||||
        self.timer = self.create_timer(0.5, self.publish_grid)
 | 
			
		||||
 
 | 
			
		||||
    def pointcloud_callback(self, msg):
 | 
			
		||||
        points = self.pointcloud2_to_xyz_array(msg)
 | 
			
		||||
        self.points_buffer.append(points)
 | 
			
		||||
        self.last_header = msg.header  # 保存最新header用于地图消息
 | 
			
		||||
 | 
			
		||||
    def publish_grid(self):
 | 
			
		||||
        if not self.points_buffer:
 | 
			
		||||
            return
 | 
			
		||||
        # 合并0.5秒内所有点
 | 
			
		||||
        all_points = np.concatenate(self.points_buffer, axis=0)
 | 
			
		||||
        grid = np.zeros((self.grid_size, self.grid_size), dtype=np.int8)
 | 
			
		||||
        for x, y, z in all_points:
 | 
			
		||||
            if z < 2.0:
 | 
			
		||||
                ix = int((x - self.origin_x) / self.resolution)
 | 
			
		||||
                iy = int((y - self.origin_y) / self.resolution)
 | 
			
		||||
                if 0 <= ix < self.grid_size and 0 <= iy < self.grid_size:
 | 
			
		||||
                    grid[iy, ix] = 100
 | 
			
		||||
        grid_msg = OccupancyGrid()
 | 
			
		||||
        if self.last_header:
 | 
			
		||||
            grid_msg.header = self.last_header
 | 
			
		||||
        grid_msg.info.resolution = self.resolution
 | 
			
		||||
        grid_msg.info.width = self.grid_size
 | 
			
		||||
        grid_msg.info.height = self.grid_size
 | 
			
		||||
        grid_msg.info.origin.position.x = self.origin_x
 | 
			
		||||
        grid_msg.info.origin.position.y = self.origin_y
 | 
			
		||||
        grid_msg.data = grid.flatten().tolist()
 | 
			
		||||
        self.publisher.publish(grid_msg)
 | 
			
		||||
        self.points_buffer.clear()  # 清空缓存
 | 
			
		||||
 | 
			
		||||
    def pointcloud2_to_xyz_array(self, cloud_msg):
 | 
			
		||||
        # 解析 PointCloud2 数据为 numpy 数组
 | 
			
		||||
        fmt = 'fff'  # x, y, z
 | 
			
		||||
        point_step = cloud_msg.point_step
 | 
			
		||||
        data = cloud_msg.data
 | 
			
		||||
        points = []
 | 
			
		||||
        for i in range(0, len(data), point_step):
 | 
			
		||||
            x, y, z = struct.unpack_from(fmt, data, i)
 | 
			
		||||
            points.append([x, y, z])
 | 
			
		||||
        return np.array(points)
 | 
			
		||||
 | 
			
		||||
def main(args=None):
 | 
			
		||||
    rclpy.init(args=args)
 | 
			
		||||
    node = PointCloudToGrid()
 | 
			
		||||
    rclpy.spin(node)
 | 
			
		||||
    node.destroy_node()
 | 
			
		||||
    rclpy.shutdown()
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    main()
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user